电源提供装置以及充电方法与流程

文档序号:23662713发布日期:2021-01-15 14:01阅读:71来源:国知局
电源提供装置以及充电方法与流程

本公开涉及充电领域,特别涉及一种电源提供装置以及充电方法。



背景技术:

随着电子设备(如智能手机、平板电脑等智能终端设备)的广泛应用,其功能越来越多,但功耗也相应不断增大,需要经常充电。为了加快充电速度,需要相应的电源适配器能够输出更多的电能。

然而,目前能够输出较大功率的电源适配器的体积均较大,不便于随身携带,用户体验差。

在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。



技术实现要素:

本公开的一个目的在于提出一种体积较小的电源提供装置。

为解决上述技术问题,本公开采用如下技术方案:

根据本公开的一个方面,本公开提供一种电源提供装置,

一种电源提供装置,包括:

整流电路,用于对输入的交流电压进行整流;

第一级变换电路,用于对整流后的直流电压进行变换,得到第一直流电压;

第二级变换电路,所述第二级变换电路与所述电源提供装置的输出端连接,所述第二级变换电路用于对所述第一直流电压进行变换,输出第二直流电压,其中,所述第二直流电压低于所述第一直流电压的电压值;

填谷电路,所述填谷电路与所述电源提供装置的输出端连接,所述填谷电路用于在所述第二直流电压低于设定值时,向所述电源提供装置的输出端提供能量,以使所述电源提供装置的输出电压为恒定直流电压。

根据本公开一实施例,所述第一级变换电路包括变压器,所述变压器包括初级绕组和感应绕组,所述初级绕组用于供整流后的直流电压输入;

所述填谷电路与所述感应绕组连接,以通过所述感应绕组获取电能。

根据本公开一实施例,所述填谷电路还包括电压转换单元,所述电压转换单元的输出端为所述填谷电路的输出端;

所述电压转换单元与所述感应绕组电连接,以变换从所述感应绕组上获取到的电压。

根据本公开一实施例,所述电压转换单元包括buck电路;所述buck电路包括储能电容,用于储存从所述感应绕组获取的电能。

根据本公开一实施例,所述储能电容包括贴片电容、薄膜电容、瓷片电容、mlcc电容(multi-layerceramiccapacitors,片式多层陶瓷电容器)以及容量小于第一预设阈值的电解电容中的一种或多种。

根据本公开一实施例,所述填谷电路还包括输入侧整流电路,所述输入侧整流电路的输入端与所述感应绕组的输出端连接,所述输入侧整流电路的输出端与所述储能电容的一端连接。

根据本公开一实施例,所述第一级变换电路还包括斩波电路和二次整流电路;

所述斩波电路具有全桥工作模式以及半桥工作模式,当输入的脉动直流电压上升到第一电压区间时,所述斩波电路工作在半桥工作模式;

当输入的脉动直流电压下降到第二电压区间时,所述斩波电路工作在全桥工作模式;其中,所述第一电压区间中的电压均大于所述第二电压区间中的电压。

根据本公开一实施例,所述第二级变换电路包括buck电路、boost电路、buck-boost电路、电荷泵电路中的一种或多种级联。

根据本公开一实施例,所述电源提供装置包括控制电路;

所述控制电路用于在所述设定值与所述第二直流电压的差值大于第一差值且小于第二差值时,控制所述填谷电路与所述第二级变换电路共同向所述电源提供装置的输出端提供电能。

根据本公开一实施例,所述控制电路用于在所述第一直流电压小于或等于第二级变换电路的欠压阈值时,控制所述第二级变换电路停止输出能量。

根据本公开一实施例,所述控制电路用于在所述第二直流电压大于所述填谷电路的输出电压时,控制所述填谷电路停止工作。

根据本公开一实施例,所述第一级变换电路包括第一滤波电容,所述第一滤波电容并联于所述整流电路的输出端;

所述第一滤波电容包括贴片电容、薄膜电容、瓷片电容、mlcc电容(multi-layerceramiccapacitors,片式多层陶瓷电容器)以及容量小于第一预设阈值的电解电容中的一种或多种。

根据本公开另一个方面提出一种充电方法,所述方法包括:

整流电路对输入的交流电压进行整流;

控制第一级变换电路对整流后的直流电压进行变换,得到第一直流电压;

控制所述第二级变换电路与所述电源提供装置的输出端连接,所述第二级变换电路用于对所述第一直流电压进行变换,输出第二直流电压,其中,所述第二直流电压低于所述第一直流电压的电压值;

在所述第二直流电压低于设定值时,控制填谷电路向所述电源提供装置的输出端提供能量,以使所述电源提供装置的输出电压为恒定直流电压。

根据本公开一实施例,所述在所述第二直流电压低于设定值时,控制填谷电路向所述电源提供装置的输出端提供能量,以使所述电源提供装置的输出电压为恒定直流电压,包括:

在所述设定值与所述第二直流电压的差值大于第一差值且小于第二差值时,控制所述填谷电路与所述第二级变换电路共同向所述电源提供装置的输出端提供电能。

根据本公开一实施例,所述在所述第二直流电压低于设定值时,控制填谷电路向所述电源提供装置的输出端提供能量,以使所述电源提供装置的输出电压为恒定直流电压,包括:

所述第一直流电压小于或等于第二级变换电路的欠压阈值时,控制所述第二级变换电路停止输出能量,所述填谷电路单独向所述电源提供装置的输出端输出能量。

根据本公开一实施例,所述在所述第二直流电压低于设定值时,控制填谷电路向所述电源提供装置的输出端提供能量,以使所述电源提供装置的输出电压为恒定直流电压,包括:

在所述第二直流电压大于所述填谷电路的输出电压时,控制所述填谷电路停止工作根据本公开在一个方面提出一种计算机存储介质,所述计算机存储介质存储有充电控制程序,所述充电控制程序被至少一个处理器执行时实现所述充电方法的步骤。

本公开中填谷电路的输出端连接至电源提供装置的输出端,直接针对电源提供装置输出端电压的低谷电压进行补充,以使所述电源提供装置输出电压为恒定直流电压。在填谷电路工作过程中,填谷电路输出的能量经过的电能处理环节最少,能量利用率较高,因此需要填谷电路提供的功率相对较少。因此,本公开电源提供装置的输出稳定性较高,使得允许电源提供装置中的滤波电容的容量小于一定阈值,从而可以减小滤波电容的体积,从而可以减小电源提供装置的体积,实现体积的小型化。

并且,由于填谷能量的利用效率较好,因而需要的填谷电路中的储能电容的容量较少,因此可以减小储能电容的设置数量,从而进一步有利于减小电源提供装置的体积。

综上所述,本实施例实现了电源提供装置小型化的同时,提高了电源提供装置输出电压的稳定性。

应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。

附图说明

通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。

图1是根据本公开电源提供装置一实施例示出的电路结构框图;

图2是根据本公开电源提供装置另一实施例示出的电路结构框图;

图3是根据本公开电源提供装置一实施例示出的电路结构示意图;

图4是根据本公开电源提供装置的电路中部分电压节点仿真波形;

图5是根据本公开电源提供装置电路中输出电压、第二级电压变换电路、填谷电路输出电压的仿真波形;

图6是根据本公开充电方法一实施例示出的流程图。

具体实施方式

现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。

此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现、材料或者操作以避免喧宾夺主而使得本公开的各方面变得模糊。

在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。

以下结合本说明书的附图,对本公开的较佳实施方式予以进一步地详尽阐述。

本实施例提出一种电源提供装置,电源提供装置与待充电设备通过有线或无线的方式连接,为待充电设备提供电能,以为待充电设备中的电池充电。常见的电源提供装置为适配器、充电器等。在下述实施例中,以适配器为例进行说明。

适配器可以以恒压模式工作,其输出的电压基本维持恒定,比如5v、9v、12v或20v等。输出的电流可以为脉动直流电流(方向不变、幅值大小随时间变化)、或恒定直流电流(方向和幅值均不随时间变化)。相关适配器输出的电压并不适合直接加载到电池的两端,而是需要先经过电子设备内的变换电路进行变换,以得到电子设备内的电池所预期的充电电压和/或充电电流。

适配器还可以采用电压跟随的方式工作。即适配器和待充电的电子设备进行双向通信,适配器根据电子设备反馈所需的充电电压和充电电流,从而调整自身输出的电压和电流,使得输出的电压和电流可以直接加载到电子设备的电池上,为电池充电,电子设备无需再次再调整充电电压和充电电流。

变换电路可在不同的充电阶段控制电池的充电电压和/或充电电流。例如,在恒流充电阶段,变换电路可以利用电流反馈环使得进入到电池的电流大小满足电池所预期的第一充电电流的大小。在恒压充电阶段,变换电路可以利用电压反馈环使得加载到电池两端的电压的大小满足电池所预期的充电电压的大小。在涓流充电阶段,变换电路可以利用电流反馈环使得进入到电池的电流大小满足电池所预期的第二充电电流的大小(第二充电电流小于第一充电电流)。

比如,当相关适配器输出的电压大于电池所预期的充电电压时,变换电路用于对相关适配器输出的电压进行降压变换处理,以使经降压转换后得到的充电电压的大小满足电池所预期的充电电压的大小。

待充电设备例如可以是终端或电子设备,该终端或电子设备可以是手机、游戏主机、平板电脑、电子书阅读器、智能穿戴设备、mp4(movingpictureexpertsgroupaudiolayeriv,动态影像专家压缩标准音频层面)播放器、智能家居设备、ar(augmentedreality,增强现实)设备、vr(virtualreality,虚拟现实)设备等移动终端;也可以是移动电源(如充电宝、旅充)、电子烟、无线鼠标、无线键盘、无线耳机、蓝牙音箱等具有充电功能的可充电电子设备;或者,还可以是个人计算机(personalcomputer,pc),比如膝上型便携计算机和台式计算机等。

适配器从市电获取电能,经过电压变换后,通过数据线传、充电接口传输至电子设备内的充电电路,因此电能通过充电电路得以充入待充电电芯中。充电接口例如可以为usb2.0接口、microusb接口或usbtype-c接口。在一些实施例中,充电接口还可以为lightning接口,或者其他任意类型的能够用于充电的并口或串口。该充电接口通过数据线与适配器连接。

本实施例中的适配器可以输入非市电的交流电以及直流电。

图1是根据本公开电源提供装置100一实施例示出的电路结构框图。在一实施例中,电源提供装置100包括第一级变换电路50、第二级变换电路60,以及填谷电路。第一级变换电路50用于对整流后的直流电压进行变换,得到第一直流电压;第二级变换电路60,第二级变换电路60与电源提供装置的输出端vo连接,第二级变换电路60用于对第一直流电压进行隔离变换,输出第二直流电压,其中,第二直流电压低于第一直流电压的电压值;填谷电路20与电源提供装置100的输出端连接,填谷电路20用于在第二直流电压低于设定值时,向第二级变换电路60提供能量,以使输出的第二直流电压为恒定直流电压。

在相关技术中,交流电源输入通过整流桥整流后成为脉动直流电,一般经过电解电容滤波得到波动较小的直流电压。然而电解电容的体积较大,限制了电源提供装置100向小型化发展。

在本公开一实施例中,电源提供装置100还包括一个或多个滤波电容,本申请实施例中的滤波电容的容量可以小于预设阈值,例如,可以小于900uf或小于500uf、或小于100uf。在滤波电容的容量小于预设阈值的情况下,其体积也相对较小,因此可以尽量减小电源提供装置100的体积。

具体的,滤波电容的类型可以是mlcc(multi-layerceramiccapacitors,片式多层陶瓷电容器)电容、薄膜电容、瓷片电容以及容量小于第一预设阈值的电解电容;这些电容可以采用贴片电容的形式。这些电容的能量密度较高,因此可以最大限度的基于小尺寸进行能量存储,从而可以减小电源提供装置100的体积。

在此,滤波电容可以采用一个或多个电容组合的形式,连接关系可以是串联也可以是并联,主要根据需求的电容的容量来决定。

可以理解的是,本申请实施例中,为了减小电源提供装置100的体积,可以使得滤波电容的体积减小即可。换句话说,本申请实施例可以不考虑滤波电容的容量,只要减小电源提供装置100的体积均可应用本申请。

本申请实施例提供的电源提供装置100,该电源提供装置100中的滤波电容的容量小于一定阈值,可以减小滤波电容的体积,从而可以减小电源提供装置100的体积,实现电源提供装置100体积的小型化。

根据具体电源提供装置100电路的不同,滤波电容的设置位置也有相应变化,在此不限定滤波电容的具体连接方式,在以下实施例中,会结合具体电路结构,给出滤波电容设置位置的实施例。

本申请实施例提供的电源提供装置100,该电源提供装置100中的滤波电容的容量小于一定阈值,可以减小滤波电容的体积,从而可以减小电源提供装置100的体积,实现电源提供装置100体积的小型化。

并且,当采用了容量较小的电容后所产生的电压脉动大的问题,在本实施例中,设置有填谷电路20。填谷电路20直接向电源提供装置100的输出端提供电能,以使电源提供装置100输出电压与电源提供装置100的目标输出电压匹配,提高电源提供装置100输出电压的稳定性。

综上,本实施例实现了电源提供装置100小型化的同时,提高了电源提供装置100输出电压的稳定性。

请参阅图2和图3,图2是根据本公开电源提供装置100另一实施例示出的电路结构框图;图3是根据本公开电源提供装置100一实施例示出的电路结构示意图。上述实施例中,整流电路30,用于整流交流电流,以形成脉动的直流电流。整流电路30可以是整流桥。

在整流电路30的后级设有第一级变换电路50,第一级变换电路50用于对整流后的直流电压进行变换,得到第一直流电压。

具体的,第一级变换电路50包括斩波电路52,变压器51、以及二次整流电路53。即在整流电路30将交流电源ac整流成脉动直流后,斩波电路52对该脉动直流进行直流逆变。进而变压器51对逆变后的交流电压进行电压变换,二次整流电路53进而将变压器51次级绕组输出的交流电流进行整流,以形成直流电流。

在该实施例中,斩波电路52采用由四个高速开关管组成的逆变桥,以对整流后的脉动直流进行高频逆变。示意性的,斩波电路52包括四个开关管,分别为q1、q2、q3、q4。其中q1、q3为上桥臂,q2、q4为下桥臂。q1、q2、q3、q4的导通与关断受控于电源提供装置100内的控制电路。该控制电路可以是cpu、mcu、soc等。

在该实施例中,通过控制电路控制q1、q2、q3、q4各自的导通和关断,从而能够使得斩波电路52工作于全桥工作模式或半桥工作模式。全桥工作模式,即对整流电路30输出的脉动直流进行全桥逆变。半桥工作模式,即对整流电路30输出的脉动直流进行半桥逆变。

因此,在一实施例中,进一步设置当输入的脉动直流电压上升到第一电压区间时,斩波电路52在控制电路的控制下工作在半桥工作模式;当输入的脉动直流电压下降到第二电压区间时,斩波电路52在控制电路的控制下工作在全桥工作模式;其中,第一电压区间中的电压均大于第二电压区间中的电压。

第一电压区间和第二电压区间的具体值可以由厂家预设,还可以由控制电路根据交流电源ac的波动情况进行针对性设定。

示意性的,第一电压区间对应为低压范围,可以设置为90v~130v;第二电压区间对应为高压范围,可以设置为180v~264v。此处的电压是指交流电压。

电源提供装置100内通过设置电压采样电路,能够检测到当前时刻的交流电压或一段时间内的平均交流电压。进而控制电路根据交流电压控制斩波电路52的工作模式。

本实施例中,通过在交流电压较低时,斩波电路52采用全桥逆变工作模式,以增大逆变后的平均电压,通过在交流电压较高时,斩波电路52采用半桥逆变工作模式,以降低逆变后的平均电压,由此在交流电压较宽的变化范围内,斩波电路52的输出(以及变压器51次级的输出)变化维持在较窄的范围内,从而减弱了因采用容量较小的电容所带来电压波动较大的影响;并且还能够有利于后端第二级变换电路60的工作稳定性。

在图3中,变压器51起到隔离和变压的作用。根据交流电源ac的电压水平与电源提供装置100需要输出的目标输出电压水平的相对关系,变压器51具体可以是升压变压器51或降压变压器51。

变压器51的初级绕组n1的第一端连接于q1、q2之间,第二端通过电容cr连接于q3、q4之间;在此电容cr可以是一个或多个电容组成。电容为cr谐振电容,变压器51的漏感、励磁电感形成谐振电感,由此形成了谐振电路。通过谐振电路的震荡,实现了软开关,从而达到了电能转换的高效率。

因此本实施例的电源提供装置100电路架构相对于同等输出功率的其他电源提供装置100来说,所需要的电容更少,因此能够进一步的降低电源提供装置100尺寸;并且因采用了小体积电容后,整流电路30输出电压的范围较宽的情况下,采用本实施例中的电路架构可以提高功率输出效率。

二次整流电路53连接于变压器51的次级绕组n3、n4,用于整流次级绕组输出的交流电流。具体的,二次整流电路53可以采用同步整流电路或其他类型的整流电路。

示意性的,同步整流电路包括开关sr1、sr2;sr1、sr2可以采用mos管。

在次级绕组上交流电压的正半周,sr2导通,sr1关断;sr2起整流作用;在次级绕组上交流电压的负半周,sr2关断,sr1导通,sr1起到整流作用,从而实现对次级绕组上交流电压的正负半周期的整流。

如前,第二级变换电路60与第一直流变换电路50的输出连接,用于对第一直流电压进行变换,输出第二直流电压,其中,第二直流电压低于第一直流电压的电压值。第二级变换电路60的输出端即为电源提供装置100的输出端。

第二级变换电路60可以包括buck电路、boost电路、buck-boost电路、电荷泵电路中的一种或多种级联。

在一具体的实施例中,第二级变换电路60为buck-boost电路,buck-boost电路的输入端与二次整流电路53的输出端连接,buck-boost电路的输出端为电源提供装置100的输出端。

buck-boost电路具有升压功能,也具有降压功能,在控制电路的控制下能够根据第一直流变换电路50的输出值,在升压功能和降压功能之间切换,从而将buck-boost的输出端电压维持在一个稳定的电压值。

在图3中,buck-boost电路包括有高频开关s1、s2、s3、s4、以及电感lb。示意性的,buck-boost电路的输入端还连接有第二电容c2、第三电容c3。第二电容c2、第三电容c3的另一端均接地。第二电容c2、第三电容c3均可以采用mlcc(multi-layerceramiccapacitors,片式多层陶瓷电容器)电容、薄膜电容、瓷片电容以及容量小于第一预设阈值的电解电容;这些电容可以采用贴片电容的形式。

通过在buck-boost电路的输入端设置电容,从而提高了输入电压的稳定性,减小因输入电压因波动达到低点,造成buck-boost电路工作于限流状态或停止工作。

buck-boost电路的输出端还连接有第四电容c4、以及电容co。第四电容c4、电容co的另一端均接地。第四电容c4、电容co均可以采用贴片电容、薄膜电容、瓷片电容以及容量小于第一预设阈值的电解电容,以减小电源提供装置100体积。

通过在buck-boost电路的输出端设置电容,从而提高了输出电压的稳定性。

请继续参阅图2和图3。在下述实施例中,将对本申请的填谷电路20的实施例进行说明。

如前,本公开中的填谷电路20与第二级变换电路60的输出端连接,以在合适的时机向第二级变换电路60的输出端提供电能,以使电源提供装置100输出电压为恒定直流电压。

在此,电源提供装置100的输出设定值一般为电源提供装置100的期望输出电压;具体可以根据当前的充电模式确定,也可以用户进行设定。在正常情况下,第二级变换电路60的输出电压与电源提供装置100的设定值匹配的,在此匹配是指第二级变换电路60的输出电压与电源提供装置100的设定值的差值小于某一特定值,在这种情况下,认为第二级变换电路60输出电压满足所要求的设定值。

填谷电路20的输出端与第二级变换电路60的输出端均连接至电源提供装置100的输出端,填谷电路20在第二级变换电路60的输出电压达到波峰时存储能量,在第二级变换电路60的输出电压达到低谷时向电源提供装置100输出端vo提供能量。填谷能量经过的电能处理环节最少,能量利用率较高,因此需要填谷电路20提供的功率相对较少。

并且,由于填谷能量的利用效率较好,因而需要的填谷电路20中的储能电容的容量较少,因此可以减小储能电容的设置数量,从而进一步有利于减小电源提供装置100的体积。

填谷电路20可以受控于上述控制电路,也可以是填谷电路20内部具有独立的控制芯片,该芯片与电源提供装置100的控制电路之间建立通讯连接,从而在控制电路的总调控下,使填谷电路20与第二级变换电路60配合输出电压。

在一些实施例中,在设定值与第二级变换电路的输出电压的差值大于或等于第一差值时,填谷电路20向电源提供装置100的输出端vo提供电能。

示意性的,在某一充电阶段,目标输出电压为20v,第一差值为0.5v,则当电源提供装置100输出电压小于19.5v时,则控制电路控制填谷电路20启动,以向电源提供装置100的输出端提供电能,从而保持或拉升电源提供装置100的输出端的电压。

当然,在另一些实施例中,当交流电源ac的电压小于或等于第一电压时,填谷电路20向电源提供装置100的输出端提供电能。在该实施例中,是根据交流电源ac的电压大小,来确定填谷电路20的启动时机。

在一些实施例中,当第二级变换电路60的输出电压小于填谷电路的输出电压时,自动触发填谷电路启动,以向电源提供装置100的输出端vo提供电能。

在关于填谷电路20的一具体实施例中,填谷电路20包括感应绕组n2;感应绕组n2设置在变压器51的次级侧。当初级绕组n1通上交流电时,变压器51铁芯产生交变磁场,感应绕组n2上产生感应电动势,提供给填谷电路20作为能量输入。

在该实施例中的变压器51可以为上述实施例中第一级变换电路50中的变压器51,从而仅需要增加一个感应绕组n2即可,由此可以直接利用变压器51已有绕组,有效的简化了电源提供装置100电路的复杂性。当然,也可以另外设置独立的变压器。

在一些实施例中,填谷电路20还包括电压转换单元;电压转换单元与感应绕组n2电连接,以变换感应绕组n2上的电压。

根据交流电源ac的电压以及电源提供装置100需要的设定值,电压转换单元可以用于升压的转换单元,或是用于降压的转换单元。通过电能变换单元的设置,能够在填谷电路20切入,以向电源提供装置100输出端输送电能时,减小电源提供装置100输出电压的波动的明显性,能够实现填谷电路20的自然启动输送电能以及自然退出输送电能。

示意性的,在一实施例中,电压转换单元的输出电压为目标输出电压×(1±10%)的范围内。具体可以是电压×(1±5%)、电压×(1±3%)等。具体可以根据填谷电路20的电压调控精度以及电源提供装置100所允许的电压输出误差来进行设定。

在关于填谷电路20的一具体电路实施例中,电压转换单元包括buck电路;buck电路中具有用于储存感应绕组n2的电能的储能电容,储能电容的容量小于第二预设阈值。

buck电路能够将感应绕组n2上的电压降压后传输至电源提供装置100的电压输出端。图3中,buck电路包括有储能电容cbuck、电感lv、控制开关管、第二二极管d2、第五电容c5。

图3中,在填谷电路20中mos管qv受控于控制电路,mos管qv为高频开关。qv的作用是维持电容c5的稳定。当电源提供装置100输出电压vo较低时,buck电路通过二极管d3向第四电容c4、以及电容co提供能量,维持电源提供装置100输出电压的稳定。

进一步的,填谷电路20还包括输入侧整流电路,输入侧整流电路的输入端与感应绕组n2的输出端连接,输入侧整流电路的输出端与储能电容的一端连接。输入侧整流电路可以是半波整流电路,或是全波整流电路。

具体的,在图3中,输入侧整流电路为第一二极管d1,第一二极管d1的阳极与感应绕组n2的一端连接,阴极与储能电容cbuck的一端连接。

示意性的,在填谷电路20工作过程中,当感应绕组n2与第一二极管d1阳极连接的一端具有正电压时,感应绕组n2上的电压加在储能电容cbuck上,以对储能电容cbuck充电。开关管qv、续流二极管d2和滤波电感lv构成buck电路。当第二级直流变换电路60的输出电压较低,且低于buck电路的输出电压时,二极管d3自然导通,储能电容cbuck经过buck电路为c4、co提供能量,维持电源提供装置100输出端电压。当第二级变换电路60的输出电压较高,且高于buck电路的输出电压时,二极管d3反向截止,buck电路停止向电源提供装置100的输出端输出功率,处于空载状态。

示意性的,例如交流电源ac的电压为180vac,此时第一级变换电路50处于半桥工作模式,电源提供装置100输出目标功率为70w,第一级直流变换电路50输出波谷电压很低,电源提供装置100输出端电压无法稳压。通过增加填谷电路20后,通过调整储能电容cbuck的容量、感应绕组n2的匝比等参数,能够使电源提供装置100输出端电压得到维持,保证充电的顺利进行。

在该实施例中,储能电容cbuck以及第五电容c5的类型可以均为mlcc(multi-layerceramiccapacitors,片式多层陶瓷电容器)电容、薄膜电容、瓷片电容以及容量小于第一预设阈值的电解电容;这些电容可以采用贴片电容的形式,以减小电源提供装置100的体积。

进一步的,在设定值与第二级变换电路60的输出电压的差值大于第一差值且小于第二差值时,控制电路控制控制填谷电路20与第二级变换电路60共同向电源提供装置100的输出端提供电能。

其中,第二差值大于第一差值。第二差值的设定值可以是根据第二级变换电路60的欠压门槛来设定,使得设定值与第二级变换电路60的输出电压的差值为第二差值时,此时第二级变换电路60大致达到欠压门槛。

进一步的,所述第一直流电压小于或等于第二级变换电路60的欠压阈值时,控制所述第二级变换电路60停止输出能量。这个阶段,第二级变换电路60大致处于欠压状态(即第二级变换电路60的工作电压低于额定电压的状态,而第二级变换电路60的工作电压根据第二级变换电路60中的芯片工作电压来确定,或者人为限定,以避免工作在过低的电压环境下),为了避免使第二级变换电路60工作在欠压状态,而造成内部器件的损坏,因此,在该实施例中,控制第二级变换电路60关断。此时由填谷电路20的输出单独作为电源提供装置100的输出。

于此同时,整流电路30的输出端并联有第一滤波电容40,在第二级变换电路60停止输出功率时,整流电路30的能量不再向后级传输,从而使第一滤波电容40的电压得以维持。

请参阅4和图5,图4是根据本公开电源提供装置100的电路中部分电压节点仿真波形;图5是根据本公开电源提供装置100电路中输出电压、第二级变换电路60、填谷电路20输出电压的仿真波形。在此基于图4和图5,对填谷电路20和第二级变换电路60的配合工作过程进行说明。

图4中v_bulk为储能电容cbuck上的电压,vrec为无填谷电路20的整流电路30的输出电压(也就是第一电容两端的电压),vrec_in为增加填谷电路20后的整流电路30的输出电压。在下面描述中,以填谷电路20为buck电路,以二次直流变换电路为buck-boost为例说明。图5中,vo为电源提供装置100的输出电压,vbus为第二级变换电路60的输出电压,vbuck为填谷电路20的输出电压。

在t1时间段,由于整流电路30输出电压较高,因此第二级变换电路60的输出电压较高,此时buck电路(填谷电路20)中的二极管d3反向截止,buck电路处于空载工作状态,vrec_in与vrec曲线重合,储能电容cbuck充电储能和并保持一定电压。在t2时间段,当整流电路30输出电压较低,第二级变换电路60的输出电压低于buck电路的输出时,二极管d3自然导通,储能电容cbuck的能量经过buck电路给c4、co充电,以维持电源提供装置100输出电压vo电压,buck电路和buck-boost电路共同提供输出功率。由于buck-boost电路输入电压低于额定电压,此时buck-boost电路处于限流状态。如果没有填谷电路70提供功率支撑,第一滤波电容c1两端的电压在t2时间段会衰减的很快。在t3时间段,当第一级变换电路50的输出电压继续降低至buck-boost电路输入欠压门槛,buck-boost电路即停止工作,则在t3时间段由buck电路继续维持电源提供装置100输出电压vo并全部输出功率。此时由于第一级变换电路50,以及buck-boost电路不传输功率,电容c1能量得以保持。在t4时间段,随着整流电路30的整流电压进入下一个馒头波上升沿,当第一级变换电路50输出电压达到buck-boost电路欠压恢复门槛后,buck-boost电路启动工作,逐步分担输出功率。当buck-boost电路的输出电压高于buck电路输出电压时,二极管d3反向截止,buck电路处于空载状态,此时由buck-boost电路单独维持vo和全部输出功率。

图6是根据本公开充电方法一实施例示出的流程图。基于此,本公开还提出一种充电方法,充电方法可以应用于上述实施例中的电源提供装置100。

在一实施例中,充电方法应用于电源提供装置,电源提供装置100包括整流电路30、第一级变换电路50、第二级变换电路60,填谷电路20。在此该电源提供装置可以为上述实施例中的电源提供装置100,也可以为具有填谷电路以及其他类型的电源提供装置。以上述实施例中的电源提供装置100为例,方法包括:

s90,控制整流电路30对输入的交流电压进行整流;

s91,控制第一级变换电路50对整流后的直流电压进行变换,得到第一直流电压;

s92,控制第二级变换电路60与电源提供装置100的输出端连接,第二级变换电路60用于对第一直流电压进行变换,输出第二直流电压,其中,第二直流电压低于第一直流电压的电压值;

s93,在第二直流电压低于设定值时,控制填谷电路20向电源提供装置100的输出端提供能量,以使电源提供装置100的输出电压为恒定直流电压。

在一实施例中,在第二直流电压低于设定值时,控制填谷电路向第二级变换电路提供能量,以使输出的第二直流电压为恒定直流电压,包括:

在设定值与第二直流电压的差值大于第一差值且小于第二差值时,控制填谷电路20与第二级变换电路60共同向电源提供装置100的输出端vo提供电能。

在一实施例中,在第二直流电压低于设定值时,控制填谷电路向第二级变换电路提供能量,以使输出的第二直流电压为恒定直流电压,包括:

所述第一直流电压小于或等于第二级变换电路60的欠压阈值时,控制所述第二级变换电路60停止输出能量,所述填谷电路单独向所述电源提供装置的输出端输出能量。

在一实施例中,在第二直流电压低于设定值时,控制填谷电路向第二级变换电路提供能量,以使输出的第二直流电压为恒定直流电压,包括:

在第二直流电压大于填谷电路20的输出电压时,控制填谷电路20停止工作。

关于方法实施例中的相关解释请参照上述电源提供装置100的实施例。

此外,需要注意的是,上述附图仅是根据本公开示例性实施方式的方法所包括的处理的示意性说明,而不是限制目的。易于理解,上述附图所示的处理并不表明或限制这些处理的时间顺序。另外,也易于理解,这些处理可以是例如在多个模块中同步或异步执行的。

本实施例还提出一种充电控制装置,包括存储单元、处理单元;存储单元上存储有充电控制程序;处理单元用于在运行充电控制程序时,执行上述充电方法的步骤。

通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是cd-rom,u盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、终端装置、或者网络设备等)执行根据本公开实施方式的方法。

本公开还提出计算机可读存储介质的示意图。计算机可读存储介质可以采用便携式紧凑盘只读存储器(cd-rom)并包括程序代码,并可以在终端设备,例如个人电脑上运行。然而,本公开的程序产品不限于此,在本公开中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。

上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被一个该设备执行时,使得该计算机可读介质实现如图6所示的电池充电方法。

虽然已参照几个典型实施方式描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1