半导体电路的制作方法

文档序号:7507354阅读:132来源:国知局
专利名称:半导体电路的制作方法
技术领域
本发明涉及半导体电路,特别涉及具有滤波功能的半导体电路。
背景技术
以往存在具备噪声滤波功能和信号延时功能的半导体电路。现有技术的半导体电路,由串联的多个反相电路和在规定的反相电路间的连接点和接地之间所连接的电容器构成。
但是,时间常数是通过调整电容器和位于该电容器的前级的反相电路确定的。
在上述现有技术的半导体电路中,时间常数被确定为在规定的反相电路间的连接点上,信号的上升沿的倾斜度和下降沿的倾斜度不同。比如,将时间常数确定为上升沿倾斜度平缓、下降沿急剧。
于是,利用该信号的上升沿倾斜度和下降沿倾斜度的差别及后级的反相器的阈值,可以获得滤波器的效果。
另外,作为先行技术也有在专利文献1(日本专利特开平7-95022号公报)的发明,但该发明并非以获得滤波器效果为目的。就是说,对于输入信号,在多个微小宽度的噪声脉冲连续叠加时,针对该噪声脉冲进行可靠滤波是困难的。

发明内容
在上述现有技术的半导体电路中,对于在本来是“H”的信号的期间中所叠加的“L”电平的噪声或在本来是“L”的信号的期间中所叠加的“H”电平的噪声中的任何一个噪声,都不能获得滤波器效果。
于是,本发明的目的在于提供一种针对本来是“H”的信号的期间中叠加的“L”电平的噪声或在本来是“L”的信号的期间中叠加的“H”电平的噪声中的任何一个噪声,都能有效地获得滤波器效果的半导体电路。
为达到上述目的,本发明的第一方案中所述的半导体电路的构成包括第一积分电路的第一延时电路;包含第二积分电路的第二延时电路;将输入信号的正相及反相的信号分别输入到上述第一及第二延时电路的一个及另一个的电路单元;以及在第一及第二输入端子上分别接受从上述第一延时电路发出的输出信号及从上述第二延时电路发出的输出信号的触发器。
因为本发明的第一方案中所述的半导体电路的构成包括第一积分电路的第一延时电路;包含第二积分电路的第二延时电路;将输入信号的正相及反相的信号分别输入到上述第一及第二延时电路的一个及另一个的电路单元;以及在第一及第二输入端子上分别接受从上述第一延时电路发出的输出信号及从上述第二延时电路发出的输出信号的触发器,所以可以对一个延时电路输入正相的信号,而对另一个延时电路输入反相的信号。因此,可以通过在该一个延时电路中预先设定的滤波时间判断在一个延时电路中,在输入信号上升时(或在下降时),其后的后续信号是否是噪声。并且,可以通过在另一个延时电路中预先设定的滤波时间判断在该另一个延时电路中,在输入信号下降时(或在上升时),其后的后续信号是否是噪声。其后,由触发器将两延时电路输出的信号合成为一个作为输出信号输出。所以,就可以对在本来是“H”的信号的期间中叠加的“L”电平的噪声或在本来是“L”的信号的期间中叠加的“H”电平的噪声中的任何一个噪声,都能有效地获得滤波器效果。此外,在第一方案的半导体电路中,使用积分电路,可以在滤波时间中间连续地观察输入信号。由此,即使是多个微小的噪声脉冲连续地与输入信号叠加,也可以有效地对该多个噪声脉冲进行滤波。


图1为实施方式1的半导体电路的电路图。
图2为用来说明实施方式1的半导体电路的动作的时序图。
图3为示出实施方式1的半导体电路包含的触发器的动作逻辑的示图。
图4为实施方式2的半导体电路的电路图。
图5为用来说明实施方式2的半导体电路的动作的时序图。
图6为实施方式3的半导体电路的电路图。
图7为示出实施方式3的半导体电路包含的触发器的动作逻辑的示图。
图8为用来说明实施方式3的半导体电路的动作的时序图。
图9为实施方式4的半导体电路的电路图。
图10为用来说明实施方式4的半导体电路的动作的时序图。
图11为示出恒流电路的具体构成的电路图。
图12为示出恒流电路的具体构成的电路图。
图13为示出实施方式4的半导体电路的其它实施例的具体电路构成的电路图。
图14为示出实施方式4的半导体电路的其它实施例的另一具体电路构成的电路图。
图15为实施方式5的半导体电路的电路图。
图16为用来说明利用实施方式5的半导体电路所解决的问题的电路图。
图17为用来说明利用实施方式5的半导体电路所解决的问题的时序图。
图18为示出实施方式5的半导体电路的其它串联关系的电路图。
图19为在阈值电位附近噪声叠加的模拟信号,基于该阈值电位变换为数字信号的情况的说明图。
图20为示出在半导体电路的前级另外配置施密特电路的构成的示图。
图21为示出现有的施密特电路的具体构成的电路图。
图22为示出现有的施密特电路的具体构成的电路图。
图23为示出现有的施密特电路的具体构成的电路图。
图24为示出可设定一个阈值电位的反相电路的具体构成的电路图。
图25为示出可设定一个阈值电位的反相电路的具体构成的电路图。
图26为示出实施方式6的半导体电路的输入输出信号的关系的示图。
图27为示出实施方式6的半导体电路的另一方式的电路图。
图28为示出实施方式6的半导体电路的另一方式的电路图。
图29为示出实施方式6的半导体电路的另一方式的电路图。
具体实施例方式
下面基于附图对本发明的实施方式的半导体电路的电路图具体地进行说明。
<实施方式1>
图1示出本实施方式的半导体电路的电路图。
图1所示的半导体电路,由两个延时电路1、2;一个触发器电路3和一个信号反相单元4构成。另外,各延时电路1、2分别具有积分电路。
第一延时电路1由多个(在本实施方式中为三个)第一反相电路10~12和构成积分电路的第一电容器14构成。此处,在第一延时电路1的前级配置信号反相单元4。
具体地说,在对输入信号进行输入的输入端子5和触发器3的S输入端子之间,信号反相单元4及三个第一反相电路10~12,以该顺序串联。另外,存在于规定的第一反相电路的后级(在图1中存在于反相电路10和反相电路11之间)的连接点N1和接地之间连接有第一电容器14。
第二延时电路2,从输入端子5和信号反相单元4之间存在的连接点N2分支连接。
第二延时电路2,由与第一反相电路10~12的数目相同数目的第二反相电路15~17(在本实施方式中第二反相电路15~17为三个)和构成积分电路的第二电容器18构成。
具体地说,在连接点N2和触发器3的R输入端子之间串联三个第二反相电路15~17。另外,存在于规定的反相电路的后级(在图1中存在于反相电路15和反相电路16之间)的连接点N3和接地之间连接有第二电容器18。
如图1所示,因为在连接点N2和第一延时电路1之间配置有信号反相单元4,输入到第一延时电路1的输入信号和输入到第二延时电路2的输入信号是反相关系。
另外,触发器3的Q输出端子与输出端子6相连接。
下面,基于图2所示的时序图对图1所示的半导体电路的动作予以说明。在从输入端子5输入的输入信号IN中,如图2所示,在“H”电平的信号脉冲INh上叠加有“L”电平的噪声INn1。另外,在输入信号IN中,在“L”电平的信号脉冲INl上叠加有“H”电平的噪声INn2。
另外,输入信号IN,通过经由各反相电路产生若干延时,在图2所示的时序图中省略了该延时。另外,在本实施方式中,第一及第二电容器14、18的充电速度和放电速度不同,设定半导体电路,即位于第一及第二电容器14、18的前级的第一反相电路10、15以使充电速度缓慢,而放电速度急剧。
另外,因为第一及第二电容器14、18的放电速度急剧,由于该放电引起的延时,在图2的时序图中是不会产生的。
首先,对第一延时电路1的信号变化予以说明。
从输入端子输入的输入信号IN,通过经由信号反相单元4及第一反相电路10,其每次信号的相位都反转。所以,输入到输入端子5的输入信号IN的相位和从第一反相电路10输出的信号的相位为相同相位。
就是说,在输入信号IN上升时,与该上升相对应,从第一反相电路10输出的信号上升。另外,在输入信号IN下降时,与该信号相对应,从第一反相电路10输出的信号下降。
但是,在从第一反相电路10输出的信号上升时,由于第一电容器14的作用,开始缓慢充电。另外,在从第一反相电路10输出的信号下降时,由于第一电容器14的作用,开始急剧放电。
所以,在从第一反相电路10输出的信号上升时,输入到第一反相电路11的信号A开始以缓慢的梯度呈曲线状上升。另外,在从第一反相电路10输出的信号下降时,输入到第一反相电路11的信号A急剧下降。
如上所述,在输入图2所示的输入信号IN时,输入到第一反相电路11的信号A成为图2所示的波形。
就是说,作为输入信号IN,如果“H”电平的信号脉冲INh输入到输入端子5时,与该信号脉冲INh的上升相对应,信号A的电位开始以曲线形式缓慢上升。于是,在信号脉冲INh为“H”电平期间,信号A的电位继续缓慢上升,超过在第一反相电路11中预先设定的阈值电位a,并在到达到“H”电平时,保持该“H”电平。
此处,将从信号A的电位开始缓慢上升时的点开始直到信号A的电位到达阈值电位a为止的时间称为滤波时间。该滤波时间,是判定输入信号IN是否是本来的脉冲信号的时间。就是说,将比滤波时间短的输入信号IN的脉冲信号判断为噪声。与此相对,将比滤波时间长的输入信号IN的脉冲信号判断为本来的信号脉冲。
其次,在信号脉冲INh上叠加的“L”电平的噪声INn1,从输入端子5输入。于是,如图2所示,与噪声INn1的下降相对应,信号A的波形急剧下降。于是,在噪声INn1为“L”电平期间,信号A也保持“L”电平。
在第一个噪声信号INn1经过之后,一直到第二个噪声信号INn1输入为止的期间,输入信号IN返回到本来的信号脉冲INh。所以,与该本来的信号脉冲INh的时点相对应,信号A的波形开始以曲线方式缓慢上升。
可是,因为在第一个噪声信号INn1经过之后一直到第二个噪声信号INn1输入为止的期间比滤波时间短,信号A的波形,未达到阈值电位a就急剧下降。
其后,在第二个噪声信号INn1输入期间,信号A也保持“L”电平。于是,因为其后输入信号IN返回到本来的信号脉冲INh,与此相对应,信号A的波形也开始以曲线形式缓慢上升。
其后,因为信号脉冲INh在暂时维持“H”电平之后下降,接着“L”电平的信号脉冲IN1作为输入信号IN输入,信号A的波形在缓慢继续上升之后,急剧下降。
其后,信号脉冲IN1在“L”电平期间,信号A的波形也维持“L”电平。在信号脉冲IN1上中间叠加比滤波时间短的噪声INn2。因此,信号A的波形,与该噪声INn2相对应,成锯齿状变化。另外,因为噪声INn2比滤波时间短,该锯齿状的信号A的电位,不会达到阈值电位a。
此外,第一反相电路11以阈值电位a为基准进行动作。就是说,在信号A的电位超过阈值电位a时,第一反相电路11输出反转的“L”电平的信号。并且,在信号A的电位低于阈值电位a时,第一反相电路11输出反转的“H”电平的信号。
这样一来,在对第一反相电路11输入如图2所示的信号A时,该信号A通过经由第一反相电路11、12,信号A变化为如图2所示的信号S,该信号S输入到触发器3的S输入端子。
信号S,与信号A的电位超过阈值电位a的时点相对应地上升,而与信号A的电位低于阈值电位a时相对应地下降。
下面对第二延时电路2的信号变化予以说明。
输入信号IN,在第二反相电路15中,其相位反转。因此,输入到输入端子5的输入信号IN的相位与从第二反相电路15输出的信号的相位为相反相位。
就是说,在输入信号IN上升时,与该上升相对应,从第二反相电路15输出的信号下降,在输入信号IN下降升时,与该下降相对应,从第二反相电路15输出的信号上升。
但是,在从第二反相电路15输出的信号上升时,由于第二电容器18的作用,开始缓慢的充电。并且,在从第二反相电路15输出的信号下降时,由于第二电容器18的作用,开始急剧放电。
因此,在从第二反相电路15输出的信号上升时,输入到第二反相电路16的信号B以缓慢的梯度以曲线方式开始上升。并且,在从第二反相电路15输出的信号下降时,输入到第二反相电路16的信号B急剧下降。
如上所述,在输入图2所示的输入信号IN时,输入到第二反相电路16的信号B,成为如图2所示的波形。
就是说,在“H”电平的信号脉冲INh作为输入信号IN输入到输入端子5时,与该信号脉冲INh的上升相对应,信号B急剧下降。于是,在信号脉冲INh为“H”电平期间,信号B保持“L”电平。
之后,叠加到信号脉冲INh上的“L”电平的噪声INn1,从输入端子5输入。于是,如图2所示,与噪声INn1的下降相对应,信号B的波形开始以曲线方式缓慢上升。因为噪声INn1期间比滤波时间短,信号B在第二反相电路16中到达预先设定的阈值电位b之前急剧下降。
此处,将从信号B的电位开始缓慢上升时的点开始直到信号B的电位到达阈值电位b为止的时间称为滤波时间。该滤波时间,是判定输入信号IN是否是本来的脉冲信号的时间。就是说,将比滤波时间短的输入信号IN的脉冲信号判断为噪声。与此相对,将比滤波时间长的输入信号IN的脉冲信号判断为本来的信号脉冲。
一直到第二个噪声信号INn1输入为止的期间,信号B保持“L”电平。其后,在第二个噪声信号INn1输入时,与此相对应信号B开始以曲线形式缓慢上升。可是,因为噪声INn1期间比滤波时间短,信号B在达到阈值电位b之前就急剧下降。
于是,因为其后输入信号IN返回到本来的信号脉冲INh,信号B的波形也保持“L”电平。
其后,信号脉冲INh在暂时维持“H”电平之后下降。然后,因为“L”电平的信号脉冲IN1作为输入信号IN输入,所以信号B的波形,与信号脉冲INh的下降相对应,以曲线形式开始缓慢上升。
其后,信号脉冲IN1在“L”电平期间,信号B的波形缓慢继续上升,超过阈值电位b,到达“H”电平时,信号B保持“H”电平。
在信号脉冲IN1上中间叠加比滤波时间短的二个的噪声INn2。因此,信号B的波形,与第一个噪声INn2的上升相对应,在下降后呈锯齿状变化。另外,该锯齿状的信号B的电位,不会达到阈值电位b。其后,在输入信号IN返回到本来的信号脉冲IN1时,与此相对应,信号B也开始以曲线形式缓慢上升,超过阈值电位b,到达“H”电平时,信号B保持“H”电平。
还有,第二反相电路16,以阈值电位b为基准进行动作。就是说,在信号B的电位超过阈值电位b的时点,第二反相电路16输出反转的“L”电平的信号。并且,在信号B的电位低于阈值电位b时,第二反相电路16输出反转的“H”电平的信号。
这样一来,在对第二反相电路16输入如图2所示的信号B时,该信号B通过经由第二反相电路16、17,变化为如图2所示的信号R。然后,该信号R输入到触发器3的R输入端子。
信号R与信号B的电位超过阈值电位b时相对应地上升,而与信号B的电位低于阈值电位b时相对应地下降。
此外,触发器3,按照图3所示的逻辑表动作。
就是说,触发器3,在S输入端子上输入“H”电平的信号S,而在R输入端子上输入“L”电平的信号R时,在该输入期间,从Q输出端子输出“H”电平的信号OUT。另外,如果在S输入端子上输入“L”电平的信号S,在R输入端子上输入“H”电平的信号R时,在该输入期间,从Q输出端子输出“L”电平的信号OUT。
另外,在S输入端子及R输入端子上一起输入“L”电平的信号S、R时,从Q输出端子继续输出以前的输出电平的输出信号OUT。
如上所述,在图2所示的信号S、R从触发器3的各输入端子输入时,从该触发器3的Q输出端子输出如图2所示的输出信号OUT。
从图2可知,通过采用本实施方式的半导体电路(图1),叠加于输入信号IN上的噪声INn1、INn2可在输出信号OUT中除去。
这样,从输入端子5输入的输入信号IN,对一个延时电路1是利用信号反相单元4使其相位反转之后输入,而对另一延时电路2则是将该输入信号IN原封不动地输入。
因此,可以通过在该一个延时电路1中预先设定的滤波时间判断在一个延时电路中,在输入信号IN上升时,其后的后续信号是否是噪声(即通过在滤波时间期间连续观察输入信号判断上升后的脉冲信号是否是噪声)。
并且,可以通过在另一个延时电路2中预先设定的滤波时间判断在该另一个延时电路2中,在输入信号IN下降时,其后的后续信号是否是噪声(即通过在滤波时间期间连续观察输入信号判断下降后的脉冲信号是否是噪声)。
其后,由触发器3将两延时电路1、2输出的信号S、R合成为一个作为输出信号OUT输出。
所以,通过使用本实施方式的半导体电路,就可以对在本来是“H”的信号的期间中叠加的“L”电平的噪声或在本来是“L”的信号的期间中叠加的“H”电平的噪声中的任何一个噪声,都能有效地获得滤波器效果。
此外,在本实施方式的半导体电路中,通过使用积分电路(电容器14、18),在滤波时间中间连续地观察输入信号,可以判断脉冲信号是否是噪声。此外,对于积分电路(电容器14、18)的电位变动速度,通过使下降时比上升时急剧,即使是多个微小的噪声脉冲连续地与输入信号叠加,也可以有效地对该多个噪声脉冲进行滤波。
<实施方式2>
图4示出本实施方式的半导体电路的电路图。
从图4可知,本实施方式的半导体电路是将位于图1所示的电容器14、18的前级的反相电路10、15以NMOS10a、15a和恒流电路10b、15b构成的电路。
就是说,第一反相电路10的构成如下。信号反相单元4的输出部与NMOS10a的栅电极相连接。NMOS10a的漏极与恒流电路10b相连接。NMOS10a的源极接地。另外,在NMOS10a的漏极与恒流电路10b之间,存在连接点N10,该连接点N10与连接点N1相连接。
此处,恒流电路10b的作用是使恒流流向NMOS10a。
另一方面,第二反相电路15的构成如下。连接点N2与NMOS15a的栅电极相连接。NMOS15a的漏与恒流电路15b相连接。NMOS15a的源接地。另外,在NMOS15a的漏与恒流电路15b之间,存在连接点N15,该连接点N15与连接点N3相连接。
此处,恒流电路15b的作用是使恒流流向NMOS15a。
因为其他构成与图1相同,此处的说明省略。
下面,根据图5所示的时序图对图4所示的半导体电路的动作予以说明。首先,对第一延时电路1一侧的动作予以说明。
在输入端子5上,“H”电平的信号上升,接着输入“H”电平的输入信号IN时,利用信号反相单元4使该信号反转。因此,在NMOS10a的栅电极上输入“L”电平的信号。这样一来,NMOS10a成为关断状态,从恒流电路10b输出的恒流经连接点N10、N1流入到第一电容器14。就是说,与“H”电平的输入信号IN的上升相对应,在第一电容器14上开始缓慢的线性充电,在经过规定的时间后,充电结束。
因此,在如图5所示的“H”电平的输入信号IN输入到输入端子5时,输入到第一反相电路11的信号A如图5所示。就是说,与输入信号IN的上升相对应,信号A的波形开始缓慢地以线性方式上升。于是,在超过在第一反相电路11中预先设定的阈值电位a达到“H”电平时,信号A保持该“H”电平。
之后,“H”电平的输入信号IN下降,接着“L”电平的输入信号IN输入到输入端子5时,该“L”电平的输入信号IN由信号反相单元4反转为“H”电平。
在该反转的“H”电平的信号输入到NMOS10a的栅电极时,NMOS10a成为导通状态。所以,从恒流电路10b输出的恒流,经NMOS10a入地的同时,在存储于第一电容器14中的电荷经NMOS10a接地时急剧放电。
因此,在如图5所示的“L”电平的输入信号IN输入到输入端子5时,输入到第一反相电路11的信号A如图5所示。就是说,与输入信号IN的下降相对应,信号A的波形急剧下降。于是,在降低到阈值电位a以下到达“L”电平时,信号A保持该“L”电平。
下面,对第二延时电路2一侧的动作予以说明。
在输入端子5上,“H”电平的信号上升,接着输入“H”电平的输入信号IN时,NMOS15a成为导通状态。所以,从恒流电路15b输出的恒流经NMOS15a接地的同时,在存储于第二电容器18中的电荷经NMOS15a接地时急剧放电。
因此,在如图5所示的“H”电平的输入信号IN输入到输入端子5时,输入到第二反相电路16的信号B如图5所示。就是说,与输入信号IN的上升相对应,信号B的波形急剧下降。于是,在降低到在第二反相电路16中预先设定的阈值电位b以下到达“L”电平时,信号B保持该“L”电平。
之后,“H”电平的输入信号IN下降,接着“L”电平的输入信号IN输入到输入端子5时,NMOS15a成为关断状态。所以,从恒流电路15b输出的恒流经连接点N15、N3,流入到第二电容器18。就是说,与“H”电平的输入信号IN的下降相对应,在第二电容器18上缓慢地以线性方式开始充电,在经过规定的时间后,充电结束。
因此,在如图5所示的“L”电平的输入信号IN输入到输入端子5时,输入到第二反相电路16的信号B如图5所示。就是说,与输入信号IN的下降相对应,信号B的波形开始缓慢地以线性方式上升。然后,在超过阈值电位b达到“H”电平的时点,信号B保持该“H”电平。
参照图2、5可知,在使用实施方式1的半导体电路时,从信号A、B的“L”电平上升到“H”电平是曲线方式,在使用本实施方式的半导体电路时,从信号A、B的“L”电平上升到“H”电平是线性方式。
因此,因为通过使用本实施方式的半导体电路,信号A、B的上升是线性方式,所以可以很容易设定从信号A、B的电位以线性方式上升开始的时点起到信号A、B的电位到达阈值电位a、b为止的滤波时间。因此,噪声的判定处理也可以提高。
进而,在本实施方式的半导体电路中,恒流电路10b、15b以下的电路(符号11、16、3等)的电位设定,通过使其成为与NMOS10a、15a的前级的电源不同的值,在获得噪声的滤波效果的同时,也可以进行电平移动。
另外,本实施方式的半导体电路,可以获得与实施方式1的半导体电路的效果同样的效果是自不待言的。
<实施方式3>
图6示出本实施方式的半导体电路的电路图。
从图6可知,本实施方式的半导体电路是将位于图1所示的电容器14、18的前级的反相电路10、15以PMOS10p、15p、恒流电路10q、15q和固定电源10r、15r构成的电路。
就是说,第一反相电路10的构成如下。信号反相单元4的输出部与PMOS10p的栅电极相连接。PMOS10p的漏极与恒流电路10q相连接。pMOS10p的源极与固定电源10r相连接。另外,在PMOS10p的漏极与恒流电路10q之间,存在连接点N10,该连接点N10与连接点N1相连接。
另一方面,第二反相电路15的构成如下。连接点N2与PMOS15p的栅电极相连接。PMOS15p的漏极与恒流电路15q相连接。PMOS15p的源极与固定电源15r相连接。另外,在PMOS15p的漏极与恒流电路15q之间,存在连接点N15,该连接点N15与连接点N3相连接。
此处,恒流电路10q、15q的作用是使将恒流吸向与PMOS10p、15p相连接的方向相反的方向。
此外,在本实施方式的半导体电路中,触发器3,采用按照图7所示的逻辑表动作。另外,第一延时电路1的输出部,与触发器3的S′输入端子相连接,第二延时电路2的输出部,与触发器3的R′输入端子相连接。
这样,将实施方式1的半导体电路的触发器3置换为按照图7的逻辑表的触发器3是为了在输入到S′输入端子及R′输入端子的信号一起处于“H”电平的状态时,利用保持输入到S′输入端子及R′输入端子的信号一起成为“H”电平的状态之前的触发器3的输出逻辑状态的动作。
就是说,通过采用本实施方式的半导体电路,电容器14、18的时间常数改变。就是说,对电容器14、18的充电是急剧地进行,而放电是以线性方式缓慢地进行。与此同时,在输入到触发器3的一个输入端子的信号是“H”电平期间与输入到另一个输入端子的信号是“H”电平的期间产生重复的部分。
比如,在图2所示的时序图中,在输入信号IN从“L”电平变化到“H”电平之后,或从“H”电平变化到“L”电平之后,触发器3的S输入端子、R输入端子一起成为“L”电平,按照图3所示的逻辑表触发器3的输出信号OUT保持输入信号IN变化前的状态。
与此相同,在本实施方式的半导体电路中,通过采用按照图7的逻辑表的触发器3,如上所述,在触发器3的两个输入在“H”电平重复的场合,可使触发器3的输出状态保持该重复之前的状态。
另外,在本实施方式的半导体电路中,在第一延时电路1中,在输入信号IN下降时,可根据预先在该第一延时电路1中设定的滤波时间判断其后的后续信号是否是噪声(即通过在滤波时间期间连续观察输入信号判断下降后的脉冲信号是否是噪声)。
并且,可以通过在第二延时电路2中预先设定的滤波时间判断在该另一个延时电路2中,在输入信号IN下降时,其后的后续信号是否是噪声(即通过在滤波时间期间连续观察输入信号判断上升后的脉冲信号是否是噪声)。
因为其他构成与图1相同,此处的说明省略。另外,设在输入信号IN和从触发器3输出的信号同相时,输入端子的连接关系也可以相反,另外,也可以在触发器3的后级设置信号反相单元。
下面,根据图8所示的时序图对图6所示的半导体电路的动作予以说明。首先,对第一延时电路1一侧的动作予以说明。
在输入端子5上,“H”电平的信号上升,接着输入“H”电平的输入信号IN时,利用信号反相单元4使该信号反转。因此,在PMOS10p的栅电极上输入“L”电平的信号。这样一来,PMOS10p成为关断状态,连接点N1的电位急剧地变为固定电源10r的电位,第一电容器14的充电也急剧地进行。
因此,在如图8所示的“H”电平的输入信号IN输入到输入端子5时,输入到第一反相电路11的信号A如图8所示。就是说,与输入信号IN的上升相对应,信号A的波形急剧上升,信号A的电位超过在第一反相电路11中预先设定的阈值电位a达到“H”电平,并保持该“H”电平。
之后,“H”电平的输入信号IN下降,接着“L”电平的输入信号IN输入到输入端子5时,该“L”电平的输入信号IN由信号反相单元4反转为“H”电平。
在该反转的“H”电平的信号输入到PMOS10p的栅电极时,PMOS10p成为关断状态。所以,通过由恒流电路10q吸出电流,存储于第一电容器14中的电荷开始以线性方式缓慢地放电。
因此,在如图8所示的“L”电平的输入信号IN输入到输入端子5时,输入到第一反相电路11的信号A如图8所示。就是说,与输入信号IN的下降相对应,信号A的波形开始缓慢地以线性方式下降。于是,在降低到阈值电位a以下到达“L”电平时,信号A保持该“L”电平。
下面,对第二延时电路2一侧的动作予以说明。
在输入端子5上,在输入“H”电平的输入信号IN时,PMOS15p成为关断状态。所以,通过由恒流电路15b吸出电流,存储于第二电容器18中的电荷开始线性放电。
因此,在如图8所示的“H”电平的输入信号IN输入到输入端子5时,输入到第二反相电路16的信号B如图8所示。就是说,与输入信号IN的上升相对应,信号B的波形以线性方式下降。于是,在降低到在第二反相电路16中预先设定的阈值电位b以下到达“L”电平时,信号B保持该“L”电平。
之后,“H”电平的输入信号IN下降,接着“L”电平的输入信号IN输入到输入端子5时,PMOS15p成为导通状态。所以,连接点N3的电位急剧地变成固定电源15r的电位,第二电容器18也进行充电。
因此,在如图8所示的“H”电平的输入信号IN输入到输入端子5时,输入到第二反相电路16的信号B如图8所示。就是说,与输入信号IN的下降相对应,信号B的波形急剧上升,信号B的电位超过阈值电位b到达“H”电平,并保持该“H”电平。
因此,在如图8所示的“L”电平的输入信号IN输入到输入端子5时,输入到第二反相电路16的信号B如图8所示。就是说,与输入信号IN的下降相对应,信号B的波形开始急剧地上升。于是,超过阈值电位b达到“H”电平,信号B保持该“H”电平。
参照图2、8可知,在使用实施方式1的半导体电路时,从信号A、B的“L”电平上升到“H”电平是曲线方式,在使用本实施方式的半导体电路时,从信号A、B的“H”电平下降到“H”电平是线性方式。
因此,因为通过使用本实施方式的半导体电路,信号A、B的下降是线性方式,所以可以很容易设定从信号A、B的电位以线性方式下降开始的时点起到信号A、B的电位到达阈值电位a、b为止的滤波时间。因此,噪声的判定处理也可以提高。
还有,在本实施方式的半导体电路中,与实施方式2的半导体电路一样,通过使恒流电路10q、15q以后的电路(符号11、16、3等)的负电极侧的电位设定为与到PMOS10p、15p的前级为止的电路的负电极侧的电位不同的值,在获得噪声的滤波效果的同时,也可以进行负电极侧的电平移动。
另外,本实施方式的半导体电路,可以获得与实施方式1的半导体电路的效果同样的效果是自不待言的。
<实施方式4>
图9示出本实施方式的半导体电路的电路图。
从图9可知,本实施方式的半导体电路是将位于图1所示的电容器14、18的前级的反相电路10、15利用包含两个恒流电路10s、10t、15s、15t的电路构成的电路。
就是说,第一反相电路10的构成如下。信号反相单元4的输出部与连接点20的各分支恒流电路10s、10t相连接。此外,两恒流电路10s、10t的输出共同连接到连接点21。另外,连接点N21与连接点N1相连接。
另一方面,第二反相电路15的构成如下。连接点N2与连接点30的各分支恒流电路15s、15t相连接。此外,两恒流电路15s、15t的输出共同连接到连接点31。另外,连接点N31与连接点N3相连接。
在此,恒流电路10s(或15s)与恒流电路10t(或15t)基于连接点N20(或N30)的电位,二者择一地动作。
即,恒流电路10s(或15s),在连接点N20(N30)的电位为“L”电平时动作,在这种情况下,恒流电路10t(15t)不动作。与此相对,恒流电路10t(15t),在连接点N20(N30)的电位为“H”电平时动作,在这种情况下恒流电路10s(15s)不动作。
另外,恒流电路10s、15s进行动作使恒流向着送入半导体电路的方向流动,另一方面,恒流电路10t、15t进行动作使恒流从半导体电路中吸出的方向流动。
因为其他构成与图1相同,此处的说明省略。
下面,根据图10所示的时序图对图9所示的半导体电路的动作予以说明。首先,对第一延时电路1一侧的动作予以说明。
在输入端子5上,“H”电平的信号上升,接着输入“H”电平的输入信号IN时,利用信号反相单元4使该信号反转。因此,在连接点N20变成“L”电平。因为在连接点N20变成“L”电平时,恒流电路10s动作,而恒流电路10t不动作,从恒流电路10s输出的恒流经连接点N21、N1流入第一电容器14。就是说,与“H”电平的输入信号IN的上升相对应,在第一电容器14上开始缓慢的线性充电,在经过规定的时间后,充电结束。
因此,在如图10所示的“H”电平的输入信号IN输入到输入端子5时,输入到第一反相电路11的信号A如图10所示。就是说,与输入信号IN的上升相对应,信号A的波形开始缓慢地以线性方式上升。于是,在超过在第一反相电路11中预先设定的阈值电位a达到“H”电平时,信号A保持该“H”电平。
之后,“H”电平的输入信号IN下降,接着“L”电平的输入信号IN输入到输入端子5时,该“L”电平的输入信号IN,由信号反相单元4反转为“H”电平。
因此,连接点N20,变为“H”电平。因为在连接点N20成为“H”电平时,恒流电路10t动作,而恒流电路10s不动作,通过从恒流电路10t吸出恒流的动作,经连接点N21、N1,存储于第一电容器14的电荷的放电以线性方式进行。就是说,与“H”电平的输入信号IN的下降相对应,在第一电容器14上开始缓慢的线性放电,在经过规定的时间后,放电结束。
因此,在如图10所示的“L”电平的输入信号IN输入到输入端子5时,输入到第一反相电路11的信号A如图10所示。就是说,与输入信号IN的下降相对应,信号A的波形开始缓慢地以线性方式下降。于是,在降低到阈值电位a以下到达“L”电平时,信号A保持该“L”电平。
下面,对第二延时电路2一侧的动作予以说明。
在输入端子5上,“H”电平的信号上升,接着输入“H”电平的输入信号IN时,连接点N30变成“H”电平。因为在连接点N30变成“H”电平时,恒流电路15t动作,而恒流电路15s不动作,通过从恒流电路15t吸出恒流的动作,经连接点N31、N3,存储于第二电容器18的电荷的放电以线性方式进行。就是说,与“H”电平的输入信号IN的上升相对应,在第二电容器18上开始缓慢的线性放电,在经过规定的时间后,放电结束。
因此,在如图10所示的“L”电平的输入信号IN输入到输入端子5时,输入到第二反相电路16的信号B如图10所示。就是说,与输入信号IN的上升相对应,信号B的波形开始缓慢地以线性方式下降。于是,在降低到在第二反相电路16预先设定的阈值电位b以下到达“L”电平时,信号B保持该“L”电平。
之后,“H”电平的输入信号IN下降,接着“L”电平的输入信号IN输入到输入端子5时,连接点N30成为“L”电平。因为在连接点N30成为“L”电平时,恒流电路15s动作,而恒流电路15t不动作,从恒流电路15s输出的电流,经连接点N31、N3,流入第二电容器18。就是说,与“H”电平的输入信号IN的下降相对应,在第二电容器18上开始缓慢的线性充电,在经过规定的时间后,充电结束。
因此,在如图10所示的“H”电平的输入信号IN输入到输入端子5时,输入到第二反相电路16的信号B如图10所示。就是说,与输入信号IN的下降相对应,信号B的波形开始缓慢地以线性方式上升。于是,在超过阈值电位b到达“H”电平时,信号B保持该“H”电平。
这样,通过使用本实施方式的半导体电路,可以以线性方式进行从连接点N1、N3的信号A、B的“L”电平上升到“H”电平,进而,还可以以线性方式进行从信号A、B的“H”电平下降到“L”电平。由此,可滤波的噪声信号的占空比(duty)的定义变得容易。
就是说,对于输入信号,在噪声连续叠加的场合,为了将第二个以下的噪声完全滤波,在从第一个噪声消失之后到第二个噪声输入为止,比如,在图2中,信号A(B),必须放电结束。
在图2所示的时序图中,信号A(B)的放电,到第二个噪声输入为止是否结束,由噪声的占空比(duty)及电容器14、18的充电电流和放电电流之比的大小决定,在两者相等时,成为分支点。
在图2中,虽然假定信号A(B)的放电是瞬时完成的,但实际上信号A(B)放电时也是以曲线方式下降。
但在本实施方式中,由于信号A(B)的充放电都是以恒流进行的,上升、下降都是线性。因此,由实施方式1至3算出本实施方式的半导体电路的充电电流和放电电流之比变得容易。
如上所述,可滤波的(连续)噪声的占空比(duty)的定义可以变得容易。
进而,在本实施方式的半导体电路中,除了可以获得与实施方式1的半导体电路的效果(滤波效果)同样的效果之外,也可以得到实施方式2、3的半导体电路获得的电平移动。
另外,图9所示的电路图,是表示本实施方式的半导体电路的概念图。作为图9所示的恒流电路10s、15s的具体电路,比如,有图11所示的电路。另外,作为图9所示的恒流电路10t、15t的具体电路,比如,有图12所示的电路。
图11,在构成基准电路的晶体管10sa的导通关断动作的同时,在电流流入到该基准电路时,与该基准电路连动构成电流镜的附属电路的晶体管10sb变为导通状态,有对电容器14、18进行充电的电流流动。
图12,在构成基准电路的晶体管10ta的导通关断动作的同时,在电流流入到该基准电路时,与该基准电路连动构成电流镜的附属电路的晶体管10tb变为导通状态,有对电容器14、18进行放电的电流流动。
另外,在上述中,是对恒流电路10s(或15s)和恒流电路10t(或15t)两者进行开关动作的情况的说明,但也可以只使其中的一个基于从前级输入的信号进行动作。作为此时的具体电路图,有图13、14所示的电路。
图13示出的恒流电路10t、15t是基于从前级输入的信号进行动作的电路构成,恒流电路10s、15s不进行开关动作,而是连续不断地流过恒流。另外,在图13的电路构成的情况中,与从恒流电路10s、15s流出的恒流相比,从恒流电路10t、15t吸出的恒流必须大。
图14示出的恒流电路10s、15s是基于从前级输入的信号进行动作的电路构成,恒流电路10t、15t不进行开关动作,而是连续不断地流过恒流。另外,在图14的电路构成的情况中,与从恒流电路10s、15s流出的恒流相比,从恒流电路10t、15t吸出的恒流必须小。
<实施方式5>
本实施方式的半导体电路的特征在于为了使输出信号相对输入信号的延时增加,将实施方式1的半导体电路多级串联。
在图15中示出本实施方式的半导体电路的电路图。另外,在图15中示出将实施方式1的半导体电路进行两级串联地连接的电路,但串联级数并不限定于此。如图15所示,前级的半导体电路的触发器3的Q输出端子和后级的半导体电路的输入端子(在图15中省略)相连接。另外,因为各级的半导体电路的构成与实施方式1相同,此处的说明省略。
通过使用本实施方式的半导体电路,可不使输入信号IN的脉冲宽度减小或消灭,可以使输出信号OUT从最后级的触发器3的Q输出端子输出。
比如,作为增加输出信号相对输入信号的延时的另外的方法,如图16所示,在实施方式1的半导体电路的后级串联现有技术的半导体电路。
此处所谓的现有技术的半导体电路,如图16所示,是将反相电路41~44串联地连接的电路,在反相电路间存在的规定的连接点N40和接地之间连接电容45的电路。
在构成如图16所示的半导体电路的情况下,如图17所示,减小输入信号的脉冲宽度,使输出信号从输出端子6输出。
此处,在图17的时序图中,最上段的信号是在图16所示的半导体电路的输入端子5上输入、有噪声叠加的输入信号IN。另外,第二段的信号是在图16所示的触发器3的Q输出端子上输出、完成噪声滤波的输出信号OUT。
另外,第三段的信号是连接点N40的信号T。另外,最下段的信号是从图16所示的半导体电路的输出端子6输出的输出信号输出信号OUT′。
还有,在图17的时序图中,省略延时。另外,位于连接点N40的后级的反相电路43是基于阈值电位t进行动作的。
比较图17的输入信号IN和输出信号OUT′可知,与输入信号IN的脉冲宽度相比,输出信号OUT′的脉冲宽度较窄。
然而,通过采用图15所示的本实施方式的半导体电路,在各级的半导体电路中,将第一电容器14中的充电速度和第二电容器18的充电速度设定为相同并且将第一电容器14中的放电速度和第二电容器18的放电速度设定为相同时,输入到最前级的输入信号的脉冲宽度可以与从最后级输出的输出信号的脉冲宽度相同。
因此,通过采用本实施方式的半导体电路,为了使输出信号相对输入信号的延时增加,即便将半导体电路进行多级串联,可以防止输入信号的脉冲宽度的减小或消灭。
另外,通过使其他级的半导体电路具有小于等于最前级的半导体电路的滤波时间的延时,可在最前级的半导体电路中决定滤波时间,在其他级的半导体电路中决定延时。就是说,可以在不同的半导体电路中设定滤波时间和延时。
此外,如上所述,通过将延时(滤波时间)最大的半导体电路配置在最前级,可以抑制误动作及减小功耗。这些效果基于以下的理由。
在半导体电路中逻辑状态变化时,与此同时有可能诱发噪声发生,并且也可能发生功耗。假如将延时最大的半导体电路从最前级配置到后级时,包含脉冲宽度大的噪声的输入信号在到达该延时最大的半导体电路为止,要经由多级半导体电路。这样,包含噪声的输入信号通过经由多个半导体电路,有增大诱发无用的其它噪声的发生的可能性,进而还消费无用的消费功率。
然而,如上所述,通过将延时最大的半导体电路配置于最前级,在最前级的半导体电路中,可以有效地除去在输入信号上叠加的可除去的脉冲宽度的全部噪声。所以,可以防止使无用的噪声传送到第二级以下的半导体电路。
因此,因为在第二级以下的半导体电路中,不会产生无用的逻辑状态的变化,所以在后级的半导体电路中可排除无用的动作,可抑制误动作,此外,在后级的半导体电路中可降低功耗。
另外,在上述中,谈到的是将实施方式1涉及的半导体电路进行多个串联连接的情况,但并不限定于此。就是说,作为各级的半导体电路,可以采用实施方式1的半导体电路至实施方式4的半导体电路中的任何一种。
比如,如图18所示,也可将实施方式2的半导体电路进行多级串联。另外,作为多级串联的半导体电路,也可以混合采用实施方式1起至实施方式4的半导体电路。
在这种情况下,可使全部恒流电路与同一基准电路连动构成。就是说,在一个基准电路(未图示)中生成基准电流,将此基准电流路径和电流镜连接的各从属电流路径分别用作各恒流电路。
通过这样的构成,可以抑制在恒流电路的制造阶段的偏差。
就是说,因为在由个别电路制造各恒流电路时,在各恒流电路间,在制造阶段会产生偏差,所以在各恒流电路间会出现特性偏差。这种偏差,表现为在设计阶段确定的延时(滤波时间)和现实中制造的制品的延时(滤波时间)之间的差异,会成为半导体电路误动作的原因。就是说,主要负担滤波功能的半导体电路和主要负担延时功能的半导体电路,在设计阶段的和实际制造的制品之间是有差别的。
然而,通过使多个恒流电路与同一基准电路连动构成,因为制造阶段的偏差在各级的半导体电路中共同发生,各级间的延时的关系(或各级间的滤波时间的关系),在设计阶段和制造阶段制品间不改变。
所以,比如,在将在别个半导体电路中设定延时和滤波时间作为目的时,即使在设计阶段中在将小于等于半导体电路的滤波时间的延时为其他级的半导体电路所具有时,各级间的延时的大小关系(或各级间的滤波时间的大小关系),在设计阶段和制造的制品间也不会改变。因此,可以抑制半导体电路的误动作。
另外,在图18中,是对流过恒流的恒流电路10b、15b进行说明的,但即使是具有多个引入恒流的恒流电路(图6的恒流电路10q、15q)的场合,通过将该多个引入用的恒流电路(图6的恒流电路10q、15q)与同一基准电路连动构成(即电流镜构成),可以得到同样的效果。
<实施方式6>
如图1所示的半导体电路,在包含将模拟信号变换为数字信号的电路的电路中,会产生以下的问题。
比如,在具有阈值电位Vs的反相电路上输入图19所示的模拟信号。在该模拟信号上在阈值电位Vs附近叠加变化微小的噪声。
于是,从反相电路输出如图19所示的数字信号。就是说,在输出的数字信号上会产生反映上述噪声的脉冲(即发生振荡(chattering))。
为了抑制上述振荡,如图20所示,在反相电路61(在实施方式1的情况下为图1所示的半导体电路。以下为半导体电路61)的前级也可以设置施密特电路(滞后电路)60。此处,施密特电路60具有两个阈值电位。于是,利用该两个阈值电位的差构成滞后幅度。
然而,在这种情况下存在以下的问题。
图21~23为以往存在的施密特电路60的具体电路构成图。图21所示的施密特电路60的构成包含三个PMOS和三个NMOS。另外,图22、23所示的施密特电路60包含选择电路、比较器及电阻等。
从图21~23可知,在任何场合都需要非常多的元件。这是由于在一个施密特电路60中设定两个阈值电位之故。
所以,在配置半导体电路61和另外独立配置施密特电路60的场合,存在施密特电路60占有面积大的问题。并且,存在该施密特电路60的消耗电流大的问题。
另外,在图21所示的施密特电路60的场合,通过调整各MOS晶体管的电流驱动能力的平衡,可以在该施密特电路60中设定两个阈值电位。然而,因为MOS晶体管数目多,上述的平衡调整非常困难。所以,该施密特电路60的设计,也存在非常困难的问题。
还有,在MOS晶体管的栅电压变化时,电流驱动能力的温度特性改变。所以,施密特电路60的设计,因为也必须考虑电流驱动能力的温度特性,就越发困难。
另外,具有两个阈值电位的施密特电路60对输入信号的响应速度缓慢是公知的。就是说,无论是对输入信号的上升,还是对输入信号的下降,施密特电路60都需要很长的响应时间。
因此,在高频的噪声(比施密特电路60后级的半导体电路(滤波电路)61的滤波时间周期短)输入时,该施密特电路60跟不上高频噪声。由此,从施密特电路60会输出“H”固定的信号。
于是,对半导体电路(滤波电路)61输入比滤波时间更长的上述“H”固定的信号。这意味着在图20所示的构成中,在半导体电路(滤波电路)61中不能有效地对高频噪声进行滤波。
于是,在本实施方式的半导体电路中,实施方式1的半导体电路(图1)的信号反相单元(也可以理解为反相电路)4和第二反相电路15以以下的方式设计。
就是说,信号反相单元4设计成为具有第一阈值电位。并且,第二反相电路15设计成为具有第二阈值电位。此外,利用第一阈值电位和第二阈值电位的差构成滞后幅度。
本实施方式的信号反相单元4及第二反相电路15的具体电路构成示于图24、25。
如图24所示,信号反相单元4及第二反相电路15,由一个PMOS63和一个NMOS64构成。PMOS63和NMOS64串联在固定电位Vcc和接地之间。
此处,PMOS63的源极与固定电位Vcc相连接。PMOS63的漏极与NMOS64的漏极相连接。NMOS64的源极接地。另外,PMOS63的栅极及NMOS64的栅极分别与各个输入端子相连接。
此外,从PMOS63和NMOS64的连接点向后级的电路输出信号。
通过对PMOS63的栅宽度及栅长度及NMOS64的栅宽度及栅长度等进行适当的设计,可使信号反相单元4具有第一阈值电位,第二反相电路15具有第二阈值电位。
另外,如图25所示,信号反相单元4及第二反相电路15,也可以由一个比较器65和电阻66构成。电阻66,连接在固定电位Vcc和接地之间。
此处,在比较器65的“+”输入部上输入来自前级的输入信号。并且,比较器65的“-”输入部与电阻66的连接点N60相连接。另外,信号从比较器65的输出部向着后级的电路输出。
另外,通过适当调节电阻66上的连接点N60的位置,可使信号反相单元4具有第一阈值电位,第二反相电路15具有第二阈值电位。
另外,在图26中示出在采用本实施方式的半导体电路的场合的波形变化的情况。此处,在图1所示的半导体电路中,使信号反相单元(可理解为反相电路)4具有第一阈值电位Vth1,第二反相电路15具有第二阈值电位Vth2。
示于图26的上段的IN波形输入到上述半导体电路。于是,从该半导体电路输出示于图26的下段的OUT波形。
IN波形上升到达第一阈值电位Vth1,之后,在经过对半导体电路设定的规定的滤波时间时,OUT波形上升。另外,IN波形开始下降到达第二阈值电位Vth2,之后,在经过对半导体电路设定的规定的滤波时间时,OUT波形下降。
如上所述,本实施方式的半导体电路,使信号反相单元(可理解为反相电路)4具有第一阈值电位,第二反相电路15具有第二阈值电位,并且利用第一阈值电位和第二阈值电位构成滞后幅度。
所以,利用信号反相单元4和第二反相电路15可分别只设定一个阈值电位(Vth1或Vth2)。
因此,正如从图24、25可知,可减小电路的占有面积。另外,因为整个电路的大小变小,也可削减消耗电流。此外,也可以容易地进行一个阈值电位的设定。
比如,在采用图24的构成时,为了设定一个阈值电位,只要调整两个MOS晶体管63、64的电流驱动能力的平衡即可。另外,在采用图25的构成时,为了设定一个阈值电位,只要调整与比较器65的“-”输入部相连接的电阻66的连接点N60的位置即可。
在图24中,设PMOS63的迁移率为βp,栅电压为Vthp,栅宽度为Wp,栅长度为Lp。并且,NMOS64的迁移率为βn,栅电压为Vthn,栅宽度为Wn,栅长度为Ln。
于是,一个阈值电位Vth的设定可利用βp·(Wp/Lp)·(V0-Vth-Vthp)2=βn·(Wn/Ln)·(Vth-Vthn)2。另外,V0是固定电位Vcc的电压值。
另外,一个施密特电路60,如图21所示,利用MOS晶体管(MOS晶体管,在栅电压变化时,其电流驱动能力的温度特性改变)构成。在这种情况下,第一阈值电位Vth1的温度特性的变化与第二阈值电位Vth2的温度特性的变化不同已是公知的事实。这是由于基于两个不同的输入电位(来自施密特电路60的前级的输入信号及施密特电路60内的固有电位)设定第一、第二阈值电位之故。
所以,利用第一阈值电位Vth1和第二阈值电位Vth2的差构成的滞后宽度ΔVTH(=Vth1-Vth2)具有温度依赖性。
然而,在采用本实施方式的半导体电路时,上述问题可以解决。这是因为对信号反相单元4及第二反相电路15共同输入一个输入信号并基于该一个输入信号确定第一阈值电位Vth1和第二阈值电位Vth2之故。
设信号反相单元4及第二反相电路15,比如,如图24所示,由MOS晶体管(MOS晶体管,在栅电压变化时,其电流驱动能力的温度特性改变)构成。然而,如上所述,因为在信号反相单元4及第二反相电路15上输入相同的输入信号,第一阈值电位Vth1的温度特性的变化与第二阈值电位Vth2的温度特性的变化相同。
所以,在本实施方式的半导体电路中,利用第一阈值电位Vth1和第二阈值电位Vth2的差构成的滞后宽度ΔVTH(=Vth1-Vth2)不具有温度依赖性。
另外,在本实施方式的半导体电路中,对信号反相单元4及第二反相电路15是分别只设定一个阈值电位。所以,即使是高频噪声(比半导体电路的滤波时间周期短)输入到信号反相单元4及第二反相电路15,信号反相单元4及第二反相电路15也可以对该噪声的上升及下降中的一个快速响应。
因此,可向信号反相单元4及第二反相电路15的后级电路原封不动地传送上述高频噪声。所以,即使是对涉及本实施方式的半导体电路输入比滤波时间短的高频噪声,该半导体电路也可以有效地对高频噪声进行滤波。
此外,在上述中,是对实施方式1的半导体电路应用本实施方式的构成进行说明的。然而,并不限定于此,也可以是以下的方式。
就是说,在上述中,对信号反相单元4设定了第一阈值电位Vth1,对第二反相电路15设定了第二阈值电位Vth2。
但在第一延时电路1的前级也可以新设置第三反相电路,在第二延时电路2的前级也可以新设置第四反相电路。
此处,在第三反相电路上设定第一阈值电位,在第四反相电路上设定第二阈值电位。另外,利用第一阈值电位和第二阈值电位的差构成滞后宽度。该场合的一例示于图27至图29。
图27、28、29是对涉及第二、第三、第四实施方式的半导体电路分别应用本实施方式的构成的示例。
在图27、28、29中,在第一延时电路1的前级配置第三反相电路71。并且,在第二延时电路2的前级配置第四反相电路72。此处,在第三反相电路71上设定第一阈值电位Vth1,而在第四反相电路72上设定第二阈值电位Vth2。
另外,第三反相电路71及第四反相电路72的具体电路构成应用在上述中说明的图24、25的构成。
权利要求
1.一种半导体电路,其特征在于包括包含第一积分电路的第一延时电路;包含第二积分电路的第二延时电路;将输入信号的正相及反相的信号分别输入到上述第一及第二延时电路的一个及另一个的电路单元;以及在第一及第二输入端子上分别接受从上述第一延时电路发出的输出信号及从上述第二延时电路发出的输出信号的触发器。
2.根据权利要求1所述的半导体电路,其特征在于上述第一积分电路是包含第一电容器的电路;上述第二积分电路是包含第二电容器的电路。
3.根据权利要求2所述的半导体电路,其特征在于上述第一延时电路具有串联连接的多个第一反相电路;及与存在于规定的上述第一反相电路间的第一连接点和第一固定电位之间相连接的上述第一电容器,上述第二延时电路具有串联连接的多个第二反相电路;及与存在于规定的上述第二反相电路间的第二连接点和第二固定电位之间相连接的上述第二电容器。
4.根据权利要求3所述的半导体电路,其特征在于位于上述第一连接点的前级的上述第一反相器具有第一恒流电路;与上述第一恒流电路和低电位电源之间相连接的第一N型晶体管,位于上述第二连接点的前级的上述第二反相器具有第二恒流电路;与上述第二恒流电路和低电位电源之间相连接的第二N型晶体管,上述第一连接点被连接于上述第一恒流电路和上述第一N型晶体管之间,上述第二连接点被连接于上述第二恒流电路和上述第二N型晶体管之间。
5.根据权利要求3所述的半导体电路,其特征在于位于上述第一连接点的前级的上述第一反相器具有第一恒流电路;被连接于上述第一恒流电路和高电位电源之间的第一P型晶体管,位于上述第二连接点的前级的上述第二反相器具有第二恒流电路;被连接于上述第二恒流电路和高电位电源之间的第二P型晶体管,上述第一连接点被连接于上述第一恒流电路和上述第一P型晶体管之间,上述第二连接点被连接于上述第二恒流电路和上述第二P型晶体管之间。
6.根据权利要求3所述的半导体电路,其特征在于位于上述第一连接点的前级的上述第一反相器具有第一恒流电路;与上述第一恒流电路串联连接的第二恒流电路,位于上述第二连接点的前级的上述第二反相器具有第三恒流电路;与上述第三恒流电路串联连接的第四恒流电路,上述第一连接点被连接于上述第一恒流电路和上述第二恒流电路之间;上述第二连接点被连接于上述第三恒流电路和上述第四恒流电路之间;上述第一恒流电路和上述第二恒流电路中的其中之一基于从前级输入的信号动作;上述第三恒流电路和上述第四恒流电路中的其中之一基于从前级输入的信号动作。
7.根据权利要求6所述的半导体电路,其特征在于上述第一恒流电路和上述第二恒流电路,基于从前级输入的信号二者择一地动作;上述第三恒流电路和上述第四恒流电路,基于从前级输入的信号二者择一地动作。
8.根据权利要求1至7中的任何一项所述的半导体电路,其特征在于上述半导体电路是多级串联。
9.根据权利要求8所述的半导体电路,其特征在于在上述多级串联的半导体电路中,最前级的半导体电路的延迟时间最长。
10.根据权利要求8所述的半导体电路,其特征在于在上述半导体电路包含多个恒流电路时,将该恒流电路作为与一个基准电路连动的电路来构成。
11.根据权利要求3所述的半导体电路,其特征在于将输入信号的正相及反相信号分别输入到上述第一及第二延时电路中的一个及另一个的上述单元具有配置于上述第一延时电路的前级的第三反相电路,上述第三反相电路具有第一阈值电位,位于上述第二连接点的前级的一个上述第二反相电路具有第二阈值电位,利用上述第一阈值电位和上述第二阈值电位的差构成滞后幅度。
12.根据权利要求3所述的半导体电路,其特征在于还包括位于上述第一延时电路的前级的第三反相电路;以及位于上述第二延时电路的前级的第四反相电路,其中,上述第三反相电路具有第一阈值电位;上述第四反相电路具有第二阈值电位;利用上述第一阈值电位和上述第二阈值电位的差构成滞后幅度。
全文摘要
本发明提供半导体电路。提供一种对本来是“H”的信号的期间中叠加的“L”电平的噪声及对本来是“L”的信号的期间中叠加的“H”电平的噪声两种噪声可以有效地进行滤波的半导体电路。其特征在于将输入信号IN分流为二。一个经信号反相单元(4)输入到包含第一电容器(14)的第一延时电路(1)。而另一个输入到包含第二电容器(18)的第二延时电路(2)。于是,从第一延时电路(1)输出的输出信号和从第二延时电路(2)输出的输出信号输入到触发器(3)的另一个输入端子。
文档编号H03K3/3565GK1627641SQ20041010037
公开日2005年6月15日 申请日期2004年12月9日 优先权日2003年12月9日
发明者吉田宽, 藤井和仁 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1