不间断电源系统及其控制方法

文档序号:9869159阅读:733来源:国知局
不间断电源系统及其控制方法
【技术领域】
[0001]本发明涉及供电电源技术领域,特别是涉及一种不间断电源系统及其控制方法。
【背景技术】
[0002]随着近年来数据中心电源负荷的快速增长,能效指标要求越来越高。对于应用于高密度数据中心的不间断电源系统(UPS),不仅要为IT设备供电,还要保证IT设备运行的空调等辅助设备供电,电源需求会持续增加。由于数据中心的高密度化是一种必然的趋势,因此对为其提供电力保障的UPS提出了全新的要求。传统的数据中心供电方式中,一般采用基于双变换技术的在线式UPS电源。这种在线式UPS的主要缺点是在强电网供电环境下的电能损耗较大,运行成本较高,并且,传统的UPS在电网电能质量差时不能有效的进行改善,因此不能满足数据中心高质量供电的需求。

【发明内容】

[0003]基于此,有必要提供一种电能损耗较小且能够实现对电网电能质量进行改善的不间断电源系统及其控制方法。
[0004]—种不间断电源系统,包括储能蓄电池,还包括:监测电路,用于监测市电是否正常,并在市电正常时输出第一监测信号,在市电异常时输出第二监测信号;可控开关,连接于市电和公共连接点之间且与所述监测电路连接;所述可控开关在所述第一监测信号的控制下导通,使得所述不间断电源系统进入并网模式;所述可控开关在所述第二监测信号的控制下断开,使得所述不间断电源系统进入离网模式;并网控制电路,包括谐波和无功电流提取电路和电流环控制电路;所述谐波和无功电流提取电路分别与所述公共连接点的市电侧、所述电流环控制电路连接;所述电流环控制电路还与变流器的输出端连接,以接收变流器的输出电流反馈信号;所述谐波和无功电流提取电路用于根据市电电流的谐波和无功分量提取谐波和无功补偿指令信号;所述电流环控制电路用于根据所述谐波和无功补偿指令信号、所述输出电流反馈信号生成并网控制信号;离网控制电路,包括电压外环电路和电流内环电路;所述电压外环电路的第一输入端与变流器的输出端连接,以接收变流器的输出电压反馈信号;所述电压外环电路的第二输入端用于接收电压环给定电压值;所述电压外环电路的输出端与所述电流内环电路的第一输入端连接;所述电流内环电路的第二输入端与所述变流器的输出端连接,以接收所述变流器的输出电流反馈信号;所述电压外环电路用于根据所述电压环给定电压值和所述变流器的输出电压反馈信号生成电流内环给定信号;所述电流内环电路用于根据所述电流内环给定信号和所述输出电流反馈信号生成离网控制信号;模式切换开关;所述模式切换开关的固定端与所述变流器的控制端连接;所述模式切换开关的第一触点与所述并网控制电路的输出端连接;所述模式切换开关的第二触点与所述离网控制电路的输出端连接;所述模式切换开关用于在所述第一监测信号的控制下接通第一触点,在所述第二监测信号的控制下接通第二触点;以及变流器,所述变流器连接于所述储能蓄电池和所述公共连接点之间;所述变流器用于根据所述并网控制信号或者所述离网控制信号对输出电压或者输出电流进行控制。
[0005]在其中一个实施例中,还包括驱动信号发生器;所述驱动信号发生器连接于所述模式切换开关的固定端和所述变流器的控制端之间;所述驱动信号发生器用于根据所述并网控制信号或者所述离网控制信号生成驱动信号,以对所述变流器进行控制。
[0006]在其中一个实施例中,所述谐波和无功电流提取电路包括顺次连接的第一三相静止坐标到两相旋转坐标系转换模块、低通滤波器、第一两相旋转坐标到三相静止坐标系转换模块以及第一三相加法器;所述第一三相静止坐标到两相旋转坐标系转换模块的输入端连接于所述公共连接点的市电侧,且还与所述第一三相加法器的输入端连接;所述第一三相静止坐标到两相旋转坐标系转换模块用于对三相市电电流进行转换得到具有低频纹波的d轴直流量和q轴直流量后送入所述低通滤波器分别进行滤波处理;所述第一两相旋转坐标到三相静止坐标系转换模块用于将处理后的d轴直流量和q轴直流量转换成三相电网电流基波分量;所述第一三相加法器用于将谐波和无功电流提取电路得到的三相电网电流基波分量与所述三相市电电流进行相减后得到三相市电电流的谐波和无功补偿指令信号;所述并网控制电路的电流环控制电路包括顺次连接的第二三相加法器和电流环控制器;所述第二三相加法器的输入端分别与所述第一三相加法器的输出端、变流器的输出端连接;所述电流环控制器的输出端与所述模式切换开关的第一触点连接;所述第二三相加法器用于将所述三相市电电流的谐波和无功补偿指令信号与三相输出电流反馈信号进行相减后得到三相误差信号;所述电流环控制器则用于根据所述三相误差信号进行闭环控制并生成三相并网控制信号。
[0007]在其中一个实施例中,所述电压外环电路包括相互串联的电压环加法器和电压环控制器;所述电压环加法器的第一输入端与所述变流器的输出端连接,用于接收输出电压反馈信号;所述电压环加法器的第二输入端用于接收所述电压环给定电压值;所述电压环加法器用于将所述电压环给定电压值与所述输出电压反馈信号进行相减得到电压误差信号;所述电压环控制器用于根据所述误差信号进行闭环控制并生成电流内环给定信号;所述电流内环电路包括顺次连接的电流环加法器和电流环控制器;所述电流环加法器的第二输入端与所述变流器的输出端连接,以接收输出电流反馈信号;所述电流环加法器的第一输入端与所述电压环控制器的输出端连接;所述电流环控制器的输出端与所述模式切换开关的第二触点连接;所述电流环加法器用于将所述电流内环给定信号与所述输出电流反馈信号进行相减得到电流误差信号;所述电流环控制器用于根据所述电流误差信号进行闭环控制并生成离网控制信号。
[0008]在其中一个实施例中,所述电压外环电路还包括第二三相静止坐标到两相旋转坐标系转换模块;所述电压环加法器包括电压环d轴加法器和电压环q轴加法器;所述电压环控制器包括电压环d轴控制器和电压环q轴控制器;所述第二三相静止坐标到两相旋转坐标系转换模块的输入端与所述变流器的输出端连接,所述第二三相静止坐标到两相旋转坐标系转换模块的输出端分别与所述电压环d轴加法器、电压环q轴加法器连接;所述电流内环电路还包括第三三相静止坐标到两相旋转坐标系转换模块和第二两相旋转坐标到三相静止坐标系转换模块;所述电流环加法器包括电流环d轴加法器和电流环q轴加法器;所述电流环控制器包括电流环d轴控制器和电流环q轴控制器;所述第三三相静止坐标到两相旋转坐标系转换模块的输入端与所述变流器的输出端连接;所述第三三相静止坐标到两相旋转坐标系转换模块的输出端分别与所述电流环d轴加法器、所述电流环q轴加法器连接;所述第二两相旋转坐标到三相静止坐标系转换模块的输入端分别与所述电流环d轴控制器、电流环q轴控制器的输出端连接,所述第二两相旋转坐标到三相静止坐标系转换模块的输出端则与所述模式切换开关的第二触点连接。
[0009]在其中一个实施例中,所述电压环控制器和所述电流环控制器均为PI调节器。
[0010]在其中一个实施例中,所述变流器为双向变流器;所述监测电路还用于对所述储能蓄电池的电压或者剩余容量进行实时监测并输出电压值或者剩余容量值;所述不间断电源系统还包括比较电路;所述比较电路分别与所述监测电路、所述双向变流器连接;所述比较电路用于在并网模式时判断所述电压值或者所述剩余容量值是否低于预设值,并在所述电压值或者所述剩余容量值低于预设值时输出充电信号;所述变流器根据所述充电信号由逆变状态转为整流状态对所述储能蓄电池进行充电。
[0011]在其中一个实施例中,还包括电抗器;所述电抗器的输入端与所述可控开关的输出端连接;所述电抗器的输出端接入公共连接点。
[0012]在其中一个实施例中,还包括旁路开关;所述旁路开关分别与市电、负载连接;所述旁路开关用于在所述不间断电源系统需要进行维修时导通从而由市电直接向负载供电。
[0013]—种不间断电源系统的控制方法,用于控制如前述任一实施例所述的不间断电源系统在并网模式和离网模式之间进行切换,所述控制方法包括:监测市电是否正常;若市电正常则输出第一监测信号控制可控开关导通,使得所述不间断电源系统与市电并网运行进入并网模式;控制模式切换开关接通第一触点;控制所述谐波和无功电流提取电路根据市电电流的谐波和无功分量提取谐波和无功补偿指令信号;控制所述电流环控制电路根据所述谐波和无功补偿指令信号、所述输出电流反馈信号生成并网控制信号以对所述变流器的输出电流进行控制;控制所述离网控制电路工作,但并不参与并网控制电路的控制过程,所述电压外环电路根据所述电压环给定电压值和所述输出电压反馈信号生成电流内环给定信号;所述电流内环电路根据所述电流内环给定信号和所述输出电流反馈信号生成离网控制信号;若市电异常则输出第二监测信号控制可控开关断开,使得所述不间断电源系统独立向负载供电,进入离网模式;控制模式切换开关从第一触点接至第二触点;根据所述离网控制信号对所述变流器的输出电压进行控制。
[0014]上述不间断电源系统具有并网和离网两种工作模式。在市电正常时,并网控制电路根据市电电流中的谐波和无功分量提取谐波和无功补偿指令信号并通过对变流器的电流闭环控制将谐波和无功补偿电流注入到电网以进行无功和谐波补偿,从而对电网电能质量进行改善,减少了电能损耗,具有较高的能效指数。并且,离网控制电路在并网模式时不参与控制,但仍处于运行状态,会根据电压环
当前第1页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1