一种储能站风能与光伏一体监控系统的制作方法

文档序号:26294306发布日期:2021-08-17 13:42阅读:114来源:国知局
一种储能站风能与光伏一体监控系统的制作方法

本发明属于电力系统监控领域,尤其涉及一种储能站风能与光伏一体监控系统。



背景技术:

现有监控模式,往往是一类设备、一套监控,例如储能配备了储能监控,光伏配备了光伏监控,风电配备了风电监控。

然后再建设一套“全站监控”,通过全站监控的通讯管理机,接入各类设备监控,形成“综合监控系统”。

这种“系统-子系统”的整合方式,存在以下几个方面的问题:

(1)数据不同步。由于是“系统-子系统”模式的连接,之间还隔了通讯管理机,所以数据传输延时大,常常达到10s、甚至1min级别,造成数据不同步。

(2)调试困难。现场工程实施经验表明,通过“私有规约”+“通讯管理机”模式的互联,调试需要厂家通力配合,调试只能针对现场情况设定,效率低下。

(3)控制低效。由于环节多,而且各个厂家监控系统设定不同,无论是通讯的及时性,还是控制命令下达的速率最快只能达到10s左右的延时。无法发挥储能的性能,造成设备浪费。

(4)成本高昂。多套子监控系统,服务器等资源重复配置,无法共享资源,造成计算、存储、通信资源的浪费。



技术实现要素:

发明目的:本发明的目的在于提供一种储能站风能与光伏一体监控系统,满足储能站各子系统信息共享、协调控制的功能。

技术方案:本发明的储能站风能与光伏一体监控系统,包括安全i区、安全ii区和安全ⅲ、iv区,所述安全i区包含风电场、光伏站、储能站和变电站,纳入一体化监控;所述安全ii区包含变电站、光伏站、风电场及储能站所有的辅助设备、智能辅控系统和储能系统;所述安全ⅲ、iv区包含视频子系统;所述一体监控系统采用两台ems服务器和一套监控系统实现统一功能平台、统一设备建模、统一数据采集、统一接入规约、统一协调控制、统一安全分区。

进一步地,所述储能站包括储能变流器pcs和电池管理系统bms,所述储能变流器pcs和电池管理系统bms直接接入交换机,不经过通讯管理机,统一采用iec-61850规约。快速控制系统单独划出虚拟局域网vlan,pcs、协调控制器直接接入控制网,通讯采用基于iec-61850的goose协议;电网电压、频率直接采样,不经过通讯,保证ms级响应速率。

进一步地,所述统一设备建模具体为:变电站基于国际标准iec-61850规范建模,储能站、风电场和光伏站基于国际标准iec-61850-7-420规范建模,智能辅控系统基于国网sgcim4.0标准建模。

进一步地,所述统一数据采集具体为:智能辅控系统和储能系统采用iec-61850规约接入,统一数据和通信模型,实现了全站互联互通、联动控制,提高了运维效率。

进一步地,所述统一接入规约具体为:接入站控网、数据网、控制网i区、ii区的设备采用iec-61850规约,安全i区、ii区实现规约层面的统一,彻底取消通讯管理机、规约转换装置。

进一步地,所述统一协调控制具体为:采用调度监控平面与紧急控制平面的双中心星型综合能源控制架构,既支撑调度秒级计划控制,也支撑稳控、源网荷储等系统的毫秒级紧急控制,丰富了系统控制手段。系统支持快速控制、计划控制两种模式,可在两种模式之间自动切换。一体化控制,纳入系统中所有的有功设备、无功设备等可控设备,可以基于“全局最优”的视角,实现控制的最优化设计。系统配置了独立组网的快速控制系统,支持ms级响应能力,支持100ms以内闭环控制。电源管理系统pms可以作为源网荷、稳控系统的执行机构,支持控制储能系统实现“以调代切”控制方式。

进一步地,所述安全ⅲ、iv区部署有基于“云平台”的边缘计算系统,采用虚拟服务器技术。云平台架构,支撑把计算资源、通信资源、存储资源统一管理,用户不用再关心具体硬件的物理位置,只需要申请所需的资源,即可开展相应的服务。

进一步地,所述安全i区、安全ii区和安全ⅲ、iv区之间部署有防火墙、物理隔离、纵向加密、入侵检测、安全审计、恶意代码防范、网络安全监测的安全防护设备。

进一步地,所述统一安全分区,基于不同业务安全分区,同类业务整体融合的理念,变电站保护控制、储能监视控制等实时业务部署于i区,消防、辅控系统部署于ii区,视频监控、云平台部署于ⅲ、ⅳ区,分区清晰,结构合理。

有益效果:与现有技术相比,本发明具有如下显著优点:本发明的一体监控系统减少了服务器数量,去除了通讯管理机,提高了服务器等硬件的利用率;监控系统使用国际标准的iec-61850规约和间隔层的设备通讯,省去了大量联调通讯规约的工作量,节约了大量的现场调试时间;支持ms级延时快速控制,充分发挥了储能系统的性能,支撑为电网提供稳定控制级别的能力。云平台把服务器、交换机、磁盘等资源虚拟化,业务所需资源可以基于虚拟池动态划分,大幅提升了硬件的利用率;支持不停机增加cpu、内存、硬盘、物理服务器等硬件资源,实现计算规模的动态扩展。

附图说明

图1是储能站风光一体监控系统结构图;

图2是削峰填谷示意图;

图3是计划管理功能图。

具体实施方式

下面结合附图对本发明的技术方案作进一步说明。

如图1所示,本实施例提供了一种用于储能站风光一体监控系统结构,基于“统一功能平台、统一设备建模、统一数据采集、统一接入规约、统一协调控制、统一安全分区”理念的一体化监控架构,各子系统信息共享、协调控制,实现储能站、风电场、光伏站监视控制系统的整体融合。

本实施例的站控层ⅰ、ⅱ、ⅲ、ⅳ区均采用双千兆网配置。

由于储能站大量的数据接入,本实施例采用了单独组建数据网的方案。站控网和数据网的隔离,有利于降低网络、服务器的负担,增强系统接入能力、数据处理能力。

本实施例通过在数据网交换机划vlan的方式,控制网逻辑独立,实现ms级控制。

本实施例的ii区网络全部采用双网冗余配置,用于接入储能集装箱的辅助设备,包括空调、浸水传感器、门禁传感器、消防、风电场、光伏站的气象监测设备等。

本实施例的ⅲ、ⅳ区网络全部采用双网冗余配置,主要用于接入视频信息等数据。

本实施例的接入站控网、数据网、控制网i区、ii区的设备一律采用iec-61850规约,安全i区、ii区实现规约层面的统一,彻底取消通讯管理机、规约转换装置。

本实施例的统一功能平台,按照安全分区原则,监控覆盖所有子系统,无死角。储能站主设备,包括pcs/bms等直接接入交换机,不经过通讯管理机,统一采用iec-61850规约。快速控制系统单独划出vlan,pcs、协调控制器直接接入控制网,通讯采用基于iec-61850的goose协议;电网电压、频率直接采样,不经过通讯,保证ms级响应速率。风电场、光伏站主设备直接接入安全i区,纳入一体化监控;变电站、光伏站、风电场、储能站所有的辅助设备,接入到安全ii区,纳入一体化监控;视频子系统全部接入安全ⅲ、iv区;整个系统只有两台ems服务器,全站一套监控;安全ⅲ、iv区汇聚全站全景数据,为后续数据挖掘分析提供一体化数据平台。

本实施例的统一设备建模,变电站部分基于国际标准iec-61850规范建模,储能站、风电场和光伏站部分基于国际标准iec-61850-7-420规范建模,辅助控制部分基于国网sgcim4.0标准建模。

本实施例的统一数据采集,智能辅控、储能系统采用iec-61850规约接入,统一数据和通信模型,实现了全站互联互通、联动控制,提高了运维效率。

本实施例的统一接入规约,接入站控网、数据网、控制网i区、ii区的设备一律采用iec-61850规约,安全i区、ii区实现规约层面的统一,彻底取消通讯管理机、规约转换装置。

本实施例的统一协调控制,采用调度监控平面与紧急控制平面的双中心星型综合能源控制架构,既支撑调度秒级计划控制,也支撑稳控、源网荷储等系统的毫秒级紧急控制,丰富了系统控制手段。系统支持快速控制、计划控制两种模式,可在两种模式之间自动切换。一体化控制,纳入系统中所有的有功设备、无功设备等可控设备,可以基于“全局最优”的视角,实现控制的最优化设计。系统配置了独立组网的快速控制系统,支持ms级响应能力,支持100ms以内闭环控制。pms可以作为源网荷、稳控系统的执行机构,支持控制储能系统实现“以调代切”控制方式。

本实施例的快速控制支持平移波动方式、调频方式、调压方式。

本实施例的计划控制可实现:

大规模储能系统能够快速响应有功控制目标,采用优化的控制策略和分配算法,实时控制各pcs设备,从而快速、精确调整并网点有功功率。分配算法支持按容量比例分配方式和soc均衡分配方式。

大规模储能系统能够快速响应电压/无功目标指令,采用优化的控制策略和分配算法,实时调整各pcs设备无功,从而快速调整并网点无功功率,精确跟踪母线电压目标指令。分配算法采用按等无功备用分配方式。

如图2所示的削峰填谷,一方面为电网平移峰谷差做出了贡献,另一方面也是储能的一种获利手段。

如图3所示的计划管理功能,计划曲线功能支持在监控系统中配置灵活的本地运行计划,利用监控系统遥调功能,将提前设置的运行计划下发到受控系统中,实现运行计划的灵活自定义。另外,计划曲线功能可以接收、解析不同调度主站下发的不同格式的远方计划曲线。通过控制远方/就地状态,实现对不同计划曲线的切换。

本实施例的统一安全分区,基于不同业务安全分区,同类业务整体融合的理念,变电站保护控制、储能监视控制等实时业务部署于i区,消防、辅控系统部署于ii区,视频监控、云平台部署于ⅲ、ⅳ区,分区清晰,结构合理。

其中ⅲ、ⅳ区应用“云平台”方案,部署基于“云平台”的边缘计算系统,采用虚拟服务器技术。云平台架构,支撑把计算资源、通信资源、存储资源统一管理,用户不用再关心具体硬件的物理位置,只需要申请所需的资源,即可开展相应的服务。

云平台架构,支撑把计算资源、通信资源、存储资源统一管理,用户不用再关心具体硬件的物理位置,只需要申请所需的资源,即可开展相应的服务。

支持不停机增加cpu、内存、硬盘、物理服务器等硬件资源,实现计算规模的动态扩展。业务功能扩展时,可以在线增加虚拟服务节点,成倍缩短新业务上线时间,增强了系统的扩展性。

物理服务器退出或故障时,能够实现业务系统不停机迁移,提高了系统的可靠性。

安全ⅲ、iv区汇聚了全站全景数据,包括安全i区主设备数据、安全ii区的辅助设备数据,以及安全ⅲ、iv区的视频数据。

由于储能站、光伏站数据量大,通常达百万点规模,所以全部上送云计算中心并不经济,数据量和计算量都是不小的负担。云平台配置的的计算资源,足可以对数据进行预处理,生成云计算中心所需的数据之后,再上送,既节约了带宽,又减轻了云计算中心的计算压力。

其中安全分区方案中,按照电力系统安全防护的原则,综合部署防火墙、物理隔离、纵向加密、入侵检测、安全审计、恶意代码防范、网络安全监测等安全防护设备。

防火墙产品部署在实时控制区与非控制生产区之间及生产管理区与外部网络之间,实现区域的逻辑隔离、报文过滤、访问控制等功能。

电力专用物理隔离装置作为非控制生产区与生产管理区的必备边界,具有最高的安全防护强度,是横向防护的要点。

在非控制生产区与生产管理区之间部署正反向物理隔离装置,负责单向数据传递。

纵向认证加密装置用于实时控制区与非控制生产区的广域网边界防护,实现本地包过滤功能以及广域网通信提供认证与加密功能,保证数据传输的机密性、完整性。

入侵检测系统分别部署于生产控制大区和管理信息大区,设置检测规则,检测发现隐藏于流经网络边界正常信息流中的入侵行为,分析潜在威胁并进行安全审计。

安全审计系统用于生产控制大区,能够对操作系统、数据库、业务应用的重要操作进行记录、分析,及时发现各种违规行为以及病毒和黑客的攻击行为。对于远程用户登录到本地系统中的操作行为,进行严格的安全审计。

生产控制大区和管理信息大区分别配置恶意代码防范系统,采取防范恶意代码措施,并定期离线更新经安全检测的病毒库、木马库以及ids规则库。

在生产控制大区部署网络安全监测装置,用于采集涉网区域服务器、工作站、网络设备、安全防护设备的网络安全事件信息,分析处理后通过调度数据网上报至调度主站的网络安全管理系统。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1