低消耗电流的驱动电路的制作方法

文档序号:7530690阅读:194来源:国知局
专利名称:低消耗电流的驱动电路的制作方法
技术领域
本发明涉及一种驱动电路,具体而言,是涉及一种将对应于输入电位的电位输出到输出节点的驱动电路。
背景技术
以前,在半导体集成电路装置中设置用于将由驱动能力小的电位发生电路生成的电位传递到负荷的驱动电路。图80是表示这种驱动电路300结构的电路图。在图80中,驱动电路300包含P型场效应晶体管(下面称为P型晶体管)301、302、N型场效应晶体管(下面称为N型晶体管)303、304和恒定电流源305。
P型晶体管301、302分别连接在电源电位VCC的节点与节点N301、302之间,它们的栅极都连接在节点N301上。P型晶体管301、302构成电流镜电路。N型晶体管303连接在节点N301与N305之间,其栅极连接在输入节点N303上。N型晶体管304连接在节点N302与N305之间,其栅极连接在输出节点N304和节点N302上。恒定电源源305连接于节点N305与地电位GND的节点之间,流过恒定电流。
在N型晶体管303中流过对应于输入节点N303电位VI的值的电流。串联连接N型晶体管303和P型晶体管301,因为P型晶体管301与302构成电流镜电路,所以晶体管301-303中流过同值的电流。在输出节点304的电位VO比输入电位VI低的情况下,流入N型晶体管304的电流也比流入晶体管301-303的电流小,输出电位VO上升。在输出节点304的电位VO比输入电位VI高的情况下,流入N型晶体管3 04的电流也比流入晶体管301-303的电流大,输出电位VO下降。因此,输出电位VO等于输入电位VI。
但是,在现有的驱动电路300中,因为总是从电源电位VCC的节点经晶体管301-304和恒定电流源305向地电位GND的节点流过恒定的直通电流,所以存在所谓消耗电流大的问题。

发明内容
因此,本发明的主要目的在于提供一种消耗电流小的驱动电路。
在本发明的驱动电路中,设置第1电平移位电路,输出使上述输入电位在某电位方向仅电平移位预定的第1电压的电位;和第2电平移位电路,将使上述第1电平移位电路的输出电位在与上述某电位方向相反的电位方向仅电平移动预定的第2电压的电位输出到上述输出节点。因此,通过将第1和第2电平移位电路的直通电流抑制得小来减小消耗电流。
附图的简要说明

图1是表示本发明实施例1的彩色液晶显示装置的整体结构的框图。
图2是表示对应于图1所示各液晶单元设置的液晶驱动电路结构的电路图。
图3是表示图1所示水平扫描电路主要部分的电路框图。
图4是表示图3所示驱动电路结构的电路图。
图5是说明图4所示驱动电路动作的电路图。
图6是说明图4所示驱动电路动作的时间图。
图7是表示实施例1的变更例的电路图。
图8是表示实施例1的另一变更例的电路图。
图9是表示实施例1的再一变更例的电路图。
图10是表示本发明实施例2的驱动电路的电平移位电路结构的电路图。
图11是表示本发明实施例3的驱动电路的电平移位电路结构的电路图。
图12是表示本发明实施例4的驱动电路的电平移位电路结构的电路图。
图13是表示本发明实施例5的驱动电路的电平移位电路结构的电路图。
图14是说明实施例1的问题的图。
图15是说明实施例1的问题的电路图。
图16是说明实施例6原理的电路图。
图17是表示本发明实施例6的驱动电路结构的电路图。
图18是更详细表示图17所示驱动电路结构的电路图。
图19是表示实施例6的变更例的电路图。
图20是表示实施例6的另一变更例的电路图。
图21是表示实施例6的再一变更例的电路图。
图22是表示本发明实施例7的驱动电路结构的电路图。
图23是表示图22所示驱动电路动作的时间图。
图24是表示实施例7的变更例的电路图。
图25是表示本发明实施例8的驱动电路结构的电路图。
图26是表示实施例8的变更例的电路图。
图27是表示实施例8的另一变更例的电路图。
图28是表示实施例8的再一变更例的电路图。
图29是表示实施例8的再一变更例的电路图。
图30是表示实施例8的再一变更例的电路图。
图31是表示本发明实施例9的驱动电路结构的电路图。
图32是表示图31所示驱动电路动作的时间图。
图33是表示实施例9的变更例的电路图。
图34是表示本发明实施例10的驱动电路结构的电路图。
图35是表示实施例10的变更例的电路图。
图36是表示本发明实施例11的驱动电路结构的电路图。
图37是表示图36所示驱动电路结构的电路图。
图38是表示本发明实施例12的带偏移补偿功能的驱动电路结构的电路框图。
图39是表示图38所示带偏移补偿功能的驱动电路动作的时间图。
图40是表示本发明实施例13的带偏移补偿功能的驱动电路结构的电路框图。
图41是表示图40所示带偏移补偿功能的驱动电路动作的时间图。
图42是表示图40所示带偏移补偿功能的驱动电路动作的另一时间图。
图43是表示实施例13的变更例的电路图。
图44是表示实施例13的另一变更例的电路图。
图45是表示实施例13的再一变更例的电路图。
图46是表示实施例13的再一变更例的电路图。
图47是表示实施例13的再一变更例的电路图。
图48是表示实施例13的再一变更例的电路图。
图49是表示实施例13的再一变更例的电路图。
图50是表示实施例13的再一变更例的电路图。
图51是表示实施例13的再一变更例的电路图。
图52是表示实施例13的再一变更例的电路图。
图53是表示实施例13的再一变更例的电路图。
图54是表示实施例13的再一变更例的电路图。
图55是表示本发明实施例14的带偏移补偿功能的驱动电路结构的电路框图。
图56是表示图55所示带偏移补偿功能的驱动电路动作的时间图。
图57是表示图55所示带偏移补偿功能的驱动电路动作的另一时间图。
图58是表示本发明实施例15的带偏移补偿功能的驱动电路结构的电路框图。
图59是表示图58所示带偏移补偿功能的驱动电路动作的时间图。
图60是表示本发明实施例16的彩色液晶显示装置的主要部分的电路图。
图61表示图60所示彩色液晶显示装置中包含的推动型驱动电路结构的电路图。
图62是更详细表示图60所示推动型驱动电路结构的电路图。
图63是表示实施例16的变更例的电路图。
图64是表示实施例16的另一变更例的电路图。
图65是表示本发明实施例17的拉动型驱动电路结构的电路图。
图66是表示实施例17的变更例的电路图。
图67是表示本发明实施例18的驱动电路结构的电路框图。
图68是表示实施例18的变更例的电路图。
图69是表示实施例18的另一变更例的电路图。
图70是表示实施例18的再一变更例的电路图。
图71是更详细表示图70所示驱动电路结构的电路图。
图72是表示本发明实施例19的带偏移补偿功能的推动型驱动电路结构的电路框图。
图73是表示实施例20的变更例的电路图。
图74是表示本发明实施例20的带偏移补偿功能的驱动电路结构的电路框图。
图75是表示实施例20的变更例的电路图。
图76是表示实施例20的另一变更例的电路图。
图77是表示实施例20的再一变更例的电路图。
图78是表示本发明实施例21的带偏移补偿功能的驱动电路结构的电路框图。
图79是表示本发明实施例22的带偏移补偿功能的驱动电路结构的电路框图。
图80是表示现有驱动电路结构的电路图。
发明的
具体实施例方式
实施例1图1是表示本发明实施例1的彩色液晶显示装置结构的框图。在图1中,彩色液晶显示装置具备液晶面板1、垂直扫描电路7和水平扫描电路8,设置在例如便携电话机上。
液晶面板1包含排列成多行多列的多个液晶单元2、对应于各行设置的扫描线4和共通电位线5、和对应于各列设置的数据线6。
液晶单元2在各行中事先以每三个为一组。在各组的三个液晶单元2中分别设置R、G、B的彩色滤波器。各组的三个液晶单元2构成一个象素3。
如图2所示,在各液晶单元2中设置液驱动电路10。液晶驱动电路10包含N型晶体管11和电容12。N型晶体管11连接在数据线6和液晶单元2一侧电极2a之间,其栅极连接在扫描线4上。电容12连接于液晶单元2的一侧电极2a与共通电位线5之间。向液晶单元2的另一侧电极施加驱动电位VDD,向共通电位线5施加共通电位VSS。
返回图1,垂直扫描电路7根据图像信号在每规定时间依次选择多个扫描线4,将选择的扫描线4变为选择电平的H电平。一旦扫描线4变为选择电平的H电平时,图2的N型晶体管11导通,对应于扫描线4的各液晶单元2的一侧电极2a与对应于该液晶单元2的数据线6耦合。
水平扫描电路8根据图像信号,在垂直扫描电路7选择一条扫描线4期间,例如以每12条依次选择多个数据线6,向选择的各数据线6施加梯度电位VG。液晶单元2的透光率对应于梯度电位VG的电平变化。
一旦垂直扫描电路7和水平扫描电路8扫描液晶面板1的所有液晶单元2时,则在液晶面板1上显示一个图像。
图3是表示图1所示水平扫描电路8的主要部分的电路框图。在图3中,水平扫描电路8包含梯度电位发生电路15和驱动电路20。仅以水平扫描电路8同时选择的数据线6的数量(此时为12)来设置梯度电位发生电路15和驱动电路20。
梯度电位发生电路15包含串联连接在第1电源电位V1(5V)的节点和第2电源电位V2(0V)的节点之间的n+1个(其中,n为自然数)电阻元件16.1-16.n+1、和分别连接在n+1个电阻元件16.1-16.n+1间的n个节点与输出节点15a之间的n个开关17.1-17.n。
在n+1个电阻元件16.1-16.n+1间的n个节点上分别呈现n梯度的电位。开关17.1-17.n由图像浓度信号ΦP进行控制,仅使其中一个变为导通状态。向输出节点15a输出n梯度电位中任一梯度的电位,作为梯度电位VG。驱动电路20向数据线6提供电流,使选择的数据线变为梯度电位VG。
图4是表示驱动电路20的结构的电路图。图4中,驱动电路20包含电平移位电路21、25、电容29、工作(pull-up)电路30和非工作(pull-down)电路33。
电平移位电路21包含串联连接在第3电源电位V3(15V)的节点与地电位GND节点之间的电阻元件22、N型晶体管23和P型晶体管24。N型晶体管23的栅极连接在其漏极(节点N22)上。N型晶体管23构成二极管元件。P型晶体管24的栅极连接在输入节点N20上。电阻元件22的电阻值设定为足比晶体管23、24的导通电阻值大的值。
设输入节点N20的电位(梯度电位)为VI,P型晶体管的阈值电压为VTP,N型晶体管的阈值电压为VTN,则分别用下式(1)、(2)来表示P型晶体管24的源极(节点N23)的电位V23和N型晶体管23的漏极(节点N22)的电位V22。
V23=VI+|VTP| …(1)
V22=VI+|VTP|+VTN …(2)因此,电平移位电路21输出仅使输入电位VI电平移位|VTP|+VTN的电位V22。
电平移位电路25包含串联连接在第4电源电位V4(5V)的节点与第5电源电位V5(-10V)之间的N型晶体管26、P型晶体管27和电阻元件28。N型晶体管26的栅极连接在输入节点N20上。P型晶体管27的栅极连接在其漏极(节点N27)上。P型晶体管27构成二极管元件。电阻元件28的电阻值设定为足比晶体管26、27的导通电阻值大的值。
分别用下式(3)、(4)来表示N型晶体管26的源极(节点N26)的电位V26和P型晶体管27的漏极(节点N27)的电位V27。
V26=VI-VTN| …(3)V27=VI-VTN-|VTP| …(4)因此,电平移位电路25输出仅使输入电位VI电平移位-VTN-|VTP|的电位V27。
电容29连接在电平移位电路21的输出节点N22与电平移位电路25的输出节点N27之间。电容26将节点N22的电位变化传递到节点N27,同时,将节点N27的电位变化传递到节点N27。
工作电路30包含串联连接在第6电源电位V6(15V)的节点与输出节点N30之间的N型晶体管31和P型晶体管32。在输出节点N30上连接负荷电容(数据线6的寄生电容)36。N型晶体管31的栅极接受电平移位电路21的输出电位V22。P型晶体管32的栅极连接在其漏极上。P型晶体管30构成二极管元件。设定第6电源电位V6,使N型晶体管31在饱和区域中动作,所以N型晶体管31进行所谓的源输出动作。
现在,每次说明时,都如图5所示,设P型晶体管32的漏极(节点N30’)与输出节点N30之间处于非导通状态。分别用下式(5)、(6)来表示N型晶体管31的源极(节点N31)的电位V31和P型晶体管32的漏极(节点N30’)的电位V30’。
V31=V22-VTN=VI+|VTP| …(5)V30’=V31-|VTP|=VI…(6)返回图4,非工作电路33包含串联连接在第7电源电位V7(-10V)的节点与输出节点N30之间的P型晶体管35和N型晶体管34。P型晶体管35的栅极接受电平移位电路25的输出电位V27。N型晶体管34的栅极连接在其漏极上。N型晶体管34构成二极管元件。设定第7电源电位V7,使P型晶体管35在饱和区域中动作,所以P型晶体管35进行所谓的源输出动作。
现在,每次说明时,都如图5所示,设N型晶体管34的漏极(节点N30”)与输出节点N30之间处于非导通状态。分别用下式(7)、(8)来表示P型晶体管35的源极(节点N34)的电位V34和N型晶体管34的漏极(节点N30”)的电位V30”。
V34=V27+|VTP|=VI-VTN …(7)V30”=V34+VTN=VI …(8)式(7)、(8)表示即使连接P型晶体管32的漏极(节点N30’)与N型晶体管34的漏极(节点N30”),第6电源电位V6的节点与第7电源电位V7的节点之间也不流过电流,输出节点N30的电位VO与输入节点N20的电位VI相同。因此,若电阻元件22、28的电阻值足够大,则在VO=VI的稳定状态下,直通电流极小。
图6是说明驱动电路20的交流动作(变迁状态下的动作)的时间图。图6中,在初始状态下,设VI=VL。因此,V22、V27、VO分别如下所示。
V22=VL+|VTP|+VTNV27=VL-|VTP|-VTNVO=VL若在时刻t1,V1从VL上升到VH,则V22、V27、VO在经过规定时间后分别如下所示。
V22=VH+|VTP|+VTNV27=VH-|VTP|-VTNVO=VH在这种电平变化过程中,进行以下动作。电平移位电路25中,在时刻t1时,若输入电位VI从VL上升到VH,则N型晶体管26的驱动能力变高,节点N26的电位V26迅速上升。因此,P型晶体管27的源极-漏极间电压变大,P型晶体管27的驱动能力也变高,节点N27的电位V27迅速上升。
若节点N27的电位V27迅速上升,则由于电容耦合,节点N22的电位V22经电容29迅速上升VH-VL。与之对应,输出节点N30的电位VO也迅速从VL上升到VH。
另外,在时刻t2,若输入电位VI从VH下降到VL,则P型晶体管24的驱动能力变高,节点N23的电位V23迅速下降。因此,N型晶体管23的栅极-源极间电压变大,且N型晶体管23的驱动能力也变高,节点N22的电位V22迅速下降。
若节点N22的电位V22迅速下降,则由于电容耦合,节点N27的电位V27经电容26迅速下降VH-VL。与之对应,输出节点N30的电位VO也迅速从VH下降到VL。
在本实施例1中,在稳定状态下,工作电路30和非工作电路33中不流过直通电流,通过使电阻元件22、26的电阻值足比晶体管23、24、26、27的导通电阻值高,可减小电平移位电路21、25的直通电流,所以可实现直流电流的降低。另外,因为设置电容26,所以也可迅速响应输入电位VI的变化。
下面,说明各种变更例。图7的驱动电路36从图4的驱动电路20中去除电容29。在负荷容量36的电容值较小时,可减小晶体管23、24、26、27、31、32、34、35的尺寸。若晶体管23、27、31、35的尺寸减小,则晶体管23、27、31、35的栅极电容变小,节点N22、N27的寄生电容变小。因此,即使没有电容29,也可通过电阻元件22、28进行充放电,使节点N22、N27的电位V22、V27上升和下降。在该变更例中,因为去除电容29,所以电路所占面积变小。
图8的驱动电路37从图4的驱动电路20中去除二极管连接的晶体管23、27、32、34。输出电位VO变为VO=VI+|VTP|-VTN。其中,若设定|VTP|VTN,则VO VI。或,若考虑将|VTP|-VTN的值用作偏移值,则可与图4的驱动电路20一样使用。在该变更例中,因为去除晶体管23、27、32、34,所以电路所占面积变小。
图9的驱动电路38从图8的驱动电路37中去除电容29。在负荷容量36的电容值较小时,可减小晶体管24、26、31、35的尺寸,节点N22、N27的寄生电容变小。因此,即使没有电容29,也可通过电阻元件22、28进行充放电,使节点N22、N27的电位V22、V27上升和下降。在该变更例中,因为去除电容29,所以电路所占面积变小。
实施例2在实施例1中,虽然假设同一极性晶体管的阈值电压全部相同,但实际上有时由于制造条件的变动等,晶体管的阈值电压产生差异。若晶体管的阈值电压中产生差异,则VI不等于VO。在实施例2中,可解决该问题。
图10是表示本发明实施例2的驱动电路的电平移位电路40的结构电路图,是与图4的电平移位电路21进行对比的图。参照图10,电平移位电路40与图4的电平移位电路21的不同点在于用熔丝41.1-41.m(其中,m为自然数)、N型晶体管42.0-42.m和P型晶体管43.0-43.m置换N型晶体管23和P型晶体管24。
由用于连接晶体管彼此间的铝布线等形成各熔丝41.1-41.m。熔丝41.1-41.m的一侧电极都连接在节点N22上。
设定N型晶体管42.0-42.m的栅极幅度和与图4的N型晶体管23的栅极幅度相同。N型晶体管42.0-42.m的栅极和漏极连接在节点N22上。N型晶体管42.0-42.m的栅极和漏极分别连接在熔丝41.1-41.m的另一侧电极上。各N型晶体管42.0-42.m构成二极管元件。
设定P型晶体管43.0-43.m的栅极幅度和与图4的P型晶体管24的栅极幅度相同。P型晶体管43.0-43.m分别连接在N型晶体管42.0-42.m的源极与地电位GND的节点之间,它们的栅极都接受输入电位VI。
如实施例1中说明,节点N22的电位V22基本上由晶体管42.0-42.m、43.0-43.m的阈值电压决定。但是,若节点N22与地电位GND的节点之间的电阻值比电阻元件22的电阻值大,则与之对应,则节点N22的电位V22稍微上升。因此,通过由激光切断熔丝41.1-41.m中适当数量的熔丝,可使节点N22的电位V22稍微上升。即使在晶体管42.0-42.m、43.0-43.m的阈值电压绝对值比设计值小的情况下,也可补偿节点N22的电位V22。
另外,在本实施例2中,将N型晶体管23和P型晶体管24两者分割成m+1个,但也可仅将N型晶体管23和P型晶体管24一方分割成m+1个,或将N型晶体管23和P型晶体管24中一方分割成m+1个,并将另一方例如分割成两个。具体而言,短路图10的P型晶体管43.1-43.m的源极,将P型晶体管43.1-43.m变为一个P型晶体管。另外,将熔丝41.1-41.m分别连接在N型晶体管42.1-42.m的源极与P型晶体管43.1-43.m的源极之间,同时,短路N型晶体管42.1-42.m的源极,将N型晶体管42.1-42.m变为一个N型晶体管。
实施例3图11是表示本发明实施例3的驱动电路的电平移位电路45的结构电路图,是与图4的电平移位电路2 5进行对比的图。参照图11,电平移位电路45与图4的电平移位电路25的不同点在于用熔丝46.1-46.m、N型晶体管47.0-47.m和P型晶体管48.0-48.m置换N型晶体管26和P型晶体管27。
由用于连接晶体管彼此间的铝布线等形成各熔丝46.1-46.m。熔丝46.1-46.m的一侧电极都连接在第4电源电位V4的节点上。
设定N型晶体管47.0-47.m的栅极幅度和与图4的N型晶体管26的栅极幅度相同。N型晶体管47.0的漏极连接在第4电源电位V4的节点上,其栅极接受输入电位VI。N型晶体管47.1-47.m的漏极分别连接在熔丝46.1-46.m的另一侧电极上,其栅极都接受输入电位VI。
设定P型晶体管48.0-48.m的栅极幅度和与图4的P型晶体管27的栅极幅度相同。P型晶体管48.0-48.m分别连接在N型晶体管47.0-47.m的源极与节点N27之间,它们的栅极都连接在节点N27上。各P型晶体管48.0-48.m构成二极管元件。
如实施例1中说明,节点N27的电位V27基本上由晶体管47.0-47.m、48.0-48.m的阈值电压决定。但是,若第4电源电位的节点与节点N27之间的电阻值比电阻元件28的电阻值大,则与之对应,节点N27的电位V27稍微下降。因此,通过由激光切断熔丝46.1-46.m中适当数量的熔丝,可使节点N27的电位V27稍微下降,即使在晶体管47.0-47.m、48.0-48.m的阈值电压绝对值比设计值小的情况下,也可补偿节点N27的电位V27。
另外,在本实施例3中,将N型晶体管26和P型晶体管27两者分割成m+1个,但也可仅将N型晶体管26和P型晶体管27一方分割成m+1个,或将N型晶体管26和P型晶体管27中一方分割成m+1个,并将另一方例如分割成两个。具体而言,短路图11的P型晶体管48.1-48.m的源极,将P型晶体管48.1-43.m变为一个P型晶体管。另外,将熔丝41.1-41.m分别连接在N型晶体管47.1-47.m的源极与P型晶体管48.1-48.m的源极之间,同时,短路N型晶体管47.1-47.m的源极,将N型晶体管47.1-47.m变为一个N型晶体管。
另外,不用说,也可组合实施例2和3,用电平移位电路40、45分别置换图4的电平移位电路21、25。
实施例4图12是表示本发明实施例4的驱动电路的电平移位电路50的结构电路图,是与图4的电平移位电路21进行对比的图。参照图12,电平移位电路50与图4的电平移位电路21的不同点在于用电阻元件51.0-51.i(其中i为自然数)和熔丝52.1-52.i置换电阻元件22。
设定电阻元件51.0-51.i的电阻值之和与图4的电阻元件22的电阻值基本相同。电阻元件51.0-51.i串联连接在第3电源电位V3的节点与节点N22之间。
由用于连接晶体管彼此间的铝布线等形成熔丝52.1-52.i。熔丝52.1-52.i分别并联连接在电阻元件51.1-51.i上。
如实施例1中说明,节点N22的电位V22基本上由晶体管23、24的阈值电压决定。但是,若第3电源电位V3的节点与节点N22之间的电阻值比晶体管23、24的导通电阻值大,则与之对应,节点N22的电位V22稍微下降。因此,通过由激光切断熔丝52.1-52.i中适当数量的熔丝,可使节点N22的电位V22稍微下降,即使在晶体管23、24的阈值电压绝对值比设计值高的情况下,也可补偿节点N22的电位V22。
实施例5图13是表示本发明实施例5的驱动电路的电平移位电路55的结构电路图,是与图4的电平移位电路25进行对比的图。参照图13,电平移位电路55与图4的电平移位电路25的不同点在于用电阻元件56.0-56.i和熔丝57.1-57.i置换电阻元件28。
设定电阻元件56.0-56.i的电阻值之和与图4的电阻元件28的电阻值基本相同。电阻元件56.0-56.i串联连接在节点N27与第5电源电位V5的节点之间。
由用于连接晶体管彼此间的铝布线等形成熔丝57.1-57.i。熔丝57.1-57.i分别并联连接在电阻元件56.1-56.i上。
如实施例1中说明,节点N27的电位V27基本上由晶体管26、27的阈值电压决定。但是,若节点N27与第5电源电位V5的节点之间的电阻值比晶体管26、27的导通电阻值大,则与之对应,节点N22的电位V22稍微上升。因此,通过由激光切断熔丝57.1-57.i中适当数量的熔丝,可使节点N27的电位V27稍微上升,即使在晶体管26、27的阈值电压绝对值比设计值高的情况下,也可补偿节点N22的电位V22。
另外,不用说,也可组合实施例4和5,用电平移位电路50、55分别置换图4的电平移位电路21、25。
另外,在上述实施例1-5中,场效应晶体管可以是MOS晶体管,也可以是TFT(薄膜晶体管)。另外,电阻元件可以由高溶点金属形成,也可由杂质扩散层形成,还可为了降低占有面积而由场效应晶体管形成。另外,上述驱动电路不仅向液晶显示装置和此外的装置传递梯度电位,不用说,也可用作模拟缓冲器,控制输出节点的电位,以变为与输入的模拟电位相同的电位。
实施例6作为驱动电路的特性,理想的是如图14的特性线A所示,输入电位VI与输出电位VO相等。但是,实施例1-5所示驱动电路的特性变为图14的特性线B所示,VO的理想值与实际值之差ΔV随着VI的增大而增大。
理由如下。设在图15所示电平移位电路21’中,电阻元件22的电阻值为R,电阻元件22和P型晶体管24中流过的电流值为i,P型晶体管24的电流放大值为β,则下式(9)、(10)成立。
V22=VDD-Ri…(9)i=(VI-VTP-V22)2β/2 …(10)其中,设Rβ/2=K,则用下式(11)表示V22。
公式1V22=VI-VTP+1/2K-1/2K*(4K(VDD+VI-VTP)+1)1/2…(11)由式(11),可知V22的理想值VI-VTP与实际值之差随着VI的增大而增大。因此,V4的理想值与实际值之差ΔV也随着VI的增大而变大。
为了消除该问题,在实施例6中,如图16所示,用恒定电流源62来置换电阻元件22。在图16的电平移位电路中,下式(12)成立。
i=(VI-VTB-V22)2β/2…(10)由式(12)导出下式(13)。
公式2V22=VI-VTP-(2i/β)1/2…(13)因此,在图16的电平移位电路中,V22的理想值VI-VTP与实际值之差无VI无关,变为定值。另外,通过使β的值足比恒定电流值i大,可使VO与理想值VI-VTP基本相等。下面,具体说明实施例6的驱动电路60。
图17是表示本发明实施例6的驱动电路60的结构电路图。参照图17,驱动电路60与图4的驱动电路20的不同点在于由电平移位电路61、63分别置换电平移位电路21、25。电平移位电路61中,由恒定电流源62来置换电平移位电路21的电阻元件22,电平移位电路63中,由恒定电流源64来置换电平移位电路25的电阻元件28。
如图18所示,恒定电流源62包含P型晶体管65、66和电阻元件67。P型晶体管65连接于第3电源电位V3的线与节点N22之间,P型晶体管66和电阻元件67串联连接在第3电源电位3的线与地电位GND的线之间。P型晶体管65、66的栅极都连接在P型晶体管66的漏极上。P型晶体管65、66构成电流镜电路。P型晶体管66和电阻元件67中流过其值对应于电阻元件67的电阻值的恒定电流,P型晶体管65中流过其值对应于P型晶体管66中流过的恒定电流值的恒定电流。另外,电阻元件67一侧电极连接在地电位GND的线上,但电阻元件67的一侧电极也可连接到比从第3电源电位V3中减去P型晶体管66的阈值电压绝对值|VTP|后的电位低的其它电源电位的线上。另外,也可在第3电源电位V3的线与节点N22之间设置彼此连接栅极和源极的耗尽型晶体管,取代晶体管65、66和电阻元件67来作为恒定电流源。
另外,恒定电流源64包含电阻元件68和N型晶体管69、70。电阻元件68和N型晶体管69串联连接于第4电源电位V4的线与第5电源电位V5的线之间,N型晶体管70连接在节点N27与第5电源电位V5的线之间。N型晶体管69、70的栅极都连接在N型晶体管69的漏极上。N型晶体管69、70构成电流镜电路。电阻元件68和N型晶体管69中流过其值对应于电阻元件68的电阻值的恒定电流,N型晶体管70中流过其值对应于N型晶体管69中流过的恒定电流值的恒定电流。另外,电阻元件68一侧电极连接在第4电源电位V4上,但电阻元件68的一侧电极也可连接到比向第5电源电位V5中加上N型晶体管69的阈值电压VTN的电位高的其它电源电位的线上。另外,也可在第5电源电位V5的线与节点N27之间设置彼此连接栅极和源极的耗尽型晶体管,取代晶体管69、70和电阻元件68来作为恒定电流源。其它结构和动作与图4的驱动电路20相同,所以不重复说明。
在实施例6中,分别用恒定电流源62、64来置换图4的驱动电路20的电阻元件22、28,所以可得到无输入电位VI的值无关、等于输入电位VI的输出电位VO。
下面,说明实施例6的各种变更例。图19的驱动电路71从图18的驱动电路60中去除电容29。该变更例在负荷电容36的电容值较小的情况下有效。在该变更例中,因为去除了电容29,所以电路所占面积小。
图20的驱动电路72从图18的驱动电路60中去除N型晶体管23、34和P型晶体管27、32。在该变更例中,因为去除了晶体管23、27、32、34,所以电路所占面积小。其中,输出电位VO为VO=VI+|VTP|-VTN。
图21的驱动电路73从图20的驱动电路72中去除电容29。该变更例在负荷电容36的电容值较小的情况下有效。在该变更例中,因为去除了电容29,所以电路所占面积小。
实施例7例如在图4的驱动电路20中,在充放电负荷电容36时,各晶体管31、32、34、35进行所谓的源输出动作。此时,输出电位VO接近输入电位VI,晶体管31、32、34、35各栅极-源极间电压变小,晶体管31、32、34、35的电流驱动能力下降。晶体管32、34虽可通过扩大它们的栅极幅度来防止驱动能力的下降,但若扩大晶体管31、35的栅极幅度,则栅极电容增大,驱动电路20的动作速度下降。在实施例7中解决该问题。
图22是表示本发明实施例7的驱动电路75的结构电路图。参照图22,驱动电路75向图19的驱动电路71中追加了电容76、77。电容76的一侧电极接受升压信号ΦB,另一侧电极连接在节点N22上。电容77的一侧电极接受升压信号ΦB的互补信号/ΦB,另一侧电极连接在节点N27上。
图23是表示图22所示驱动电路75的动作的时间图。图23中,为了容易理解,将节点N22、N27的电位V22、V27和输出电位VO的变迁时间显示得比实际长。在时刻t1,若输入电位VI从L电平VI上升到H电平VH,则各电位V22、V27、VO缓慢上升。如上所述,各电位V22、V27、VO虽电位变化周期较快上升,但接近最终电平后上升速度变慢。
在从时刻t1经过规定时间后的时刻t2,升压信号ΦB上升到H电平,同时,信号/ΦB下降到L电平。若信号ΦB上升到H电平,则通过电容76进行电容耦合,节点N22的电位V22上升规定电压ΔV1。若信号/ΦB下降到L电平,则通过电容77进行电容耦合,节点N27的电位V27下降规定电压ΔV2。此时,进行向输出节点N30输出H电平VH的动作,因为N型晶体管31的导通电阻值一方比P型晶体管35的导通电阻值低,所以V22引起的电平上升作用一方比V27引起的电平下降作用强,输出电位VO从时刻t2起迅速上升(用虚线表示在未升压V22的情况)。
通过从节点N22经晶体管23、24向地电位GND的线流出电流,升压后的电位V22下降到VI+|VTP|+VTN。另外,通过从第4电源电压V4的线经晶体管26、27向节点N27流入电流,降压后的电位V27上升到VI-|VTP|-VTN。
在时刻t3,升压信号ΦB下降到L电平,同时,信号/ΦB上升到H电平。若信号ΦB下降到L电平,则通过电容76进行电容耦合,节点N22的电位V22下降规定电压ΔV1。另外,若信号/ΦB上升到H电平,则通过电容77进行电容耦合,节点N27的电位V27上升规定电压ΔV2。因为V22即使下降ΔV1,也没有能力降低工作电路30中输出电位VO,V27即使上升ΔV2,也没有能力使非工作电路33中输出电位VO上升,所以输出电位VO不变化。
通过从第3电源电位V3的线经P型晶体管65向节点N22流入电流,降压后的电位V27上升到VI+|VTP|+VTN。其中,因为为了消除耗功率化而将P型晶体管65的电流驱动能力设定得小,所以节点N22的电位V22上升到原来的电平VI+|VTP|+VTN所需时间比V22下降到电平VI+|VTP|+VTN所需时间长。
另外,通过从节点N27经N型晶体管70向第5电源电位V5的线流出电流,升压后的电位V27下降到VI-VTN-|VTP|。其中,因为为了消除耗功率化而将N型晶体管的电流驱动能力设定得小,所以节点N27的电位V27下降到原来的电平VI-VTN-|VTP|所需时间比V22上升到电平VI-VTN-|VTP|所需时间长。
在时刻t4,若输入电位VI从H电平VH下降到L电位VL,则各电位V22、V27、V4缓慢下降。各电位V22、V27、V4虽电位变化的初期较快下降,但在接近最终电平后下降速度变慢。
在从时刻t4经过规定时间后的时刻t5,升压信号ΦB上升到H电平,同时,信号/ΦB下降到L电平。若信号ΦB上升到H电平,则通过电容76进行电容耦合,节点N22的电位V22上升规定电压ΔV1。若信号/ΦB下降到L电平,则通过电容77进行电容耦合,节点N27的电位V27下降规定电压ΔV2。此时,进行向输出节点N30输出L电平VL的动作,因为P型晶体管35的导通电阻值一方比N型晶体管31的导通电阻值低,所以V27引起的电平下降作用一方比V22引起的电平上升作用强,输出电位VO从时刻t5起迅速下降(用虚线表示在未降压V27的情况)。
通过从节点N22经晶体管23、24向地电位GND的线流出电流,升压后的电位V22下降到VI+|VTP|+VTN。另外,通过从第4电源电压V4的线经晶体管26、27向节点N27流入电流,降压后的电位V27上升到VI-|VTP|-VTN。
在时刻t6,升压信号ΦB下降到L电平,同时,信号/ΦB上升到H电平。若信号ΦB下降到L电平,则通过电容76进行电容耦合,节点N22的电位V22下降规定电压ΔV1。另外,若信号/ΦB上升到H电平,则通过电容77进行电容耦合,节点N27的电位V27上升规定电压ΔV2。因为即使下降ΔV1,也没有能力降低工作电路30中输出电位VO,即使上升ΔV2,也没有能力使非工作电路33中输出电位VO上升,所以输出电位VO不变化。
通过从第3电源电位V3的线经P型晶体管65向节点N22流入电流,降压后的电位V22上升到VI+|VTP|+VTN。其中,因为为了消除耗功率化而将P型晶体管65的电流驱动能力设定得小,所以节点N22的电位V22上升到原来的电平VI+|VTP|+VTN所需时间比V22下降到电平VI+|VTP|+VTN所需时间长。
另外,通过从节点N27经N型晶体管70向第5电源电位V5的线流出电流,升压后的电位V27下降到VI-VTN-|VTP|。其中,因为为了消除耗功率化而将N型晶体管70的电流驱动能力设定得小,所以节点N27的电位V27下降到原来的电平VI-VTN-|VTP|所需时间比V22上升到电平VI-VTN-|VTP|所需时间长。
在实施例7中,因为对应于输入电位VI从L电平VL上升到H电平VH,节点N22的电位V22升压到比本来应到达的电位VI+|VTP|+VTN还高的电位,所以可加快输出电位VO的上升速度。另外,因为对应于输入电位VI从H电平VH下降到L电平VL,节点N27的电位V27降压到比本来应到达的电位VI-VTN-|VTP|还低的电位,所以可加快输出电位VO的下降速度。因此,可实现驱动电路75的应答速度高速化。
图24是表示实施例7变更例的驱动电路78的结构电路图。驱动电路78去除图22的驱动电路75的晶体管23、27、32、34。在本变更例中,因为去除晶体管23、27、32、34,所以虽输出电位VO变为VO=VI+|VTP|-VTN,但电路所占面积变小。
实施例8图25是表示本发明实施例8的驱动电路80的结构电路图。参照图25,驱动电路80向图19的驱动电路71中追加了P型晶体管81和N型晶体管82。P型晶体管81连接在第3电源电位V3的线与节点N22之间,其栅极接受工作信号/ΦP。N型晶体管82连接在节点N27与第5电源电位V5的线之间,其栅极接受工作信号/ΦP的互补信号ΦP。
在与实施例7所示信号ΦB、/ΦB相同的定时电平变化信号ΦP、/ΦP。即,在输入信号VI从L电平VL上升到H电平VH起经过规定时间后,信号ΦP、/ΦP分别脉冲变为L电平和H电平,P型晶体管81和N型晶体管82脉冲导通。因此,在第3电源电位V3升压到由晶体管81和晶体管23、24分压的电位后,节点N22的电位V22变为规定值VI+|VTP|+VTN。另外,在第4电源电位V4与第5电源电位V5之间的电压V4-V5降压到由晶体管26、27和晶体管82分压的电位后,节点N27的电位V27变为规定值VI-VTN-|VTP|。此时,如实施例7所述,N型晶体管31的充电作用比P型晶体管35的放电作用强,输出电位VO迅速等于输入电位VI。在输入电位VI从H电平VH下降到L电平VL的情况下,P型晶体管35的放电作用比N型晶体管31的充电作用强,输出电位VO迅速等于输入电VI。
在实施例8中可得到与实施例7相同的效果。
下面,说明实施例8的各种变更例。图26的驱动电路83是从图25的驱动电路80中去除N型晶体管23、34和P型晶体管27、32。在该变更例中,因为去除了晶体管23、27、32、34,所以虽输出电位VO变为VO=VI+|VTP|-VTN,但电路所占面积变小。
图27的驱动电路85是向图25的驱动电路80中追加N型晶体管86和P型晶体管87。N型晶体管86连接于P型晶体管24的源极与地电位GND的线之间,其栅极接受工作信号/ΦP。P型晶体管87连接在第4电源电位V4的线与N型晶体管26的线之间,其栅极接受工作信号/ΦP的互补信号ΦP。在本变更例中,因为在P型晶体管81导通时N型晶体管86变为非导通,所以可防止从第3电源电位V3的线经晶体管81、23、24、86向地电位GND的线流过直通电流。另外,因为在N型晶体管82导通时P型晶体管87变为非导通,所以可防止从第4电源电位V4的线经晶体管87、26、27、82向第5电源电位V5的线流过直通电流。因此,电路61、63的消耗电流变小。
图28的驱动电路88是从图27的驱动电路85中去除N型晶体管23、34和P型晶体管27、32。在该变更例中,因为去除了晶体管23、27、32、34,所以虽输出电位VO变为VO=VI+|VTP|-VTN,但电路所占面积变小。
图29的驱动电路90中,取代地电位GND,向图25的驱动电路80的P型晶体管24的源极施加信号ΦP,同时,取代第4电源电位VO,向N型晶体管的漏极施加信号/ΦP。在本变更例中,因为在P型晶体管81导通时P型晶体管24的漏极为H电平,所以可防止向晶体管81、23、24中流过直通电流。另外,因为在N型晶体管82导通时N型晶体管26的漏极为L电平,所以可防止向晶体管26、27、82流过直通电流。因此,可实现电路61、63的消耗电流降低。
图30的驱动电路91是从图29的驱动电路90中去除N型晶体管23、34和P型晶体管27、32。在该变更例中,因为去除了晶体管23、27、32、34,所以虽输出电位VO变为VO=VI+|VTP|-VTN,但电路所占面积变小。
实施例9图31是表示本发明实施例9的驱动电路95的结构电路图。参照图31,驱动电路95与图22的驱动电路75的不同点在于用分别电平移位电路96、102置换电平移位电路61、63。
电平移位电路96是向电平移位电路61中追加P型晶体管97、98和N型晶体管99-101的电路。P型晶体管97、N型晶体管99、100和P型晶体管98串联连接在第3电源电位V3的线与地电位GND的线之间,N型晶体管101连接在第3电源电位V3的线与节点N22之间。P型晶体管97的栅极连接在P型晶体管66的栅极上。因此,晶体管97、99、100、98中流过其值对应于P型晶体管66中流过的恒定电流值的恒定电流。N型晶体管99、100的栅极分别连接在其漏极上。各N型晶体管99、100构成二极管。P型晶体管98的栅极接受输入电位VI。晶体管97、99间的栅极的电位V99变为V99=VI+|VTP|+2VTN。向N型晶体管101的栅极施加V99。N型晶体管101将节点N22充电到V99-VTN=VI+|VTP|+VTN。
电平移位电路102是向电平移位电路63中追加N型晶体管103、104和P型晶体管105-107的电路。N型晶体管103、P型晶体管105、106和N型晶体管104串联连接在第4电源电位V4的线与第5电源电位V5的线之间,P型晶体管107连接在节点N27与第5电源电位V5的线之间。N型晶体管103的栅极接受输入电位VI。P型晶体管105、106的栅极分别连接在其漏极上。各P型晶体管105、106构成二极管。N型晶体管104的栅极连接在N型晶体管69的栅极上。N晶体管104中流过其值对应于N型晶体管69中流过的恒定电流值的恒定电流。MOS晶体管106、104间的栅极的电位V106变为V106=VI-VTN-2|VTP|。向P型晶体管107的栅极施加V106。P型晶体管107将节点N27放电到V106-|VTP|=VI-VTN-|VTP|。其它结构与动作与图22的驱动电路75相同,所以不重复说明。
图32是表示图31所示驱动电路95的动作的时间图,是与图23进行对比的图。参照图32,在驱动电路95中,因为晶体管97-101将节点N22充电到VI+|VTP|+VTN,所以在节点N22的电位V22比规定值VI+|VTP|+VTN低时(时刻t3、t6),可将节点N22的电位V22迅速恢复到规定值VI+|VTP|+VTN。另外,因为晶体管103-107将节点N27放电到VI-VTN-|VTP|,所以在节点N27的电位V27比规定值VI-VTN-|VTP|高时(时刻t3、t6),可将节点N27的电位V27迅速恢复到规定值VI-VTN-|VTP|。因此,可实现电路应答速度的高速化。
图33是表示实施例9的变更例的电路图。该驱动电路108是从图31的驱动电路95中去除N型晶体管23、34、100和P型晶体管27、32、105。在该变更例中,因为去除了晶体管23、27、32、34、100、105,所以输出电位VO虽变为VO=VI+|VTP|-VTN,但电路所占面积变小。
实施例10图34是表示本发明实施例10的驱动电路110的结构电路图。在图34中,驱动电路110与图31的驱动电路95的不同点在于用电平移位电路111、112置换电平移位电路96、102。
电平移位电路111从电平移位电路96中去除P型晶体管97、98和N型晶体管100,将N型晶体管99连接在P型晶体管65的源极与节点N22之间。N型晶体管99的栅极连接在N型晶体管99的漏极和N型晶体管101的栅极上。N型晶体管99、101的栅极电位V99变为V99=VI+|VTP|+2VTN。N型晶体管101将节点N22充电到V99-VTN=VO+|VTP|+VTN。
电平移位电路112从电平移位电路102中去除N型晶体管103、104和P型晶体管105,将P型晶体管106连接在节点N27与N型晶体管70的漏极之间。P型晶体管106的栅极连接在其漏极和P型晶体管107的栅极上。P型晶体管106、107的栅极电位V106变为V106=VI-VTN-2|VTP|。P型晶体管107将节点N27放电到V106+|VTP|=VI-VTN-|VTP|。其它结构与动作与图31的驱动电路95相同,所以不重复说明。
在实施例10中,除得到与实施例9相同的效果外,因为可削减从第3电源电位V3的线经晶体管97、99、100、98流向地电位GND的线的电流、和从第4电源电位VO的线经晶体管103、105、106、104流向第5电源电位V5的线的电流,所以消耗电流变小。另外,因为去除了晶体管97、98、100、103-105,所以电路所占面积变小。
图35是表示实施例10的变更例的电路图。该驱动电路113是从图34的驱动电路110中去除N型晶体管23、34和P型晶体管27、32。在该变更例中,因为去除了晶体管23、27、32、34,所以输出电位VO虽变为VO=VI+|VTP|-VTN,但电路所占面积变小。
实施例11图36是表示本发明实施例11的半导体集成电路装置主要部分的电路框图。图36中,半导体集成电路装置具备j个(其中,j是大于2的整数)驱动电路115.1-115.j。
如图37所示,驱动电路115.1分别用电平移位电路116、117置换图18的驱动电路60的电平移位电路61、63。电平移位电路116从电平移位电路61中去除P型晶体管66和电阻元件67,电平移位电路117从电平移位电路63中去除电阻元件68和N型晶体管69。晶体管65、70的栅极分别接受偏置电位VBP、VBN。其它各驱动电路115.2-115.j也与驱动电路115.1的结构相同。
返回图36,在该半导体集成电路装置中,驱动电路115.1-115.j中共通设置生成偏置电位VBP用的P型晶体管66和电阻元件67与生成偏置电位VBN用的电阻元件68和N型晶体管69。
P型晶体管66和电阻元件67串联连接在第3电源电位V3的线与地电位GND的线之间,P型晶体管66的栅极连接在其漏极(节点N66)上。在节点N66上呈现偏置电位VBP。在节点N66与地电位GND的线之间连接用于稳定偏置电位VBP的电容118。在各驱动电路115.1-115.j的P型晶体管65中流过对应于P型晶体管66中流过的恒定电流值的恒定电流。
电阻元件68和N型晶体管69串联连接在第4电源电位V4的线与第5电源电位V5的线之间,N型晶体管69的栅极连接在其漏极(节点N68)上。在节点N68上呈现偏置电位VBN。在节点N68与地电位GND的线之间连接用于稳定偏置电位VBN的电容119。在各驱动电路115.1-115.j的N型晶体管70中流过对应于N型晶体管69中流过的恒定电流值的恒定电流。
在实施例11中,除得到与实施例6相同的效果外,因为在驱动电路115.1-115.j中共通设置生成偏置电位VBP、VBN的电路,所以每个驱动电路115.1-115.j所占面积小。
实施例12图38是表示本发明实施例12的带偏移补偿功能的驱动电路120的结构电路框图。图38中,带偏移补偿功能的驱动电路120包含驱动电路121、电容122和开关S1-S4。驱动电路121是实施例1-11中所示驱动电路中任一驱动电路。电容122和开关S1-S4构成在因驱动电路121的晶体管阈值电压差异而在驱动电路121的输入电位与输出电位之间产生电位差、即偏移电压VOF的情况下,补偿该偏移电压VOF用的偏移补偿电路。
即,开关S1连接在输入节点N120与驱动电路121的输入节点N20之间,开关S4连接在输出节点N121与驱动电路121的输出节点N30之间。电容122和开关S2串联连接在驱动电路121的输入节点N20与输出节点N30之间。开关S3连接在输入节点N120与电容122和开关S2之间的节点N122之间。各开关S1-S4可以是P型晶体管、也可以是N型晶体管,或者是并联连接P型晶体管和N型晶体管来构成。各开关S1-S4由控制信号(未图示)进行接通/断开控制。
现在,说明驱动电路121的输出电位比输入电位低偏移电压VOF的情况。如图39所示,在初始状态下,所有开关S1-S4都为断开状态。在某时刻t1,开关S1、S2变为接通状态,驱动电路121的输入节点N20的电位V20变为V20=VI,驱动电路121的输出电位V30和节点N122的电位V122变为V30=V122=VI-VOF,电容122充电到偏移电压VOF。
接着,在时刻t2,开关S1、S2变为断开状态,电容122保持偏移电压VOF。之后,在时刻t3,开关S3变为接通状态,节点N122的电位V122变为V122=VI,驱动电路121的输入电位V20变为V20=VI+VOF。结果,驱动电路121的输出电位V30变为V30=V20-VOF=VI,消除驱动电路121的偏移电压VOF。之后,在时刻t4,开关S4变为接通状态,输出电位VO变为VO=VI,提供给负荷。
在实施例12中,可消除驱动电路121的偏移电压VOF,可使输出电位VO与输入电位VI一致。
另外,开关S4不是必需的。其中,若不设置开关S4,则在负荷电容36的电容值大的情况下,在时刻t1,从开关S1、S2变为接通状态到电容122的端子间电压VOF稳定为止的时间变长。
实施例13图40是表示本发明实施例13的带偏移补偿功能的驱动电路125的结构电路框图。图40中,带偏移补偿功能的驱动电路125向图17的驱动电路60中追加电容122a、122b、126a、126b和开关S1a-S4a、S1b-S4b。
开关S1a、S1b分别连接在输入节点N120与晶体管24、26的栅极(节点N20a、N20b)之间。开关S4a、S4b分别连接在输出节点N121与晶体管32、34的漏极(节点N30a、N30b)之间。电容122a和开关S2a串联连接在节点N20a和N30a之间。电容122b和开关S2b串联连接在节点N20b与N30b之间。开关S3a连接在输入节点N120与电容122a和开关S2a间的节点N122a之间。开关S3b连接在输入节点N120与电容122b和开关S2b间的节点N122b之间。电容126a、126b一侧电极分别连接在节点N30a、N30b上,其另一侧电极分别接受复位信号/φR和其互补信号φR。
图41是表示图40所示带偏移补偿功能的驱动电路125的动作的时间图。由恒定电流源62和晶体管23、24、31、32构成的充电电路与由恒定电流源64和晶体管26、27、34、35构成的放电电路虽差别在于充电和放电,但动作相同,所以在图41中仅说明充电电路的动作。现在,因为N型晶体管31的阈值电压VTN比N型晶体管的阈值电压VTN大VOFa,所以在充电电路侧有偏移电压VOFa,在放电电路侧没有偏移电压VOFb。
在初始状态下,开关S1a-S3a变为断开状态,同时,开关S4a变为接通状态,节点N20a、N122a、N30a、N121保持上次的电位VI’。在时刻t1,开关S1a、S2a变为接通状态,节点N20a、N122a、N30a、N121的电位V20a、V122a、V30a、VO都变为等于输入电位VI的电位。另外,节点N22的电位V22变为V22=VI+|VTP|+VTN。尽管N型晶体管31的阈值电压VTN’仅比N型晶体管23的阈值电压VTN高VOFa,但V20a、V122a、V30a、VO都变为等于VI的电位是由于放电电路将输出节点N121放电到输入电位VI,小于输入电位VI后不再放电。
接着,在时刻t2,开关S4a变为断开状态,电切离充电电路的输出节点N30a和放电电路的输出节点N30b。接着,在时刻t3,复位信号/φR从H电平下降到L电平,经电容126a通过电容耦合,将节点N30a、N122a的电位V30a、V122a下降规定电压。由此,晶体管31、32导通,节点N30a、N122a的电位V30a、V122a上升到VI-VOFa,电容122a充电到VOFa。
在节点N30a、N122a的电位V30a、V122a稳定后,在时刻t4,开关S1a、S2a变为断开状态,并在时刻t5,开关S3a变为断开状态,向节点N02a施加向输入电位VI加上偏移电压VOFa后的电位VI+VOFa。由此,节点N22的电位V22变为V22=VI+|VTP|+VTN+VOFa,节点N30a、N122a的电位V30a、V122a变为与输入电位VI相同的电平。
充电电路的输出电位V30a虽从时刻t1开始变为V30a=VI,但在时刻t1-t2期间,仅是由布线电容等保持的电位,在存在负极性噪声的情况下,V30a下降到VI-VOF。相反,在时刻t5以后,即使有负极性噪声,也因为由晶体管31、32充电,所以V30a维持在VI。
接着,在时刻t6,开关S3a变为断开状态,且在时刻t7,开关S4a变为断开状态,则驱动电路驱动负荷电容36。在时刻t8,复位信号/φR一旦上升到H电平,则返回初始状态。在该时刻t8,因为输出阻抗足够低,所以即使复位信号/φR上升到H电平,输出电位VO也基本上不变化。放电电路侧也进行同样的动作,输出电位VO维持在VI。
图42是表示图40所示带偏移补偿功能的驱动电路125的动作的另一时间图。由恒定电流源62和晶体管23、24、31、32构成的充电电路与由恒定电流源64和晶体管26、27、34、35构成的放电电路虽差别在于充电和放电,但动作相同,所以在图42中仅说明放电电路的动作。现在,因为P型晶体管3 5的阈值电压绝对值|VTP’|比P型晶体管27的阈值电压绝对值|VTP|大VOFb,所以在放电电路侧有偏移电压VOFb,在充电电路侧没有偏移电压VOFa。
在初始状态下,开关S1b-S3b变为断开状态,同时,开关S4b变为接通状态,节点N20b、N122b、N30b、N121保持上次的电位VI’。在时刻t1,开关S1b、S2b变为接通状态,节点N20b、N122b、N30b、N121的电位V20b、V122b、V30b、VO都变为等于输入电位VI的电位。另外,节点N27的电位V27变为V27=VI-|VTP|-VTN。尽管P型晶体管35的阈值电压绝对值|VTP’|仅比p型晶体管27的阈值电压绝对值|VTP|高VOFb,但V20b、V122b、V30b、VO都变为等于VI的电位是由于充电电路将输出节点N121充电到输入电位VI,大于输入电位VI后不再充电。
接着,在时刻t2,开关S4b变为断开状态,电切离充电电路的输出节点N30a和放电电路的输出节点N30b。接着,在时刻t3,信号φR从L电平上升到H电平,经电容126b通过电容耦合,将节点N30b、N122b的电位V30b、V122b上升规定电压。由此,晶体管34、35导通,节点N30b、N122b的电位V30b、V122b上升到VI+VOFb,电容122b充电到VOFb。
在节点N30b、N122b的电位V30b、V122b稳定后,在时刻t4,开关S1b、S2b变为断开状态,并在时刻t5,开关S3b变为接通状态,向节点N20b施加从输入电位VI中减去偏移电压VOFb后的电位VI-VOF。由此,节点N27的电位V27变为V27=VI-VTN-|VTP|-VOFb,节点N30b、N122b的电位V30b、V122b变为与输入电位VI相同的电平。
放电电路的输出电位V30a虽从时刻t1开始变为V30b=VI,但在时刻t1-t2期间,仅是由布线电容等保持的电位,在存在正极性噪声的情况下,V30b上升到VI+VOFb。相反,在时刻t5以后,即使有正极性噪声,也因为由晶体管34、35放电,所以V30b维持在VI。
接着,在时刻t6,开关S3b变为断开状态,且在时刻t7,开关S4b变为接通状态,则驱动电路驱动负荷电容36。在时刻t8,信号φR一旦下降到L电平,则返回初始状态。在该时刻t8,因为输出阻抗变低,所以即使信号φR上升到L电平,输出电位VO也基本上不变化。放电电路侧也进行同样的动作,输出电位VO维持在VI。
下面,说明实施例13的各种变更例。图43的带偏移补偿功能的驱动电路127是从图40的带偏移补偿功能的驱动电路125中去除N型晶体管23、24和P型晶体管27、32。在该变更例中,电路所占面积小。
图44的带偏移补偿功能的驱动电路130是用N型晶体管131a和P型晶体管131b分别置换图40的带偏移补偿功能的驱动电路125的电容126a、126b。N型晶体管131a连接在第8电源电位V8的线与节点N30a之间,其栅极接受复位信号φR’。P型晶体管131b连接在节点N30b与第9电源电位V9的线之间,其栅极接受复位信号φR’的互补信号/φR’。
平时,信号φR’、/φR’分别为L电平和H电平,N型晶体管131a和P型晶体管131b都为非导通。在图41和图42的时刻t3,信号φR’仅在规定时间内脉冲变为H电平,同时,信号/φR’仅在规定时间内脉冲变为L电平。因此,N型晶体管131a脉冲导通,节点N30a的电位V30a下降到第8电源电位V8,同时,P型晶体管131b脉冲导通,节点N30b的电位V30b上升到第9电源电位V9。之后,在图41说明的情况下,将节点N30a充电到VI-VOF,在图42说明的情况下,将节点N30b放电到VO+VOF。在本变更例中,在图41和图42的时刻t8,输出电位VO中不发生噪声。另外,信号φR’、/φR’的脉冲幅度必需设定在最小限值。
图45的带偏移补偿功能的驱动电路132是向图25的驱动电路80附加由电容122a、122b、126a、126b和开关S1a-S4a、S1b-S4b构成的偏移补偿电路。在图41和图42的时刻t1-t2期间,信号/φP脉冲变为L电平,同时,信号φP脉冲变为H电平。在本变更例中,因为节点N22、N27的电位迅速到达规定值,所以可实现动作速度的高速化。
图46的带偏移补偿功能的驱动电路133是从图45的带偏移补偿功能的驱动电路132中去除N型晶体管23、24和P型晶体管27、32。在该变更例中,电路所占面积小。
图47的带偏移补偿功能的驱动电路135是向图27的驱动电路85附加由电容122a、122b、126a、126b和开关S1a-S4a、S1b-S4b构成的偏移补偿电路。在该变更例中,信号/φP、φP分别变为L电平和H电平,在晶体管81、82导通时,晶体管86、87同时变为非导通,所以可防止流过直通电流,消耗电流小。
图48的带偏移补偿功能的驱动电路136是从图47的带偏移补偿功能的驱动电路135中去除N型晶体管23、24和P型晶体管27、32。在该变更例中,电路所占面积小。
图49的带偏移补偿功能的驱动电路140是向图29的驱动电路90附加由电容122a、122b、126a、126b和开关S1a-S4a、S1b-S4b构成的偏移补偿电路。在该变更例中,信号/φP变为L电平后,P型晶体管81导通时,P型晶体管24的漏极变为H电平,信号φP变为H电平后,N型晶体管82导通时,N型晶体管26的漏极变为L电平,所以可防止流过直通电流,消耗功率小。
图50的带偏移补偿功能的驱动电路141是从图49的带偏移补偿功能的驱动电路140中去除N型晶体管23、24和P型晶体管27、32。在该变更例中,电路所占面积小。
图51的带偏移补偿功能的驱动电路145是向图31的带偏移补偿功能的驱动电路95附加由电容122a、122b、126a、126b和开关S1a-S4a、S1b-S4b构成的偏移补偿电路。在图41和图42的时刻t1-t2期间,信号φB脉冲变为H电平,同时,信号/φB脉冲变为L电平。在本变更例中,因为节点N22、N27的电位迅速到达规定值,所以可实现动作速度的高速化。
图52的带偏移补偿功能的驱动电路146是从图51的带偏移补偿功能的驱动电路145中去除N型晶体管23、24、100和P型晶体管27、32、105。在该变更例中,电路所占面积小。
图53的带偏移补偿功能的驱动电路150是向图34的驱动电路110附加由电容122a、122b、126a、126b和开关S1a-S4a、S1b-S4b构成的偏移补偿电路。在图41和图42的时刻t1-t2期间,信号φB脉冲变为H电平,同时,信号/φB脉冲变为L电平。在本变更例中,因为节点N22、N27的电位迅速到达规定值,所以可实现动作速度的高速化。
图54的带偏移补偿功能的驱动电路151是从图53的带偏移补偿功能的驱动电路150中去除N型晶体管23、24和P型晶体管27、32。在该变更例中,电路所占面积小。
实施例14图55是表示本发明实施例14的带偏移补偿功能的驱动电路155的结构电路图。图55中,带偏移补偿功能的驱动电路155与图51的带偏移补偿功能的驱动电路145的不同点在于追加了开关S5和电容156,分别用升压信号φB1、/φB1来置换升压信号φB、/φB。
开关S5连接在开关S4a、S4b间的节点与输出节点N121之间。电容156连接在开关S4a、S4b间的节点与地电位GND的线之间。电容156的电容值设定得比负荷电容36的电容值小。
图56是表示图55所示带偏移补偿功能的驱动电路155的动作的时间图,是与图41进行对比的图。这里也仅说明充电电路侧的动作。参照图56,在时刻t9前,开关S5为断开状态,电切离负荷电容36,所以在例如时刻t1-t2时,电位V22、V30a、V122a迅速到达输入电位VI。
在时刻t9时,一旦开关S5变为接通状态,则开关S4a、S4b间的电位V156对应于连接在输出节点N121上的数据线的电位VO变化。在图56中,表示数据线的电位VO比V156低的情况,在时刻t9时,电位V156降低后,晶体管31、32提供电流,电位V156缓慢上升。接着,在时刻t10时,信号φB1从L电平上升到H电平,节点N22的电位V22脉冲上升,流过N型晶体管31的电流增加,电位V156迅速到达输入电流VI。
图57是表示图55所示带偏移补偿功能的驱动电路155动作的另一时间图,是与图42进行对比的图。这里也仅说明放电电路的动作。参照图57,在时刻t9前,开关S5为断开状态,电切离负荷电容36,所以在例如时刻t1-t2时,电位V27、V30b、V122b迅速到达输入电位VI。
在时刻t9时,一旦开关S5变为接通状态,则开关S4a、S4b间的电位V156对应于连接在输出节点N121上的数据线的电位VO变化。在图57中,表示数据线的电位VO比V156高的情况,在时刻t9时,电位V156上升后,晶体管31、32排出电流,电位V156缓慢下降。
接着,在时刻t10时,信号/φB1从H电平下降到L电平,节点N27的电位V27脉冲下降,流过P型晶体管35的电流增加,电位V156迅速到达输入电流VI。
在实施例14中,即使在负荷电容36的电容值大的情况下,也可得到快的动作速度。
实施例15图58是表示本发明实施例15的带偏移补偿功能的驱动电路157的结构电路图。参照图58,带偏移补偿功能的驱动电路157与图55的带偏移补偿功能的驱动电路155的不同点在于去除了电容156,开关S5的接通、断开定时和信号φB1、/φB1的电平变化定时。
图59是表示图58所示带偏移补偿功能的驱动电路157的动作的时间图。其中,设N型晶体管31的阈值电压VTN’比N型晶体管23的阈值电压VTN大VOF。在初始状态下,开关S1a-S3a、S1b-S3b变为断开状态,同时,S4a、S4b、S5变为接通状态,节点N30a、N30b、N20a的电位V30a、V30b、V20a都变为上次的输入电位(在图中为VH)。
在时刻t1时,开关S5变为断开状态,开关S30a、S30b之间的节点与负荷电容36电切断。在时刻t2,开关S1a、S1b、S2a、S2b变为接通状态,同时,输入电位VI设定为这次的电位(图中为VL)。因此,节点N30a、N30b、N20b的电位V30a、V30b、V20b都变为VI=VL。N型晶体管31的阈值电压VTN’尽管比其它N型晶体管的阈值电压高VOF,但V30a、V30b变为VI=VL是由于放电电路虽将节点N30a、N30b放电到VI=VL,但以此以下不再放电。
在时刻t3,开关S4a、S4b变为断开状态,电切离充电电路与放电电路。在时刻t4,复位信号/ΦR从H电平下降到L电平,同时,信号ΦR从L电平上升到H电平。从而,节点N30a的电位V30a在从VL脉冲降压后变为VL-VOF,同时,节点N30b的电位V30b在从VL脉冲升压后变为VL。
在时刻t5,开关S1a、S1b、S2a、S2b变为断开状态,接着,在时刻t6,开关S3a、S3b变为接通状态时,节点N20a的电位V20a变为VL+VOF,消除偏移电压VOF,节点N30a的电位V30a变为VI=VL。
在时刻t7,开关S3a、S3b变为断开状态,接着,在时刻t8,一旦开关S4a、S4b、S5变为接通状态,则负荷电容36充电到作为上次电位的VH,节点N30a、N30b的电位V30a、V30b暂时上升后,缓慢下降。在时刻t9,信号ΦB1从L电平上升到H电平,同时,信号/ΦB1从H电平下降到L电平。
从而,节点N22的电位V22通过电容76升压,同时,节点N27的电位V27通过电容77降压。此时,进行向输出节点N121输出L电平VL的动作,P型晶体管35的导通电阻值变得比N型晶体管31的导通电阻值低,所以V27引起的电平下降作用比V22引起的电平上升作用强,节点N30a、N30b、N121的电位V30a、V30b、VO迅速降低,到达VL。
在实施例15中,可实现动作速度的高速化。
实施例16图60是表示本发明实施例16的彩色液晶显示装置的主要部分的电路图。在图60中,彩色液晶显示装置中设置了在向各数据线6施加梯度电位前将各数据线6的电位变为预充电电位VPC的平衡器+预充电电路158。
平衡器+预充电电路158包含对应各数据线6设置的开关S6、和对应各相邻的两个数据线6设置的开关S7。开关S6的一侧端子接受预充电电位VPC,另一侧端子连接在对应的数据线6上。开关S6对应于预充电信号ΦPC变为激活电平的H电平而变为接通状态。一旦开关S6变为接通状态,则各数据线6变为预充电电位VPC。开关S7连接在两条数据线6之间,对应于平衡信号ΦEQ变为激活电平的H电平而变为接通状态。一旦开关S7变为接通状态,则平均所有数据线6的电位。在开关S6、S7变为断开状态后,向各数据线6施加梯度电位。
这里,设预充电电位VCP为0V。因为梯度电位为0V-5V(参照图3),所以驱动电路只要进行数据线6的充电即可,不必进行放电。因此,该彩色液晶显示装置中使用推动型驱动电路。
图61是表示推动型驱动电路160的结构的电路图。图61中,推动型驱动电路160具备电平移位电路61、工作电路30和恒定电流源161。电平移位电路61和工作电路30与图17所示相同。
即,电平移位电路61包含串联连接在第3电源电位V3(15V)的节点与地电位GND的节点之间的恒定电流源62、N型晶体管23和P型晶体管24。如图62所示,恒定电流源62包含P型晶体管65、66和电阻元件67。P型晶体管65连接在第3电源电位V3的节点和N型晶体管23的漏极(节点N22)之间,P型晶体管66和电阻元件67串联连接在第3电源电位V3的节点和地电位GND的节点之间。P型晶体管65、66的栅极都连接在P型晶体管66的漏极上。P型晶体管65、66构成电流镜电路。P型晶体管66和电阻元件67中流过其值对应于电阻元件67电阻值的恒定电流,P型晶体管65中流过其值对应于P型晶体管66中流过的恒定电流值的恒定电流。N型晶体管23的栅极连接在其漏极(节点N22)上。N型晶体管23构成二极管元件。P型晶体管24的栅极连接在输入节点N20上。为了在各晶体管23、24中发生规定阈值的电压,故将恒定电流源62的电流值设定为必要的最小限值。
设输入节点N20的电位(梯度电位)为VI,P型晶体管的阈值电压为VTP,N型晶体管的阈值电压为VTN,则P型晶体管24的源极(节点N23)的电位V23和N型晶体管23的漏极(节点N22)的电位V22分别变为V23=VI+|VTP|、V22=VI+|VTP|+VTN。因此,电平移位电路61输出将输入电位VI电平移位|VTP|+VTN后的电位V22。
工作电路30包含串联连接在第6电源电位V6(15V)的节点与输出节点N30之间的N型晶体管31和P型晶体管32。N型晶体管31的栅极接受电平移位电路61的输出电位V22。P型晶体管32的栅极连接在其漏极上。P型晶体管32构成二极管元件。设定第6电源电位V6,使N型晶体管31在饱和区域内动作,所以N型晶体管31进行所谓的源输出动作。
电平移位电路61连接在输出节点N30与地电位GND的节点之间。如图62所示,恒定电流源161包含N型晶体管162、163和电阻元件164。N型晶体管162连接在输出节点N30与地电位GND的节点之间,电阻元件164和N型晶体管163串联连接在第电源电位V6的节点和地电位GND的节点之间。N型晶体管162、163的栅极都连接在N型晶体管163的漏极上。N型晶体管162、163构成电流镜电路。电阻元件164和N型晶体管163中流过其值对应于电阻元件164电阻值的恒定电流,N型晶体管162中流过其值对应于N型晶体管163中流过的恒定电流值的恒定电流。为了在各晶体管31、32中发生规定的阈值电压,故将恒定电流源161的电流值设定为必要的最小限值。
N型晶体管31的源极(节点N31)的电位V31变为V31=V22-VTN=VI+|VTP|,输出节点N30的电位VO变为VO=V31-|VTP|=VI。
在实施例16中,因为只要各晶体管23、24、31、32中流过发生规定的阈值电压所需最小值的直通电流即可,所以消耗电流小。
另外,不用说,可用电阻元件来置换各恒定电流源62、161。
另外,图63是表示实施例16变更例的推动型驱动电路165的结构的电路图。参照图63,该驱动电路165与图62的驱动电路162的不同点在于去除电阻元件164,由两个恒定电流源62和161来共用电阻元件67。电阻元件67和N型晶体管163串联连接在P型晶体管66的源极与地电位GND的节点之间。N型晶体管163的栅极连接在其漏极上。在本变更例中,可防止因电阻元件67与164的电阻值差异而产生偏移电压。
另外,图64的推动型驱动电路166是从图61的推动型驱动电路160中去除二极管连接的晶体管23、32。输出电位VO变为VO=VI+|VTP|-VTN。其中,若设定|VTP|VTN,则VO VI。或,若考虑将|VTP|-VTN的值用作偏移值,则可与图61的驱动电路160一样使用。在本变更例中,因为去除了晶体管23、32,所以电路所占面积小。
实施例17若设图60所示彩色液晶显示装置中预充电电位VCP为5V,因为梯度电位为0V-5V(参照图3),所以驱动电路只要进行数据线6的放电即可,不必进行充电。因此,该彩色液晶显示装置中使用拉动型驱动电路。
图65是表示本发明实施例17的拉动型驱动电路170的结构的电路图。图65中,驱动电路170包含电平移位电路63、恒定电流源171和非工作电路33。电平移位电路63和非工作电路33与图17所示相同。
即,电平移位电路63包含串联连接在第4电源电位V4(5V)的节点与第5电源电位V5(-10V)的节点之间的N型晶体管26、P型晶体管27和恒定电流源64。N型晶体管26的栅极接受输入节点N20的电位VI。P型晶体管27的栅极连接在其漏极(节点N27)上。P型晶体管27构成二极管元件。为了在各晶体管26、27中发生规定阈值的电压,故将恒定电流源64的电流值设定为必要的最小限值。
N型晶体管26的源极(节点N26)的电位V26变为V26=VI-VTN。P型晶体管27的漏极(节点N27)的电位V27变为V27=VI-VTN-|VTP|。因此,电平移位电路63输出将输入电位VI电平移位-VTN-|VTP|后的电位V27。
恒定电流源171连接在第4电源电位V4的节点与输出节点N30之间。非工作电路33包含串联连接在第7电源电位V7(-10V)的节点与输出节点N30之间的P型晶体管35和N型晶体管34。P型晶体管35的栅极接受电平移位电路63的输出电位V27。N型晶体管34的栅极连接在其漏极上。N型晶体管34构成二极管元件。设定第7电源电位V7,使P型晶体管35在饱和区域内动作,所以P型晶体管35进行所谓的源输出动作。恒定电流源71的电流值设定为在晶体管34、35中发生规定的阈值电压必需的最小限的值。
P型晶体管35的源极(节点N34)的电位V34变为V34=V27+|VTP|=VI-VTN。输出节点N30的电位VO变为VO=V34+VTN=VI。
在实施例17中,因为只要各晶体管26、27、34、35中流过发生规定的阈值电压所需最小值的直通电流即可,所以消耗电流小。
另外,图66是表示实施例17变更例的拉动型驱动电路172的结构的电路图。参照图66,该拉动型驱动电路172是从图65的拉动型驱动电路170中去除二极管连接的晶体管27、34。输出电位VO变为VO=VI+|VTP|-VTN。其中,若设定|VTP|VTN,则VO VI。或,若考虑将|VTP|-VTN的值用作偏移值,则可与图65的驱动电路170一样使用。在本变更例中,因为去除了晶体管27、34,所以电路所占面积小。
实施例18图67是表示本发明实施例18的驱动电路175的结构电路图。图67中,驱动电路175组合图61的推动型驱动电路160和图65的拉动型驱动电路170而成。电平移位电路61的P型晶体管24的栅极和电平移位电路63的N型晶体管26的栅极接受输入节点N20的电位VI。工作电路30的P型晶体管32的漏极和非工作电路33的N型晶体管34的漏极都连接在输出节点N30上。
在输出电位VO比输入电位VI高的情况下,工作电路30的晶体管31、32都变为非导通,同时,非工作电路33的晶体管34、35导通,输出电位VO下降。在输出电位VO比输入电位VI低的情况下,工作电路33的晶体管34、35变为非导通,非工作电路30的晶体管31、23导通,输出电位VO上升。因此,变为VO=VI。
该驱动电路175用作推动型驱动电路、拉动型驱动电路或推拉型驱动电路。在驱动电路175用作推动型驱动电路的情况下,将非工作电路33的晶体管34、35的电流驱动能力设定在与工作电路30的晶体管31、32的电流驱动能力相比足够小的水平。在驱动电路175用作拉动型驱动电路的情况下,将工作电路30的晶体管31、32的电流驱动能力设定在与非工作电路33的晶体管34、35的电流驱动能力相比足够小的水平。在驱动电路175用作推拉型驱动电路的情况下,将工作电路30的晶体管31、32的电流驱动能力设定为与非工作电路33的晶体管34、35的电流驱动能力相同的水平。
在实施例18中,可得到直通电流小的驱动电路175,可降消除耗功率。
另外,图68是表示实施例18变更例的驱动电路176的结构电路图。参照图68,驱动电路176是从图67的驱动电路170中去除二极管连接的晶体管23、27、32、34。输出电位VO变为VO=VI+|VTP|-VTN。其中,若设定|VTP|VTN,则VO VI。或,若考虑将|VTP|-VTN的值用作偏移值,则可与图67的驱动电路175一样使用。在本变更例中,因为去除了晶体管23、27、32、34,所以电路所占面积小。
另外,图69是表示实施例18另一变更例的驱动电路180的结构电路图。图69中,驱动电路180分别由电平移位电路181、183置换图67的驱动电路175的电平移位电路61、63。电平移位电路181中由电阻元件182来置换电平移位电路61的恒定电流源62。电平移位电路183中由电阻元件184来置换电平移位电路63的恒定电流源64。将电阻元件182、184的电阻值设定为电阻元件182、184流过与恒定电流源62、64同程序电流的值。在该变更例中,可得到与图67的驱动电路175相同的效果。
另外,图70是表示实施例18再一变更例的驱动电路185的结构电路图。参照图70,驱动电路185与图67的驱动电路175的不同点在于恒定电流源161连接在输出节点N30与第5电源电位V5的节点之间,恒定电流源171连接在第3电源电位V3的节点与输出节点N30之间。
如图71所示,由电阻元件67、P型晶体管65、66、189和N型晶体管186-188构成恒定电流源62、64、161、171。P型晶体管66、电阻元件67和N型晶体管186连接在第3电源电位V3的节点与第5电源电位V5的节点之间。P型晶体管66的栅极连接在其漏极上,N型晶体管186的栅极连接在其漏极上。晶体管66、186分别构成二极管元件。
P型晶体管65连接在第3电源电位V3的节点与节点N22之间,其栅极连接在P型晶体管66的栅极上。P型晶体管189连接在第3电源电位V3的节点与输出节点N30之间,其栅极连接在P型晶体管66的栅极上。P型晶体管66、65、189构成电流镜电路。各P型晶体管65、189中流过对应于P型晶体管66中流过的电流值的电流。P型晶体管65、189分别构成恒定电流源62、171。
N型晶体管187连接在第5电源电位V5的节点与节点N27之间,其栅极连接在N型晶体管186的栅极上。N型晶体管188连接在第5电源电位V5的节点与输出节点N30之间,其栅极连接在N型晶体管186的栅极上。N型晶体管186-188构成电流镜电路。各N型晶体管187、188中流过对应于N型晶体管186中流过的电流值的电流。N型晶体管187、188分别构成恒定电流源64、161。其它结构和动作与图67的驱动电路175相同,所以不重复说明。在本变更例中,得到与图67的驱动电路175相同的效果。
实施例19图72是表示本发明实施例19的带偏移补偿功能的推动型驱动电路190的结构电路框图。图72中,带偏移补偿功能的推动型驱动电路190向图16的推动型驱动电路160中附加电容122和开关S1-S4。电容122和开关S1-S4构成补偿推动型驱动电路160的偏移电压VOF用的偏移补偿电路。
即,开关S1连接在输入节点N120与驱动电路160的输入节点N20之间,开关S4连接在输出节点N121与驱动电路160的输出节点N30之间。电容122和开关S2串联连接在驱动电路160的输入节点N20与输出节点N30之间。开关S3连接在输入节点N120与电容122和开关S2之间的节点N122之间。
下面,说明带偏移补偿功能的推动型驱动电路190的动作。在初始状态下,所有开关S1-S4都为断开状态。在某时刻,若开关S1、S2变为接通状态,则驱动电路160的输入节点N20的电位V20变为V20=VI,驱动电路121的输出电位V30和节点N122的电位V122变为V30=V122=VI-VOF,电容122充电到偏移电压VOF。
接着,若开关S1、S2变为断开状态,电容122保持偏移电压VOF。之后,若开关S3变为接通状态,则节点N122的电位V122变为V122=VI,驱动电路160的输入电位V20变为V20=VI+VOF。结果,驱动电路160的输出电位V30变为V30=V20-VOF=VI,消除驱动电路160的偏移电压VOF。之后,若开关S4变为接通状态,则输出电位VO变为VO=VI,提供给负荷。
在实施例19中,可消除驱动电路160的偏移电压VOF,可使输出电位VO与输入电位VI一致。
图73的带偏移补偿功能的推动型驱动电路191是向图65的拉动型驱动电路170中附加电容122和开关S1-S4。在本变更例中,可消除拉动型驱动电路191的偏移电压VOF,可使输出电位VO与输入电位VI一致。另外,不用说,即使向各驱动电路165、166、172中附加电容122和开关S1-S4,也可得到相同的效果。
实施例20图74是表示本发明实施例20的带偏移补偿功能的驱动电路195的结构电路框图。图74中,带偏移补偿功能的驱动电路195向图67的驱动电路175中附加电容122a、122b和开关S1a-S4a、S1b-S4b。
开关S1a、S1b分别连接在输入节点N120与晶体管24、26的栅极(节点N20a、N20b)之间。开关S4a、S4b分别连接在输出节点N121与晶体管32、34的漏极(节点N30a、N30b)之间。电容122a和开关S2a串联连接在节点N20a和N 30a之间。电容121b和开关S2b串联连接在节点N20b与N30b之间。开关S3a连接在输入节点N120与电容122a和开关S2a间的节点N122a之间。开关S3b连接在输入节点N120与电容122b和开关S2b间的节点N122b之间。
下面,说明驱动电路195的动作。在初始状态下,所有开关S1a-S4a、S1b-S4b变为断开状态。在某时刻,若开关S1a、S2a、S1b、S2b变为接通状态,则节点N30a、N30b的电位V30a、V30b分别变为V30a=VI-VOFa,V30b=VI-VOFb,电容122a、122b分别充电到偏移电压VOFa、VOFb。
接着,若开关S1a、S2a、S1b、S2b变为断开状态,则电容122a、122b分别保持偏移电压VOFa、VOFb。之后,若开关S3a、S3b变为接通状态,则晶体管24、26的栅极电位分别变为VI+VOFa,VI+VOFb。结果,节点N30a、N30b的电位V30a、V30b分别变为V30a=VI+VOFa-VOFa=VI,V30b=VI+VOFb-VOFb=VI,消除驱动电路175的偏移电压VOFa、VOFb。最后,开关S4a、S4b变为接通状态,有VO=VI。
在实施例20中,得到没有偏移电压且消耗功率小的驱动电路195。
另外,不用说,向各驱动电路176、180、185中附加电容122a、122b和开关S1a-S4a、S1b-S4b也可得到相同的效果。
另外,图75的带偏移补偿功能的驱动电路196是向图74的带偏移补偿功能的驱动电路195中追加电容126a、126b。电容126a、126b一侧电极分别连接在节点N30a、N30b上,其另一侧电极分别接受复位信号/φR和其互补信号φR。在初始状态下,信号/φR、φR分别为H电平和L电平。因为将恒定电流源161的电流值设定得小,所以在节点N30a的电位V30a比输入电位VI高的情况下,即使开关S1a、S2a变为接通状态,节点N30a的电位V30a也缓慢下降。另外,因为将恒定电流源171的电流值设定得小,所以在节点N30b的电位V30b比输入电位VI高的情况下,即使开关S1B、S2B变为接通状态,节点N30b的电位V30b也缓慢上升。因此,在本变更例中,在开关S1a、S2a、S1b、S2b变为接通状态之后,信号/φR从H电平下降到L电平,同时,信号φR从L电平上升到H电平。由此,晶体管31、32、34、35导通,各节点N30a、N30b的电位V30a、V30b迅速与输入电位VI一致。故在本变更例中,可实现驱动电路的动作速度高速化。
另外,图76的带偏移补偿功能的驱动电路197是分别由N型晶体管131a和P型晶体管131b来置换图75的带偏移补偿功能的驱动电路196的电容126a、126b。N型晶体管131a连接在第8电源电位V8的线与节点N30a之间,其栅极接受复位信号ΦR’。P型晶体管131b连接在节点N30b与第9电源电位V9的线之间,其栅极接受复位信号ΦR’的互补信号/ΦR’。平常,信号φR’、/φR’分别为L电平和H电平,N型晶体管131a和P型晶体管131b都为非导通。在开关S1a、S2a、S1b、S2b变为接通状态之后,信号φR’仅在规定时间内脉冲变为H电平,同时,信号/φR’仅在规定时间内脉冲变为L电平。因此,N型晶体管131a脉冲导通,节点N30a的电位V30a下降到第8电源电位V8,同时,P型晶体管131b脉冲导通,节点N30b的电位V30b上升到第9电源电位V9。在该变更例中,也可实现动作速度的高速化。
另外,图77的带偏移补偿功能的驱动电路198是向图75的驱动电路196中附加P型晶体管81和N型晶体管82。P型晶体管81并联连接在恒定电流源62上,其栅极接受信号/φP。N型晶体管82并联连接在恒定电流源64上,其栅极接受信号φP。在初始状态下,信号/φP、φP分别为H电平和L电平。因为将恒定电流源62的电流值设定得小,所以在节点N22的电位V22比输入电位VI低的情况下,即使开关S1a、S2a变为接通状态,节点N22的电位V22也缓慢上升。另外,因为将恒定电流源64的电流值设定得小,所以在节点N27的电位V27比输入电位VI高的情况下,即使开关S1b、S2b变为接通状态,节点N27的电位V27也缓慢下降。因此,在本变更例中,在开关S1a、S2a、S1b、S2b变为接通状态之后,信号/φP在规定时间内脉冲地下降到L电平,同时,信号φP在规定时间内脉冲地上升到H电平。由此,晶体管81、82脉冲地导通,节点N22的电位V22迅速上升,同时,节点N27的电位V27迅速下降。故在本变更例中,可实现驱动电路的动作速度高速化。
实施例21在图72的带偏移补偿功能的推动型驱动电路190中,为了在开关S1、S2变为接通状态时发生偏移电压VOF,必需使晶体管31、32导通。因为在开关S1、S2变为接通状态时必需导通晶体管31、32,所以在开关S1、S2变为接通状态之前,必需将节点N30的电位V30复位到从输入电位VI的最低值Vimin减去偏移电压VOF的最大值ΔVmax后的恒定电位Vimin-ΔVmax。另外,必需防止在向节点N30施加恒定电位Vimin-ΔVmax时晶体管31、32中流过大电流。在实施例21中,解决该问题。
图78是表示本发明实施例21的带偏移补偿功能的推动型驱动电路200的结构电路框图。图78中,带偏移补偿功能的推动型驱动电路200向图72的驱动电路190中附加N型晶体管201、202、204和P型晶体管203。晶体管201-204构成初始化节点N30的电位V30的复位电路。
即,晶体管201-203串联连接在节点N22与地电位GND的节点之间。N型晶体管201的栅极接受时钟信号CLK。N型晶体管202的栅极连接在其漏极上。N型晶体管202构成二极管元件。P型晶体管203的栅极接受从输入电位VI的最低值VImin减去偏移电压VOF的最大值ΔVmax后的恒定电位VImin-ΔVmax。N型晶体管204的漏极连接在节点N30上,其源极接受恒定电位VImin-ΔVmax,其栅极接受时钟信号CLK。
在开关S1、S2变为接通状态期间,时钟信号CLK在规定时间内脉冲地变为H电平。从而,N型晶体管204导通,节点N30的电位V30变为恒定电位VImin-ΔVmax,晶体管31、32导通,发生偏移电压VOF。另外,N型晶体管201导通,节点N22的电位V22变为向恒定电位VImin-ΔVmax加上P型晶体管203的阈值电压绝对值|VTP|和N型晶体管201的阈值电压VTN后的电位VImin-ΔVmax+|VTP|+VTN。此时,节点N22与N30的电位差变为|VTP|+VTN,所以晶体管31、32中仅流过微小电流。其它结构和动作与图72的驱动电路190相同,所以不重复说明。
在实施例21中,可得到输出电位VO与输入电位VI正确一致且低消耗功率的驱动电路200。
另外,也可由其它信号来控制N型晶体管201和204。另外,也可由P型晶体管来置换各N型晶体管201、204。但是,必需向P型晶体管的栅极施加信号CLK的互补信号/CLK。另外,若节点N22上呈现规定电位,则P型晶体管203的漏极也可连接在地电位GND以外的电位的节点上。另外,若流过规定电流,则恒定电流源161的低电位侧端子也可连接在地电位GND以外的电位节点上。
实施例22在图73的带偏移补偿功能的拉动型驱动电路191中,为了在开关S1、S2变为接通状态时发生偏移电压VOF,必需使晶体管34、35导通。因为在开关S1、S2变为接通状态时必需导通晶体管34、35,所以在开关S1、S2变为接通状态之前,必需将节点N30的电位V30复位到向输入电位VI的最高值VImax中加上偏移电压VOF的最大值ΔVmax后的恒定电位VImax+ΔVmax。另外,必需防止在向节点N30施加恒定电位VImax+ΔVmax时晶体管34、35中流过大电流。在实施例22中,解决该问题。
图79是表示本发明实施例22的带偏移补偿功能的拉动型驱动电路210的结构电路框图。图79中,带偏移补偿功能的拉动型驱动电路210向图73的驱动电路191中附加N型晶体管211和P型晶体管212-214。晶体管211-214构成初始化节点N30的电位V30的复位电路。
即,晶体管211-213串联连接在第4电源电位V4的栅极与节点N27之间。P型晶体管211的栅极接受向输入电位VI的最高值VImax中加上偏移电压VOF的最大值ΔVmax后的恒定电位VImax+ΔVmax。P型晶体管212的栅极连接在其漏极上。P型晶体管212构成二极管元件。P型晶体管213的栅极接受互补时钟信号/CLK。P型晶体管214的漏极连接在节点N30上,其源极接受恒定电位VImax+ΔVmax,其栅极接受互补时钟信号/CLK。
在开关S1、S2变为接通状态期间,互补时钟信号/CLK在规定时间内脉冲地变为L电平。从而,P型晶体管214导通,节点N30的电位V30变为恒定电位VImax+ΔVmax,晶体管34、35导通,发生偏移电压VOF。另外,P型晶体管213导通,节点N27的电位V27变为从恒定电位VImax+ΔVmax中减去N型晶体管211的阈值电压VTN和P型晶体管212的阈值电压绝对值|VTP|后的电位VImax+ΔVmax-VTN-|VTP|。此时,节点N30与N27的电位差变为VTN+|VTP|,所以晶体管34、35中仅流过微小电流。其它结构和动作与图73的驱动电路191相同,所以不重复说明。
在实施例22中,可得到输出电位VO与输入电位VI正确一致且低消耗功率的驱动电路210。
另外,也可由其它信号来控制P型晶体管213和214。另外,也可由N型晶体管来置换各N型晶体管213、214。但是,必需向N型晶体管的栅极施加信号/CLK的互补信号CLK。另外,若节点N27上呈现规定电位,则N型晶体管211的漏极也可连接在第4电源电位V4以外的电位的节点上。另外,若流过规定电流,则恒定电流源165的高电位侧端子也可连接在第4电源电位V4以外的电位节点上。并且,若并联连接图78的驱动电路200和图79的驱动电路210,则可得到良好的带偏移补偿功能的推拉型驱动电路。
在上述实施例1-22中,场效应晶体管可以是MOS晶体管,也可以是薄膜晶体管(TFT)。薄膜晶体管可以由多晶硅薄膜、非晶硅薄膜等半导体薄膜形成,也可以形成于树脂衬底、玻璃衬底等绝缘衬底上。
权利要求
1.一种驱动电路,向输出节点输出对应于输入电位的电位,其中,具备第1电平移位电路,输出使上述输入电位在某电位方向仅电平移位预定的第1电压的电位;和第2电平移位电路,将使上述第1电平移位电路的输出电位在与上述某电位方向相反的电位方向仅电平移动预定的第2电压的电位输出到上述输出节点。
2.根据权利要求1所述的驱动电路,其中上述第1电平移位电路包括第1电流限制元件,其一侧电极接受第1电源电位;和第1导电形式的第1晶体管,其第1电极连接在上述第1电流限制元件的另一侧电极上,其第2电极接受第2电源电位,其输入电极接受上述输入电位,上述第2电平移位电路包括第2导电形式的第2晶体管,其第1电极接受第3电源电位,其第2电极连接于上述输出节点,其输入电极连接于上述第1电流限制元件的另一侧电极上。
3.根据权利要求2所述的驱动电路,其中上述第1电平移位电路还包括第2导电形式的第3晶体管,其第1电极和输入电极连接于上述第1电流限制元件的另一侧电极上,其第2电极连接在上述第1晶体管的第1电极上,上述第2电平移位电路还包括第1导电形式的第4晶体管,其第1电极连接在上述第2晶体管的第2电极上,其第2电极和输入电极连接在上述输出节点上。
4.根据权利要求3所述的驱动电路,其中上述第2电平移位电路还包括连接在上述输出节点与第4电源电位的线之间的第2电流限制元件。
5.根据权利要求4所述的驱动电路,其中上述第1和第3电源电位是相同电位,上述第2和第4电源电位是相同电位。
6.根据权利要求4所述的驱动电路,其中上述第1和第2电流限制元件分别是第1和第2电阻元件。
7.根据权利要求4所述的驱动电路,其中上述第1电流限制元件是其输入电极接受第1恒定电压的第1导电形式的第5晶体管,上述第2电流限制元件是其输入电极接受第2恒定电压的第2导电形式的第6晶体管。
8.根据权利要求7所述的驱动电路,其中还具备发生上述第1和第2恒定电压的恒定电压发生电路。
9.根据权利要求1所述的驱动电路,其中还具备第1脉冲发生电路,对应于上述输入电位在上述某电位方向上变化,使上述第1和第2电位移位电路间的第1节点的电位沿上述某电位方向脉冲变化。
10.根据权利要求9所述的驱动电路,其中上述第1脉冲发生电路包括第1开关元件,其一侧电极接受第5电源电位,其另一侧电极连接在上述第1节点上,对应于上述输入电位沿上述某电位方向变化,进行脉冲导通。
11.根据权利要求10所述的驱动电路,其中上述第1脉冲发生电路还包括电流遮断电路,防止上述第1开关元件导通时在上述第1节点与上述第2电源电位的节点之间流过电流。
12.根据权利要求1所述的驱动电路,其中还具备消除上述驱动电路的偏移电压的偏移补偿电路,上述第2电平移位电路的输出电位取代上述输出节点而输出到第2节点,上述偏移补偿电路包括第2电容;第1切换电路,向上述第2电容的一侧电极施加上述输入电位,同时,将上述第2电容的另一侧电极连接到上述第2节点上;第2切换电路,向上述第2电容的另一侧电极施加上述输出电位,同时,取代上述输入电位,将上述第2电容的一侧电极的电位施加到上述第1电平移位电路;和第3切换电路,将上述第2节点的电位施加到上述输出节点。
13.根据权利要求12所述的驱动电路,其中上述偏移补偿电路还包括第2脉冲发生电路,在由上述第1切换电路向上述第2电容的一侧电极施加上述输入电位的同时,将上述第2电容的另一侧电极连接到上述第2节点上的期间中,使上述第2节点的电位向与上述某电位方向相反的电位方向脉冲变化。
14.根据权利要求13所述的驱动电路,其中上述第2脉冲发生电路包括第2开关元件,其一侧电极连接在上述第2节点上,其另一侧电极接受第6电源电位,在规定的定时脉冲导通。
15.根据权利要求14所述的驱动电路,其中上述第2脉冲发生电路还包括电流限制电路,在上述第2开关元件导通时,限制上述第2电平移位电路的输出电流。
全文摘要
驱动电路(20)具备第1电平移位电路(21),输出比输入电位(VI)高规定电压(|VTP|+VTN)的电位(V22);工作电路(30),向输出节点(N30)输出比第1电平移位电路(21)的输出电位(V22)低规定电压(|VTP|+VTN)的电位(VI);第2电平移位电路(25),输出比输入电位(VI)低规定电压(|VTP|+VTN)的电位(V27);非工作电路(33),向输出节点(N30)输出比第2电平移位电路(25)的输出电位(V27)高规定电压(|VTP|+VTN)的电位(VI);和电容(29),连接在第1和第2电平移位电路(21、25)的输出节点(N22、N27)之间。因此,直通电流小。
文档编号H03K19/0185GK1440120SQ0310603
公开日2003年9月3日 申请日期2003年2月20日 优先权日2002年2月20日
发明者飞田洋一 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1