具有过热保护和低误差i的制作方法

文档序号:7299457阅读:265来源:国知局
专利名称:具有过热保护和低误差i的制作方法
技术领域
本发明涉及具有温度补偿控制电路的模制外壳断路器。
模制外壳断路器或类似装置包括控制电路,它可能是分立元件的或集成电路的。不管怎样,该控制电路的可靠性在高温环境下变得令人怀疑,例如在沙漠中的白天里就会遇到这种高温;或者由于本身的机电问题也会产生高温,例如与负载导体连接不良而产生高温。由于这种原因,断路器和类似装置都装设有过热保护,当断路器的温度超过一预定值时,过热保护使断路器自动跳闸,该预定值可根据本地的标准、设计、规范等条件而变化。一个典型的温度示例是90℃,超过这一温度就要使断路器跳闸以保证安全运行。在过去,一直采用热敏电阻在硅可控整流器的触发电路中引起过热跳闸,硅可控整流器与断路器跳闸线圈或跳闸装置相串联。断路器的控制系统通常包括大规模集成电路和精密电压基准。一个带隙基准值是一种典型的精密电压基准。
本发明的一个目的是为断路器提供一种可靠的、有效的、廉价的过热保护电路。
以此为目的,一个断路器应该包括一个硅可控整流器或类似的门(选通)装置,与一个通量分路跳闸装置或类似的跳闸装置串联连接。当足够大的控制极电流提供给硅可控整流器的控制极时,跳闸装置被驱动,使断路器的主触头断开。该控制极电流由一个开关或晶体管控制的电流源供给。这个开关或晶体管本身在其基极端被控制,例如由第二个晶体管控制,它的导通用来激励第一个晶体管的基极-发射电路,也就是说,使第一个晶体管导通。该控制晶体管的基极连接到一个带隙调节器基准电路的串联电阻中一个适当选择的连接点上。
这种方案的优点在于这样的事实,该串联电阻具有正的温度系数并与控制晶体管基极-发射极电路的负温度系数相互作用,当达到过高的温度值时就使该晶体管导通。在本发明的另一实施例中,该控制晶体管的发射极可以通过一个电阻连接到系统的公共端或接地,该电阻具有给定的每℃欧姆值特性。这样做的优点是,过热的温度值能以一种可预测的方式建立起来。在本发明的又一实施例中,该控制晶体管的发射极处于不接地状态,这样,过热的运行就被消除或不能进行。在本发明的另一个实施例中,一个用于I2t计算电路的记忆电阻被一个有源开关控制装置所代替,这样,当上述装置接通时,就可以利用电容器放电的记忆作用。然而,当不需要记忆作用时,上述装置被断开,实质上是与充电电路断开了。这样做的好处是,在上述断路器所保护的导体中产生热量,而代表该热量的全部电流直接供给电容器,从而减小了以前与并联记忆电阻回路有关的误差。
从下面对本发明最佳实施例的描述中,本发明将变得更加明晰,其实施例在附图中示出,其中

图1表示应用本发明概念的一个模制外壳断路器的正视图;
图2A-2C表示本发明的电气和机械的接线图,其中本发明的电气和机电元件部分地以示意图形表示,部分地以功能框图形式表示。
现在请参照附图,特别是图1,示出了作为本发明讨论主题的设备。特别画出了一个模制外壳断路器10。该模制外壳断路器10可以是以前的已转让给本发明受让人的那些美国专利中所表示和描述的任何一种类型。
图中提供了断路器底座12,它可能具有一个凹进的开口14,一个能重复使用并且可替换的跳闸组件机构16可放置在开口14中,例如根据上述美国专利4639701号所表示和叙述的那种机构。该跳闸组件机构16可包括电子控制电路作为其中的部件,电子控制电路包含在一个固态跳闸组件18中,该组件18包括一个能单独重复使用、可拆卸的以及可更换的额定电阻插头20作为其部件。一种先有技术的固态跳闸组件的使用和功能在美国专利3818275号中已有陈述,该专利于1974年6月18日发表颁布给A.B.Shimp题目是“应用电流互感器改进了跳闸回路的断路器”。一种定值插头的使用和功能在美国专利3826951号中及美国专利4603313号中都有叙述。前者于1974年7月30日颁发给Maier等人,题目是“具有可更换的定值调整器和联锁装置的断路器”;后者于1986年7月29日颁发给Shimp等人,题目是“具有可更换的定值插头联锁装置和推压跳闸按钮的断路器”。所有前述美国专利都与本发明一样转让给同一受让人。在本发明的最佳实施例中,断路器10可以是最大交流额定电压为600伏的设备,采用可互换、可调整的磁性或电子式跳闸组件,长期电流额定值可达400安培。上文应看作是本发明的原理存在于其中的一个实际实施例的说明。然而,前面叙述的说明性示例不应认为是一种限制。本发明的原理可适用于大范围的断路器应用场合,而不应看作受到下列各项的限制结构尺寸,商品体系名称,商业贸易名称或商标、功率、电压或电流额定值。而且,断路器的实际类型也不受限制。
现在参照图2A-2C画出了跳闸组件机构16和具有额定值插头20的固态跳闸组件18的相互关系。
特别是,图2A-2C画出了本发明的电气和机械接线图,部分地以示意图形、部分地以功能块图形表示出本发明的电气和机电元件以及它们的结构和功能上的配合关系。参照图2A的左上部,对于一个分别包括线路导体L1、L2和L3的三相电力系统,该断路器触头K1、K2和K3的机电示意图在10A处画出,在图1的底座12中很可能发现这些元件。机电结构部分10A也可以包括三个单相整流桥BR1、BR2和BR3,在它们的输入侧分别连接到电流互感器电路RP、CP和LP上,它们的输出侧连接到众所周知的二极管桥式最大脉冲输出装置中。三相线路L1、L2和L3可与一外部电源(SOURCE)相连,该电源通过闭合的触头K1、K2和K3向负载(LOAD)提供电力。触头K1、K2和K3的状态决定了在电源SOURCE侧可用的电力是否供给负荷LOAD。线路L1、L2、L3中的电流状态分别由电流互感器LP、CP和RP监测,可以确定触头K1、K2和K3是否处于断开状态。一些公知的断路器控制关系,例如与I2t关系式相关的控制关系以及瞬时磁性跳闸关系可以被用来确定跳闸条件。此外,断路器触头K1、K2和K3也可以手动断开或跳闸,而不必采取确定线路L1、L2和L3中的电流条件的方法。尽管对于在图2A、2B和2C中所表示的本发明的特定实施例没有叙述其他关系,但其他公知的断路器控制关系,例如欠电压、短路及其它类似状态也可以作为跳闸条件,以在该技术领域中众所周知的方式使断路器触头K1、K2和K3断开。
图中示出了额定值插头电阻20,它与固态跳闸组件18的其余部分相连接,以使桥式电路BR1-BR2-BR3的最大脉冲输出通过该电阻提供电流,以决定跳闸条件和跳闸电流范围。电流互感器RP、CP和LP分别通过二极管桥BR1-BR3得到最大脉冲输出,因而流过额定值插头电阻20的电流在任何时刻都是三相电流中的最大电流。二极管D3和D6、电容器C1和C11及电阻R4组成了一个峰值电压检测电路,其输出是在并联电容器C1、C11两端产生的电压,该电压与流过电阻20的电流的峰值成正比。电阻R4在电源失落(“Power-down”)的情况下以1秒的时间常数泄漏来自并联电容器C1-C11的电荷。固态跳闸组件18可能包括分立电路元件或类似零件;例如在18B区域所表示的那样;组件18也可以包括大规模集成电路(LSI),如同在18A处所示。用与分立元件区域18B相关联的装置或用与大规模集成元件区域18A相关联的装置是不受限制的。在本发明的一个最佳实施例中,一个集成电路片或在18A处画出的包含有大规模集成电路的类似元件可以单独地焊接或用其它方法在电气和机械上固定在一块电路板上,该电路板构成固态跳闸组件18的基座。此外,固态跳闸组件18可以与一个通量分路跳闸单元FST在机电方面相互作用,FST示于图2C的右部。该通量分路跳闸单元FST可以与一个用示意图表示的且为众所周知的机械联动装置相配合,该装置一般以LNK表示,用来与前述的触头K1、K2和K3相配合。在本发明的一个最佳实施例中,该通量分路跳闸单元FST,与其相关的联动装置LNK和触头K1、K2及K3可看作是在图1中画出的跳闸组件机构16的一部分。
在图2A-2C中,除了那些与跳闸组件机构16在18B和10A部分的电气或机电表示有密切联系的部分以外,其余在图中画出的部分或许最好标记为一个大规模集成电路(LSI)18A,作为一个固态跳闸组件。关于跳闸组件机构16,桥BR3的一个端子与定值插头20的一端相连,插头20的另一端与二极管DR的负极相连,二极管的正极与系统的公共端或地相连,系统公共端或地以众所周知的接地符号适当地标记出,此处和下文中标记为NEG。与额定值插头20和桥BR3之间的连接点相连接的元件是齐纳二极管D8的正极、二极管D3的负极和电阻元件R2的一端。齐纳二极管D8的调整端接到系统的公共端或地;二极管D3的正极连到二极管D6的负极;D6的正极连到电容元件C1的一端、电容元件C11的一端、电阻元件R4的一端和电阻元件R3的一端。电容元件C1的另一端、电容元件C11的另一端,以及电阻元件R4的另一端连受到系统的地。电阻元件R2的另一端连接到大规模集成电路式电路片18A的SDIN端子上。为了简化说明起见,大规模集成电路片18A今后将称为“片子18A”。电阻元件R3的另一端连接到片子18A的LDIN端子上。桥BR1的一端连到二极管D1的正极,D1的负极连到电阻元件R20的一端,二极管D2的正极以及场效应三极管(FET)Q1的漏极。二极管D2的负极连接到二极管D4的正极、电阻元件R19的一端、电容元件C3的一端以及电阻元件R17的一端。电阻元件R19的另一端连到片子18A的VZ端。电容元件C3的另一端连接到系统的地。二极管D4的负极连接到通量分路跳闸线圈FST的一端以及一个单向导电二极管(free-wheelingdiode)D7的负极,D7的正极连到通量分路跳闸线圈FST的另一端。这后一个电气连接点又连到一个硅可控整流器Q2的正极以及电阻元件R21的一端。硅可控整流器Q2的负极连到系统的公共端或地。硅可控整流器Q2的控制端连到片子18A的SCRG端以及一个电容元件C4的一端,C4的另一端接到系统的公共端或地。电阻元件R17的另一端连到电阻元件R16的一端、电阻元件R15的一端以及片子18A的VSEN端。电阻元件R15的另一端连到电阻元件R14的一端、电阻元件R18的一端以及片子18A的FETD端。电阻元件R14的另一端接到系统的公共端或地。电阻元件R16的另一端连接到电阻元件R12的一端以及一个集成电路比较器IC2A的输出端。电阻元件R18的另一端连到晶体管Q1的控制极。晶体管Q1的源极端子连接到电阻元件R22的一端以及比较器IC2B的负输入端。比较器IC2B的正输出端连到电阻元件R24的一端和电阻元件R23的一端。电阻元件R24的另一端连到系统的公共端或地。电阻元件R23的另一端连到VREF比较器。比较器IC2B的输出端连到电阻元件R25的一端,R25的另一端连到电阻元件R7的一端以及片子18A的OVR端。电阻元件R21的另一端连到比较器IC2A的正输入端。二极管D9的正极连接到比较器IC2A的正输入端,D9的负极连接到比较器IC2A的负输入端。同样也连接到比较器IC2A负输入端的元件有片子18A的VREF端子、电阻元件R7的另一端、电阻元件R6的一端、电位器元件R5的一端、电阻元件R11的一端以及电容元件C7的一端。电容元件C7的另一端接到系统的公共端或地。电阻元件R6的另一端和电位器元件R5的另一端连在一起,再接到片子18A的SDPU端。电阻元件R11的另一端连接到片子18A的LDPU端。比较器IC2A的负输入端通过一个程控电阻RP连接到片子18A的INST端。电容元件C2的一端连到片子18A的LDT端。电容元件C2的另一端连到系统的公共端或地。一个测试点TP1连接到片子18A的LDTP端。电容元件SDTC的一端连到片子18A的SDT端。电容元件SDTC的另一端连到系统的公共端或地。片子18A的端子SDCV可连至系统的公共端或地。电阻元件R9的一端连接到片子18A的TADJ端。电阻元件R9的另一端连到电阻元件R20的一端和电位器元件R26的一端。电位器元件R26的另一端和电阻元件R20的另一端连接到系统的公共端或地。电阻元件R13的一端和电容元件C5的一端,以及测试点TP2连接到片子18A的SDPH端。电容元件C5的另一端和电阻元件R13的另一端连接到系统的公共端或地。电阻元件R8、R27和R28的一端连在一起,再连到片子18A的MREF端。电阻元件R8、电阻元件R27和电阻元件R28的另一端连到系统的公共端或地。
具体参照图2B和2C,描述了与片子18A有关的结构特点。特别是,在内部与片子18A的VREF端相连接的是一个电压调节器REG的输出端,在该端子上存在电源电压(为简单起见称之为VREF)。调节器REG的一端连到系统的公共端接地。与调节器REG输入端相连接的是命名为E和F的两个端子。端子F连接到晶体管Q016、Q111、Q112、Q113和Q114的基极,晶体管Q111、Q112、Q113和Q114的发射极连接到电阻元件R019的一端,R019的另一端连到晶体管Q016的发射极和电阻元件R110的一端。电阻元件R110的另一端连接到电阻元件R018的一端和晶体管Q123的基极。电阻元件R018的另一端连到系统的公共端。晶体管Q123的发射极可外接到系统的公共端或经由片子18A的OVT端接地。这后一点又称之为结点D。晶体管Q123的集电极经由结点C连至晶体管Q823的基极、一个基极驱动电流源BDCS的一端以及一个公共驱动线CDL。该基极驱动电流源BDCS的另一端接到一个电压源VCC。晶体管Q823的发射极连接到系统的公共端或地,其集电极连到一个名为igt的电流源的一端以及一个二极管DD的正极。该电流源igt的另一端接到VCC电压源。二极管DD的负极连接到一个电阻元件R90的一端以及片子18A的SCRG端。电阻元件R90的另一端连到系统的公共端。同样也连到晶体管Q111、Q112、Q113和Q114的发射极的是晶体管Q119的发射极,Q119的基极称之为结点B。晶体管Q119的集电极连到晶体管Q115的集电极以及晶体管Q116的基极。晶体管Q115的基极连到晶体管Q016的集电极、晶体管Q116的双集电极和调节器REG的结点E。晶体管Q116的发射极连到晶体管Q117的双集电极和晶体管Q117的基极。晶体管Q117的基极又连到晶体管Q120的基极。晶体管Q120的发射极连到电阻元件R122的一端,R122的另一端连到电压源VCC。晶体管Q117的发射极连到电阻元件R121的一端,R121的另一端也连到电压源VCC。结点B-C-D-E-F内部的电路称为“带隙过热(跳闸)电路”。
连接到晶体管Q119基极的是二极管D188的正极和一个串联二极管D187的负极之间的连接点。二极管D188的负极连到系统的公共端或地。二极管D187的正极连到一个齐纳二极管D177的正极、D177的调整端连到第二个齐纳二极管D178的正极。第二个齐纳二极管D178的调整端连到片子18A的VZ端。这后一部分电路被表示为SR。
片子18A的MREF端连到一个运算放大器比较器OA1的反射输入端。一个等于二分之一VREF的电压配置在该运算放大器比较器OA1的同向输入端。运算放大器比较电路OA1驱动一电流源iREF,该电流源连接到一个平方/除法电路SD的一端。片子18A的LDIN端连接到一个运算放大器OA2的反向输入端,该运算放大器OA2驱动两个电流镜式电流源2/3iLD和1/3iLD。这1/3iLD电流源与该平方/除法电路SD的另一端子相连接,并且反馈到运算放大器OA2的反向输入端。以类似的方式,电流源2/3iLD连到片子18A的LDPU端。电流源2/3iLD的另一端也反馈到运算放大器OA2的反向输入端。运算放大器OA2的线路接法使端子LDIN保持虚地电位。该运算放大器OA2的同向输入端是接地的。片子18A的LDPU端连到一个比较器COM1的同向输入端,比较器的反向输入端有2/3VREF的电压配置在其上。比较器COM1提供双重的并联输出,其中之一连到一电阻元件R490的一端。该输出端被标示为C′。比较器COM1的另一输出端被标示为A′,它连到电阻元件R763的一端、晶体管Q764的基极以及晶体管Q787的集电极和基极。电阻元件R763的另一端连到晶体管Q764的集电极以及电阻元件R4104的一端。晶体管Q764的发射极连到电阻元件R762的一端,R762的另一端连到晶体管Q787的发射极和电路的地或公共端。电阻元件R4104的另一端连到晶体管Q766的基极,Q766的发射极连到系统的公共端。晶体管Q766的集电极被标示为结点或端子E′,它连到片子18A的LDT端、二极管D722的正极以及二极管D768的负极。二极管D722的负极被标示为结点或端子B′,它连到VREF电源电压。二极管D768的正极被标示为端子或结点F′,它连到片子18A的LDTP端。它也连到晶体管Q769的集电极和平方/除法电路SD两个输出端之一。后一点被标示为D′。晶体管Q769的基极连到电阻R490的另一端及电阻元件R770的一端。电阻元件R770的另一端连到晶体管Q769的发射极和系统的公共端或地。结点A′-B′-C′-D′-E′-F′内部的电路称为“长时间延迟记忆电路”。
平方/除法电路SD的另一输出端接到一开关晶体管QA10的发射极,片子18A的端子SDPH连到一个比较器COM2的反向输入端,其同向输入端上加有电压VREF。比较器COM2的反向输入端也连到电流源iCH的一端,iCH的另一端连到VCC电源端。比较器COM2的输出连到晶体管QA4的基极和晶体管QA5的基极,它们的发射极都接地。晶体管QA4的集电极连到晶体管QA2的基极,晶体管QA3的集电极和电阻元件R111的一端。电阻元件R111的另一端连到VCC电压。晶体管QA2的发射极和晶体管QA3的发射极二者都接地。晶体管QA2的集电极通过公共驱动线CDL接到前述晶体管Q823的基极上。片子18A的SDIN端连到运算放大器OA3的反向输入端,其同向输入端接地。运算放大器OA3的输出端连接到控制电流镜式电流源1/3iSD和2/3iSD。每个电流源1/3iSD和2/3iSD的一个主端子反馈到运算放大器OA3的反向输入端。运算放大器OA3的线路接法使SDIN端保持虚地电位。电流源1/3iSD的另一个主端子连到OVR输入端以及COM3的同向输入端。电流源2/3iSD的另一个主端子连到比较器COM7的同向输入端和片子18A的SDPU端。比较器COM7的反向输入端连接到三分之二VREF电压源。晶体管QA1的集电极通过公共驱动线CDL连到晶体管Q823的基极。比较器COM3的同向输入端连到片子18A的OVR端。比较器COM3的反向输入端连到(接受)三分之二VREF电源电压。片子18A的LDT端连接到OR(“或”)比较器OC1两个同向输入端中的一端。OR比较器OC1唯一的反向输入端连到(接受)VREF电源电压。OR比较器OC1的另一个同向输入端连到片子18A的SDT端、开关晶体管QA10的集电极、晶体管QA5的集电极和开关晶体管QA9的发射极。开关晶体管QAR的基板和开关晶体管QA10的基极都连接到片子18A的SDCV端。OR比较器OC1的输出端连到晶体管QA8的基极,QA8的发射极接地。晶体管QA8的集电极通过公共驱动线CDL也连到晶体管Q823的基极。片子18A的TADJ端连到运算放大器OA4的反向输入端,其同向输入端连接到代表VREF电源电压四分之一值的一个电压。OA4的输出连接到电流镜式电流源1/3iTADA和2/3iTADD。电流源1/3iTADA的一个主端子连到电流源1/3iTADB的一个主端子。电流源1/3iTADC的一个主端子连到晶体管QA9的集电极。电流源1/3iTADC的另一个主端子连到VCC电源。电流源2/3iTADD和1/3iTADA的一个主端子连接到运算放大器OA4的反向输入端。电流源2/3iTADD的另一个主端子连到片子18A的INST端和比较器COM5的反向输入端。COM5的同向输入端连接到使其上具有三分之二VREF的电源电压。比较器COM5的输出端连到晶体管QA3的基极,其发射极接地。片子18A的VSEN端连到比较器COM6的同向输入端以及齐纳二极管ZZ的调整端,ZZ的正极接到系统的公共端或地。比较器COM6的反向输入端接到(接受)电源电压VREF。比较器COM6具有两个互补的输出端,其中一端连到晶体管QA6的基极,另一端连到晶体管QA7的基极。晶体管QA7的集电极连接到VCC电源电压。晶体管QA7的发射极连到片子18A的FETD端和晶体管QA6的集电极。晶体管QA6的发射极接地。
电流1/3iSD经由程控电阻R7流进OVR端。如果OVR的电压降低到3.33VREF以下,控制极电流就从SCRG端流出。一个等于2/3iSD的电流经由程控电阻R6和R5流进SDPU端,当这一点的电压降低到3.33VREF以下时,就发生短延时起动运行。如前所述,在SDIN点的电压保持在虚地电位。电流iSD从这点流出并流入电阻R2,在短延时/瞬间起动电路和优先开断电路中要用到这后一个电流。其值等于电流iLD三分之二的一个电流经由电阻R11流入LDPU端。这个电流被长延时起动和长延时平方电路SD所利用。MREF端保持为2.5VREF。电流从这端点流出并流入电阻元件R8、R27和R28的组合电路。端子LDTP上的电压在起动前为零,而在长延时起动出现以后,该点电压大于一个晶体管基极到发射极的电压降。当出现长延时起动时,一个正比于i2LD的电流从这一点流出,并流入长延时定时电容器C2。如果该电容器C2两端的电压超过了VREF,控制极电流就从SCRG端流出。如果电容器C2两端的电压大于零,并且没有长延时起动,则一个约为1微安的电流从电容器C2流入这个端子,直到放电完毕。端点VZ连接到齐纳分流调节器SR的负极或调整端。端点SCRG为硅可控整流器Q2提供控制极电流。端点或端子FETD是场效应晶体管Q1的栅极驱动端。端点VSEN是电源控制电路的灵敏输入端。如果该点的电压在一定的预定值之间,场效应晶体管Q1就可以被FETD端的电压所导通。端点OVT在接地时就使过热带隙跳闸电路实现其功能。一个等于三分之二iTAD的电流经由瞬间程控电阻流入INST端子。如果这端子的电压小于2/3VREF且端点SDPU的电压小于2/3VREF,则控制极电流将从SCRG端流出。端点TADJ的电压维持在一个预定的电压值,在本发明的一个最佳实施例中该电压可为1.25伏。电流iTAD从这点流出并流入短延时/瞬时程控电阻R20和R26。这个电流用在短延时电路和瞬时电路中。如果端点SDCV接地,当发生短延时起动时,一个为三分之一iTAD的可程控的恒定电流向短延时定时电容器SDTC充电。然而,如果端点SDCV处于不接地状态,则一个正比于i2LD的电流向短延时定时电容器SDTC充电。一个由SDCV端所决定的电流从SDT点或端子流出,并流入短延时定时电容器SDTC。如果该定时电容器SDTC两端的电压超过VREF,则一个控制极电流将从SCRG端流出,当发生短延时起动时,一个充电电流从端点或端子SDPH流出。
电阻元件R19、齐纳二极管D177和D178以及二极管D187和D188组成了温度补偿用的齐纳分路调节器SR。在本发明的一个最佳实施例中,当电源稳定时,VZ点的电压,它也等于电压VCC,是14.2伏±10%。
在本发明的最佳实施例中,当有电压VCC时,晶体管Q119为由晶体管Q116、Q117和Q120组成的威尔逊电流镜提供基极电流。晶体管Q116接通了REG,REG的输出为VREF。Q016基极的电压增加,同时接通由晶体管Q016、Q111到Q114、电阻R018、R019和R110所表示的带隙基准电路。电阻R018、R019和R110两端的电压增大并关闭启动晶体管Q119。威尔逊电流镜在晶体管Q116的集电极和晶体管Q111到Q114的组合集电极处设置了相同的电流,结果使晶体管Q016的电流密度为Q111至Q114每个晶体管电流密度的四倍。由于一个单片上的晶体管特性是非常一致的,电流的差别将导致基板对发射极的电压差,其关系表述于公式(1)中δVBE= (KT)/(q) ×ln(iQ016/iQ111) (1)式中K为玻尔兹曼常数;T为绝对温度,q为一个电子的电荷。在电流比为4∶1的情况下,δVBE在25℃将是36毫伏。这个电压差出现在电阻元件R019两端。串联电阻R018和R110两端的电压为两倍的((R018+R110)/R019)乘以电阻元件R019两端的电压降。因此,电阻元件R018和R110两端的电压降在25℃时是576毫伏。电阻元件R018和R110两端电压的正温度系数近似等于晶体管Q016基极对发射极电压负温度系数的值。电阻元件R018和R110两端的电压与晶体管Q016基极到发射极的电压相加,结果在端点F产生一个实际上为零温度系数的1.25伏的基准电压。这后面的电压输出提供给调节器REF,使电压基准输出VREF是+5伏±5%。
由R018和Q123组成的过热电路是带隙调节器电路的一部分。当端子OVT连接到系统的公共端或地时,使这部分电路能实现其功能。在该电路中,电阻R018两端的电压降在25℃时是432毫伏,并具有1.9毫伏/℃的正温度系数TC(R018)。晶体管Q123的基极-发射极电压,在集电极电流为100微安、25℃的情况下是675毫伏,并具有-1.9毫伏/℃的负温度系数TC(Q123)。由于跨越晶体管Q123基极的电压在25℃时低于675毫伏,晶体管Q123是“关闭”的。当晶体管Q123的基极-发射极电压等于电阻R018两端的电压时,晶体管Q123将导通。这出现在温度大约为90℃的条件下,如公式(2)所示。
Temp= (VBE(Q123)-VRO18)/(TC(R018)-TC(Q123)) + 25℃ (2)在温度大约为90℃的条件下,晶体管Q123的基极-发射极有正向偏压,使其导通。这就消除了来自晶体管Q123的基极驱动信号,允许控制极电流从SCRG端子流出。
因此,可以看出,当晶体管Q123和电阻R018所在环境的温度升高时,晶体管Q123的基极到发射极的电压减小,而电阻R018两端的电压增大,逐渐达到这样一个程度,晶体管Q123导通,从而使硅可控整流器Q2导通。在本发明的一个实施例中,可以把一个电阻连接在端子OVT和地之间。该电阻可选择为使电路具有20欧姆/℃的温度特性,以便增加发生跳闸的温度。在本发明的另一实施例中,端点式端子OVT可能处于悬空或不接地状态,在这种情况下,温度检测和保护电路不起作用,因此实际上没有为断路器提供内部过热保护。
由晶体管Q787、Q764、Q766和电阻R762及R763组成的电路是一个电流镜,它被设计为可提供一种长延时记忆功能。如果长延时电容器C2两端的电压大于零,并且长延时输入端LDT电压降至低于起始值,则晶体管Q766的集电极吸收大约1微安的电流,直至电容器C2放电到零。
采用常规大规模集成电路18A的跳闸组件具有下列功能长延时-该长延时功能具有I2t反比时限特性,它在过负荷条件下提供系统保护。从端子LDIN抽取出的电流被标示为iLD,它是电容器C1-C11上的电压峰值的函数。该电流的三分之二通过电阻R11从VREF电源抽取出,流入LDPU输入端。电阻R11是长延时起动电阻,它决定了断路器开始执行其保护功能的门槛值。这意味着在电力线路L1、L2和L3中可允许流过一定数值的电流,低于此值时跳闸组件18将不起作用。这个电流值是由长延时起动电阻R11决定的,它称为电流的门槛值。典型地,该值大于1标么值的额定电流,小于1.25标么值的额定电流。在这种情况下,断路器的实际额定电流值是由可更换的额定值插头或电阻20决定的。要记住,端子LDPU是长延时端子,它连接到比较器COM1的同向输入端,COM1有两个输出端。在结点A′的输出是输出给长时间延迟记忆回路,后者就是本发明的主体。电阻元件R763和电阻元件R4104与电阻元件R762、晶体管Q764和Q787相配合,使得从比较器COM1的结点A′流出的电流被反映为晶体管Q766中成比例的集电极电流。如果电力线L1、L2和L3中的电流条件没有长延时起动的需要,即LDPU端的电压大于2/3VREF,比较器COM1将向结点A′供给输出电流,它同样也使晶体管Q766中流过集电极电流,这将使电容元件C2通过端子LDT连续放电。然而,如果线路L1、L2和L3中的电流增加到这样的程度,以至于从LDIN端流出的电流iLD引起比较器COM1关闭,结果没有电流流入结点A′,晶体管Q766中的集电极电流将停止流动,在结点E′产生一种条件,它将允许电容元件C2被电流iO充电。注意到比较器COM1的接通和关闭是因为与电流源2/3iLD互连的LDPU端将会改变到使电流2/3iLD继续流动的任一电压。这意味着最终会达到一种程度,在比较器COM1的同向输入端的电压小于2/3VREF,在此情况下结点A′处的电流将停止流动。因此,只要电力线L1、L2和L3中的电流低于起动水平,比较器COM1的状态将使电流流入结点A′和C′。流入结点A′的电流产生一个成比例的电流流出C2并流入Q766的集电极,最终使电容器放电(2到0伏)。此外,流入结点C′的电流使得晶体管Q769导通,这样对于从结点D′流到结点F′的电流就提供了一个电流通道。这个电流始终流过,因为它代表了平方/除法电路SD的输出。平方/除法电路的输出是一个电流iO,它与电流iLD的平方成正比。电流iLD正比于电容器C1-C11上的峰值检测电压,后者又与在线路L1、L2和L3中流过的电流大小成正比。这个电流的平方乘上时间就得出了公知的I2t曲线,它被断路器控制装置用来使断路器触头按照曲线的函数关系断开。在先前的技术中,由元件Q769、Q764、Q766和Q787及电阻R762和R763表示的电路代表了一个无源的电阻性记忆元件,它被用于在电力线路中的电流低到长延时起动水平以下的情况下,缓慢地使电容元件C2放电。然而,由于它是一个无源元件,它也被用来吸收一部分来自结点D′的充电电流,否则该电流仅仅给电容性元件C2充电。由于这个原因,将一个误差引入到I2t的关系式中。在本发明里,用与晶体管Q766相关的有源元件代替了记忆电阻,用这种方法消除了上述误差。晶体管Q769只用在低于起动值的情况,因为它的连接是通过电阻R490和R770连接到比较器COM1两个输出端中的一端。这种连接方式的另一个作用是允许在起动后晶体管元件Q769截止的情况下给电容元件C2充电。然而,当电容元件通过Q766开始放电时,晶体管元件Q769导通。
短延时-该短延时功能可以设计成具有一个固定的短延时时限特性,或具有一个短时间的反时限特性,它在短路情况下提供系统保护。
瞬时开断-该瞬时开断功能使断路器没有任何有意造成的延时而跳闸,它在短路情况下提供系统保护。
优先开断-该优先开断功能是在跳闸组件具有短延时功能的情况下为系统提供更高性能的故障保护。由于这一特性,如果发生一个低于优先开断起动设定值的故障,则短延时功能为系统提供短路保护。高于优先开断设定值的故障将使断路器没有任何有意造成的延时而跳闸。
温度过高开断-这种过热保护能对电路片外界的环境温度较敏感,如果温度超过一预定值就使断路器跳闸。
在长延时、短延时、瞬时开断、优先开断和温度过高开断的电路中所用的输出晶体管的集电极通过公共驱动线CDL连接到晶体管Q823的基极。一个120微安的偏置电流提供给晶体管Q823的基极,使其维持导通。当上述任何电路接通和晶体管Q823截止时,允许输出电流igt通过二极管DD从SCRG端子流出。端子SCRG连到可控硅Q2的控制极,于是借助于电流igt使可控硅Q2导通。
如果在VSEN输入端的电压大于11.7V,那末在FETO端的输出电压增加到12.4V,使场效应晶体管(FET)Q1导通,Q1转移了电容器C3的充电电流。电阻R15对该电路提供了大约6V的滞后作用。当上述电源稳定时,二极管D2的负极的电压大约为40V。电阻R19和片子18A形成了一个温度补偿的齐纳分路调节器。当电源稳定时,从点VZ到NEG的电压是+14.2V±10%。端点VREF是带隙调节器电路的输出端,它具有5V±5%的输出电压。
在LDIN点的长延时输入端维持在虚地电位。在峰值检测电容器C1-C11两端的一个标么电压是2.12V,使得长延时输入电流iLD每标么值的基准值等于22.25微安。该长延时输入电流可用下式计算
iLD= (VCl- C11)/(R3) ( 3 )一个等于长延时输入电流三分之二的电流2/3iLD流过长延时起动电阻R11。当LDPU端的电压降低到低于三分之二VREF时,就起动了长延时电路。长延时起动标么值可用下式决定。
LD PI CKUP = (1.124 × 105)/(R11) (4)(长延时起动)该长延时定时电容器C2连接到LDT端。如果出现长延时起动,则正比于平方电流i2LD的充电电流iLDT流入C2。当C2两端的电压超过VREF时,就出现长延时跳闸。长延时跳闸时间可用下式计算tLONG DELAY= (56.3 × C4)/(R16 × i2LD) (5)过热跳闸电路是通过将端子OVT连接到NEG端而起作用的。如果该集成电路外壳温度超过90℃±20%,就会发生过热跳闸。
如果发生跳闸,一个800微安的控制极触发电流流出SCRG端并流入硅可控整流器(SCR)Q2的控制极,使Q2导通。当SCRQ2触发导通时,FST使机构跳闸,断路器10断开。
正如所揭示和描述的那样,本发明使人们认识到一种具有可分开的主触头K1、K2和K3的断路器10的工作原理;主触头在电路上与被断路器10保护的导体如L1、L2和L3相连接。在LNK和FST处所示的开断装置作为一个电压功能元件与主触头K1到K3相配合。例如。设置了一个电容器C2,它通过在18处表示出的电路的其它部分与开断装置FST和LNK相连接。在平方/除法电路SD中产生的充电电流iLDT通过端子LDT给电容器C2充电,并在电容器C2两端产生一个电压,它与在导体L1、L2或L3中流过的最大电流的平方成正比。一个可用开关控制的记忆装置可包括上述的晶体管Q766和其它电路元件,它与电容器C2相连,使电容器C2以一个预定的时间常数放电以降低电容器C2两端的电压。该预定的时间常数与被监测导体L1、L2或L3的散热率有关,视实际情况而定。还设置了一个控制装置,它包括电阻元件R763、电阻元件R4104,电阻元件R762,以及晶体管Q764和Q787,当被监测线路L1、L2或L3中的电流在一预定值以上时,该控制装置使可用开关控制的记忆元件Q766不起作用,该预定电流值可以是,但并不限制为负荷电流的125%。当这种情况发生时,实际上没有充电电流iLDT流过晶体管元件Q766。
本发明也包括一个可在带隙调节器电路中找到的电流源,它利用晶体管Q016、Q111、Q112、Q113和Q114。这个电流源在一个预定的温度范围内向电阻R110和R018提供一个相对固定的电流。该电流流过这些电阻,在这些电阻两端产生一个电压。当电阻元件周围的环境温度上升时,这些电阻的阻值以一个正温度系数变化。设置了一个晶体管Q123,在其基极到发射极电路以分压关系与电阻R110和R018相连。晶体管Q123的集电极到发射极电路与电流开断装置相连接,该装置包括晶体管Q823、硅可控整流器Q2和通量分路跳闸装置FST,当晶体管Q123的基极到发射极的触发电压小于电阻R018两端的电压时,开断装置使断路器触头断开。晶体管Q123的基极到发射极电路具有一个负温度系数,因此当环境温度升高时该基极到发射极的电压减小。应该注意到,电阻元件R110和R018本来是带隙调节器的温度补偿电路的一部分。在本发明的一个最佳实施例中,晶体管Q123的发射极在OVT端接地。
权利要求
1.一种断路器,包括可分开的主触头(K1、K2、K3),在电路上与被保护的导体(L1、L2、L3)连接起来;一个与上述可分开的主触头相配合的断路线圈(FST),作为一个电压功能元件用来使上述可分开的主触头断开;一个与上述断路线圈相连的电容器(C2);一个与上述导体和上述电容器相连接的充电电流发生电路(18),用来产生一个对上述电容器充电的电流(iLDT),该充电电流与在上述导体中流过电流的平方成正比,以便在上述电容器两端产生上述电压,该电压与在上述导体中流过电流的平方有关;该断路器的特点是,一个与上述电容器连接的可用开关控制的记忆元件(Q766),当它被驱动用于减少上述电压时,以一个预定的时间常数将上述电容器放电;当上述导体中的电流减少到一预定值以下时,上述预定的时间常数与上述导体的散热率有关;一个控制电路(R763、R4104、R762、Q764、Q787),当上述导体中的上述电流在上述预定值以下时,该电路用来驱动上述可用开关控制的记忆元件;当上述电流在上述预定值以上时,该电路使上述可用开关控制的记忆电路不起作用,因此实际上上述充电电流不流过该记忆元件。
2.一种在权利要求1中所要求的断路器组合,其中上述可用开关控制的记忆电路包括一个晶体管元件。
3.一种断路器,包括可分开的主触头(K1、K2、K3);断路装置(FST),它与上述可分开的主触头相配合,用来在它被驱动时断开上述可分开的主触头;一个电流源(Q016、Q111、Q112、Q113、Q114),用于在一个预定的温度范围内提供一个相对固定的电流;一个电阻装置(R110、R018),它与上述电流源连接用来传导上述电流,以便在其两端产生一个电阻装置电压,上述电阻装置的阻值随着温度的增加按照一个正温度系数而变化;该断路器的特点是一个晶体管(Q123),在其基极到发射极电路与上述电阻装置相连接,在其集电极到发射极电路与上述断路装置相连接,用于当该基极到发射极电压小于上述电阻装置电压时驱动上述断路装置;上述基极到发射极电压具有一个负温度系数,在一个预定的过负荷电流温度情况下,上述基极到发射极的电压减小到一个值,该值小于上述增大的电阻装置上的电压。
4.在权利要求3中所要求的断路器组合,其中上述电阻装置是用于另一电路系统的一个温度补偿电路的一部分。
5.一种在权利要求4中所要求的断路器组合,其中上述另一个系统是一个带隙电压调节器。
6.一种在权利要求5中所要求的断路器组合,其中上述发射极是接地的。
全文摘要
一种具有过热保护和低误差I
文档编号H02H6/00GK1035392SQ89100388
公开日1989年9月6日 申请日期1989年1月24日 优先权日1988年1月25日
发明者威廉·约翰·墨菲 申请人:西屋电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1