一种环形单集中绕组低成本高功率密度永磁电动机的制作方法

文档序号:10171211阅读:445来源:国知局
一种环形单集中绕组低成本高功率密度永磁电动机的制作方法
【技术领域】
[0001]本实用新型涉及一种环形单集中绕组低成本高功率密度永磁电动机。
【背景技术】
[0002]近年来,随着永磁材料耐高温性能的提高和价格的降低,永磁电机在国防、工农业生产和日常生活等方面得到更为广泛的应用,正向大功率化、高性能化和微型化方向发展。目前永磁电机的功率从几毫瓦到几千千瓦,应用范围从玩具电机、工业应用到舰船牵引用的大型永磁电机,在国民经济、日常生活、军事工业、航空航天的各个方面得到了广泛应用。
[0003]常规交流永磁电机通常分为以下几类:异步起动永磁同步电动机、永磁无刷直流电动机、调速永磁同步电动机。
[0004]无刷直流电机和调速永磁同步电机结构上基本相同,定子上为多相绕组,转子上有永磁体,它们的主要区别在于无刷直流电机根据转子位置信息实现自同步。它们的优点在于:(1)取消了电刷换向器,可靠性提高;(2)损耗主要由定子产生,散热条件好;(3)体积小、重量轻。
[0005]异步起动永磁同步电动机与调速永磁同步电动机结构上的区别是:前者转子上有起动绕组或具有起动作用的整体铁心,能实现自起动,无需控制系统即可并网运行。
[0006]除此之外,还有单相永磁电机,单相永磁电机需要配套电容起动和运行,体积笨重,成本高,而且整体运行的效率和功率因数都较低。
[0007]现有永磁电机绕组一般为3相,定子槽数目多,绕组下线工艺复杂,制造成本高;现有大多数永磁电机永磁体位于转子上,运行时随转子一起转动,永磁体需采用特殊工序固定,制造成本高,尤其电机转速较高时,永磁体固定更加困难,由于永磁体位于转子上,运行时散热困难,温升和由于转子转动而引起的振动会导致永磁体机械结构损坏和发生不可逆退磁;现有永磁电机一般为三相,要求电机的功率逆变电路至少需要6个功率开关器件,如IGBT或者M0SFET等,以及与之相应的驱动该功率开关器件的驱动电路和保护电路,使得电机功率逆变电路成本相当高,甚至达到电机本体成本的两到三倍,功率开关器件数量增多增加了控制电路复杂程度,器件发生故障的可能性增加,运行时系统的可靠性降低;现有永磁电机大多是永磁体直接面对气隙,需要采用径向充磁的永磁体,因为采用平行充磁时,电机每极磁通量会显著减少,降低电机的出力和功率密度,但径向充磁永磁体成本高,获得均匀的径向充磁的永磁体非常困难;现有永磁电机制造时铁芯用量大,电机质量大,电机运行时材料利用率低,因此,寻求一种绕组相数少,铁芯用量少,电机本体制造工艺简单,永磁体位于定子上,安装方便,成本低,功率电路开关器件个数少,控制器和功率电路成本低的永磁电机至关重要。
[0008]除此之外,现有永磁电机多采用分布绕组或者横跨多个极距的集中绕组,普遍存在绕组端部长,用铜量大,制造成本高,电机运行时铜耗大,效率低等缺点,尤其是对于外径较大,轴向长度较小,也就是径长比值较大的电机,这种缺点尤为突出,需要采用特殊的绕组线圈连接方式来减小绕组端部,减小用铜,提高电机运行效率。【实用新型内容】
[0009]本实用新型为了解决上述问题,提出了一种环形单集中绕组低成本高功率密度永磁电动机,本永磁电动机的定子上只有一套定子电枢绕组,而且电机每个槽内只安放有一套电枢绕组,槽内不需要相间绝缘,槽满率高,且电机绕组下线工序简单,整个成本低于现有的各类三相感应电机和永磁电机;同时,本实用新型运行时只有一套电枢绕组通交流电流,因此电机的控制电路只需两个电力电子功率开关器件,改变了现有的各类感应电动机以及永磁电机定子上均有三相及以上的电枢绕组,需要至少6个电力电子功率开关器件的现状,有效地减少功率开关器件个数,降低了电机控制电路中功率开关器件发生故障的可能性,可靠性提尚。
[0010]为了实现上述目的,本实用新型采用如下技术方案:
[0011]—种环形单集中绕组低成本高功率密度永磁电动机,包括定子、转子和主气隙,定子呈环形,转子设置于定子的内部,其中:
[0012]所述定子上均匀设置有偶数个定子齿,相邻两个定子齿中设有定子槽,定子槽轭与定子背轭之间设有永磁体,所述定子齿与转子的转子齿之间设有主气隙,所述永磁体产生的磁通经过主气隙进入转子形成主磁通;
[0013]所述永磁体不随转子转动,同一个定子槽轭上的永磁体的充磁方向相同,相邻两个定子槽轭部上的永磁体的充磁方向相反;
[0014]所述定子槽内安放有一套电枢绕组,通过控制一套电枢绕组的电流大小和方向,电枢电流磁场和永磁体产生的磁场相互作用使得定子齿上的磁通改变,利用定子和转子间磁阻变化产生转矩。定子槽内只安放有一套电枢绕组,定子槽内不需要相间绝缘,槽利用率高,绕组下线工艺简单,制造成本低。
[0015]永磁体不随转子转动的设置,使得安装方便,有利于散热,消除了普通单相永磁电机由于永磁体随转子旋转而产生的机械应力损坏和永磁体散热不良等缺点。
[0016]进一步的,所述永磁体为平行充磁或者径向充磁,每块永磁体由一整块永磁体充磁而成或者由多块永磁体拼接而成,所述永磁体的极弧宽度可以相同,也可以不同。
[0017]所述定子齿的个数为大于等于4的偶数。
[0018]所述转子齿的个数为定子齿个数的1/2。
[0019]所述永磁体的块数个数为转子齿的m倍,m为大于等于1的自然数。
[0020]所述定子齿、定子槽轭、定子背轭和转子齿均由硅钢片叠压而成或者由高磁导率铁芯材料制成。
[0021]所述永磁体与定子背轭铁芯和定子槽轭铁芯均紧密接触。
[0022]所述两个相邻的定子齿通过定子槽轭连接,每两个定子齿和之间的定子槽轭形成一块整体铁芯,电机内该整体铁芯块数与转子齿个数相等。
[0023]所述电枢绕组为集中绕组,从一个电枢槽穿入,向外径方向沿定子背轭外侧穿出,形成一个线圈,电枢绕组围绕定子槽轭、永磁体和定子背轭缠绕,当电机的径长比较大时,可以有效减小端部绕组长度,减少用铜量,降低电机成本并降低电机的铜耗,提高效率,每个电枢槽的电枢绕组形成1套线圈,所有电枢槽内的线圈相互并联或者串联。电机运行时,只需要控制一套电枢绕组的电流大小和方向,电枢电流磁场和永磁体产生的磁场相互作用使得定子齿上的磁通相互增强或者抵消,定子磁场在某个方向上连续开通或者关断,利用定子和转子间磁阻变化产生转矩。
[0024]所述电机的永磁体的极弧宽度通过根据永磁体的磁能积或者剩磁密度灵活确定,根据电机的设计气隙磁密确定永磁体的剩磁密度,再通过改变永磁体的极弧系数来确定永磁体的磁能积,而现有永磁电机由于极弧系数受到极数的限制,通常只有采用高性能永磁体才能满足设计磁密的需要。
[0025]所述永磁体既可以是高磁能积的永磁材料如钕铁硼也可以是低磁能积的永磁材料如铁氧体或者铝镍钴制成。
[0026]所述转子为对称凸极转子、阶梯型转子或者涡轮状转子。
[0027]本实用新型的工作原理为:
[0028]电机的定子铁芯和转子铁心米用娃钢片置压而成或者尚导磁率的铁芯材料一次制成,当电枢绕组不通电时,所述永磁体产生的磁通经过定子槽轭,定子齿和主气隙沿电机径向流入转子齿,再经过相邻的转子齿流出到主气隙到达另一个极下的永磁体,再经过定子背轭闭合,形成电机的主磁通。当电枢绕组通电时,电枢绕组电流产生的磁场使得电枢绕组所在电枢槽两侧的定子齿分别呈现不同的极性,与永磁体产生的磁场作用叠加,使得一个定子齿显示极性,有主磁通磁通经过,相邻的另一个定子齿没有极性,无磁通流过,由于电枢绕组每隔一个槽设置,因此,电机内有一半的定子齿具有极性,一半的定子齿没有极性,根据磁阻最小原理,将使转子旋转到使转子齿与具有极性的定子齿重合,由于转子齿数为定子齿数的一半,此时正好每个转子齿均与定子齿正对,这个位置为转子齿和定子齿的对齐位置,这个位置对应的磁阻最小。此时,要想转子继续旋转,需改变电枢绕组内电流的方向,使得刚才不具有极性的定子齿显示极性,而原先有极性的定子齿不显示极性,这时,根据磁阻最小原理,转子齿将有旋转到与现在有极性定子齿对齐的趋势,因而产生转矩,转子将受力旋转,当转子齿与定子再次重合后,继续改变电枢绕组电流的方向,这个过程将一直重复,转子将持续旋转。
[0029]本实用新型的有益效果为:
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1