无线接收机的自动增益控制的制作方法

文档序号:7539999阅读:203来源:国知局

专利名称::无线接收机的自动增益控制的制作方法
技术领域
:本公开一般涉及通信,更具体地涉及无线接收机的自动增益控制(AGC)。
背景技术
:在无线通信系统中,发射机一般处理(例如,编码和调制)数据并且生成更适于传输的射频(RF)调制信号。发射机随后向接收机经由无线信道发射RF调制信号。无线信道由于具有信道响应而使发射的信号失真,并且进一步由于具有噪声和干扰使信号质量降低。接收机接收发射的信号,调整接收的信号以获得基带信号,并且数字化基带信号以获得采样。接收的信号水平可能会由于例如衰减和掩蔽(shadowing)的不同信道传播现象而在宽泛的范围中改变。因此,接收机一般执行AGC以将基带信号水平保持在可接受范围中。AGC试图防止接收机电路的饱和和用于数字化基带信号的模拟到数字转换器的限幅。AGC可以不同方式进行操作。在一个常规AGC方案中,一个或多个模拟可变增益放大器(VGA)被用在接收机中,并且VGA的增益被调整以实现固定基带信号水平。AGC技术可使用模拟电路以检测基带信号水平和/或设置VGA的增益。模拟VGA和检测电路可使无线接收机的设计变得复杂并且增加成本。因此本领域中需要一些技术以在无线接收机以有效的和节省成本的方式执行AGC。
发明内容本文说明在无线接收机有效地执行AGC的技术。在一个方面,无线接收机的总增益可由模拟电路的离散增益级和数字可变增益放大器(DVGA)的连续增益实现。此种设计可在提供稳定的性能同时简化模拟电路。在接收机处,接收的信号由模拟电路调节以获得基带信号。基带由ADC数字化并且由DVGA数字地放大以生成输出信号。基于来自DVGA的输出信号的功率测量,更新AGC环路。可基于AGC环路从多个离散增益值中进行选择用于模拟电路的第一增益以将ADC输入处的基带信号的平均功率保持在预定范围中。可基于AGC环路选择用于DVGA的第二增益,以将输出信号的平均功率保持在参考功率水平上。可以防止基带信号的限幅的方式执行离散增益值间的转换,以防止模拟电路的饱和,提供转换的滞后,并且获得良好的性能。在另一方面中,在对数(log)域执行AGC。例如使用以2为底的对数确定输出信号水平中的对数误差。对数误差可通过环路增益被成比例调整,且被通过环路滤波器进行滤波以获得环路滤波器输出。基于环路滤波器输出确定用于模拟电路的第一增益。基于环路滤波器输出和第一增益确定用来校正输出信号水平中的对数误差的第二增益。在又一个方面中,AGC可由多种模式被执行。AGC环路可在获取模式中启动,例如,在加电时或从休眠中唤醒时。在获取模式中,以第一更新速率和用第一环路增益值更新AGC环路。AGC环路可转换到跟踪模式,例如,在预定数目的AGC环路更新之后或直到满足退出条件时转换到跟踪模式。在跟踪模式中,AGC环路被以低于第一更新速率的第二更新速率更新,并且用可等于或可不等于的第一环路增益值的第二环路增益值更新。例如,在获取模式中可为每个OFDM符号更新AGC环路多次(1),并且在跟踪模式中为每个OFDM符号更新AGC环路一次,例如在OFDM符号边界处更新AGC环路。以下将更为详细地说明本发明的不同方面和实施例。本发明的特性和本质将从以下详细说明结合附图变得更明显,在附图中,相同的附图标记相对应地指示相同元件。图1显示出发射机和接收机的框图2显示出接收机单元和AGC单元的框图3显示出对于四个AGC状态的离散增益和转换的图4显示出AGC控制器的框图5显示出选择AGC状态的处理;图6显示出DVGA的AGC环路的示例性模式;图7显示出示例性超帧结构;图8显示出在获取和跟踪模式中的AGC操作;图9和10分别显示出由离散模拟增益和连续数字增益执行AGC的处理和设备;图11和12分别显示出在对数域中执行AGC的处理和设备;图13和14分别显示出用多种模式执行AGC的处理和设备。具体实施例方式本文使用词语"示例性的"以表示"用作实例、例子或示例"。任何此处说明为"示例性的"的实施例或设计不必须解释为比其它实施例或设计优选或有优点。本文说明的AGC技术可被用于多种例如蜂窝系统、广播系统、无线本地局域网络(WLAN)系统等的无线通信系统。蜂窝系统可以是码分多址(CDMA)系统、时分多址(TDMA)系统、频分多址(FDMA)系统、正交频分多址接入(OFDMA)系统、信号载波FDMA(SC-FDMA)系统等。广播系统可以是MediaFLO系统,手提式数字视频广播(DVB-H)系统、对陆地电视广播的综合业务数字广播(ISDB-T)系统等。WLAN系统可以是IEEE802.11系统、Wi-Fi系统等。这些不同系统为本领域所知。此处说明的AGC技术可被用于具有单个子载波的系统和具有多个子载波的系统。多个子载波可由OFDM、SC-FDMA或其它调制技术获得。OFDM和SC-FDMA将频带(例如,系统带宽)分成多个正交子载波频率,其也被称为副载波(tones),频率点(bins)等。每个子载波频率可由数据调制。一般情况下,可在频率域中用OFDM和在时域中用SC-FDMA在子载波频率上发送调制符号。OFDM被用于多种系统中,例如MediaFLO、DVB-H和ISDB-T广播系统、IEEE802.11a/gWLAN系统和其它蜂窝系统。以下对使用例如MediaFLO系统的OFDM的广播系统说明AGC技术的特定方面和实施例.图1显示出无线通信系统100中的发射机110和接收机150的框图。发射机110可以是基站的一部分,并且接收机150可以是终端的一部分。相反,发射机110可以是终端一部分,并且接收机150可以是基站的一部分。基站一般为固定站并且也可被称为基站收发机系统(BTS)、接入点、节点B等。终端可以是固定的或移动的,并且也可被称为移动站、用户设备、移动设备等。终端可以是蜂窝电话、个人数字助理(PDA)、无线调制解调器、无线通信装置、手持装置、用户单元等。在发射机110处,发射(TX)数据和导频处理器120处理(例如,编码、交织和符号映射)业务数据并且生成数据符号。处理器120也生成导频符号。如此处所使用,数据符号是数据的调制符号,导频符号是导频的调制符号,并且调制符号是信号星座(例如PSK或QAM)中一点的复数值。调制器130多路复用数据符号和导频符号,对多路复用的数据和导频符号执行OFDM调制,并且生成OFDM符号。发射机单元(TMTR)132处理(例如,将其转换成模拟、放大、滤波、和上变频)OFDM符号并且生成经由天线134被发射的调制的信号。在接收机150处,天线152从发射机110接收调制的信号并且提供接收到的信号到接收机单元(RCVR)160。接收机单元160调节(例如,滤波、放大和下变频)接收到的信号以获得基带信号并且进一步数字化基带信号以获得输入采样。AGC单元170执行自动增益控制、适当地调整接收机单元160的增益、由可变数字增益乘以输入采样,并且提供具有希望的平均功率的输出采样。解调器172对输出采样执行OFDM解调并且提供数据符号估计,其是由发射机110发射的数据符号的估计。接收(RX)数据处理器174处理(例如,符号解映射(demap)、解交织和解码)数据符号估计并且提供解码的数据。一般情况下,在接收机150处的处理与在发射机110处的处理相互补。控制器/处理器140和180分别指示在发射机110处和接收机150处的不同处理单元的操作。存储器142和182分别存储发射机110和接收机150的程序码和数据。图2显示出接收机单元160的一个实施例的框图。在接收机单元160中,低噪声放大器(LNA)210将从天线152接收的信号放大固定的或可变的增益并且提供放大的信号。混频器212通过本地振荡器(LO)信号将放大的信号下变频并且提供基带信号。混频器212也可将其输入信号和/或输出信号放大固定的或可变的增益。混频器212可实现将接收的信号多级下变频的超外差结构,例如,从RF到中频(IF),随后从IF到基带。混频器212也可实现直接到基带的结构,称为零IF(ZIF)结构,将接收到的信号在一级从RF直接下变频到基带。ADC220数字化基带信号并且提供输入采样r(k)到AGC单元170,其中k为采样周期的索引。ADC220可以是sigma-de〗taADC(EAADC),逐次近似ADC或其它类型的ADC。输入采样一般是具有同相(I)和正交(Q)分量的复数值采样。为了简便,图2仅显示出可用在接收机单元中的一些电路块。一般情况下,接收机单元可包括一级或多级的放大器、滤波器、混频器等。例如,可在混频器212前提供带通滤波器,可在混频器212后提供低通滤波器。接收机单元也可包括具有可变增益的任何数目的电路块,并且这些电路块可位于接收路径中的任何位置。例如,LNA210和/或混频器212可具有可变增益。接收到的信号水平可在非常宽的范围中改变,例如,从-98dBm到-20dBm。例如衰减和掩蔽的多种信道传播现象导致这种宽的接收动态范围。接收的信号也可包括比希望的信号大很多的干扰信号(或"干扰")。在以下说明中,术语"功率"、"能量"、"信号水平"和"信号强度"可被交换地使用,并且指信号的幅度。AGC可被用于计算接收到的信号的宽的动态范围,保持基带信号水平在用于ADC的适当的范围中,并且提供具有近似恒定的平均功率的输出采样。AGC设计可根据不同因素做出,例如接收到的信号的动态范围(或接收动态范围),ADC的输入动态范围(或ADC输入动态范围),模拟增益在接收机单元中的变化方式等。例如,接收动态范围和ADC输入动态范围可确定接收机单元所需的模拟增益的范围,和用于不同的接收到的信号水平的特定模拟增益。在一个方面中,使用可在粗略的离散的阶段中变化的模拟增益和可在连续的或细分的阶段中变化的数字增益实现AGC。模拟域中的离散的增益阶段可简化接收机单元的设计并且可降低成本。连续的数字增益可用数字电路以节省成本的方式实^U为了清楚说明,以下说明接收机单元160和AGC单元170的特定实施例。在此实施例中,AGC具有四个状态。AGC状态也可被称为增益状态、AGC增益状态、接收机状态、增益模式等。每个AGC状态与特定模拟增益相关。AGC在任何给定时刻以四个AGC状态中的一个进行操作。AGC状态可基于接收到的信号水平进行选择。接收单元160以与选择的AGC状态相关的模拟增益进行操作。图3显示出四个AGC状态的离散增益和转换的示例图。在此实施例中,接收到的信号的动态范围为-98dBm到-20dBm,并且ADC的输入动态范围为70dB。四个AGC状态1,2,3和4分别与模拟增益x+47dB、x+31dB、x+16dB和x犯相关,其中x为最小模拟增益并且取决于接收机的设计。AGC状态1具有最高模拟增益,并且AGC状态4具有最低模拟增益。图3示出了从ADC输入的角度并且参考ADC输入的四个AGC状态。对于每个AGC状态,顶部水平线表示ADC全标度(fullscale),NFS,并且底部水平线表示ADC量化噪声级NAD。顶部和底部水平线之间的差别表示ADC输入动态范围。图3还显示将接收的信号水平映射到四个AGC状态中的每一个的ADC输入动态范围的示例。在图3中显示的实施例中,-98dBm到-20dBm的接收动态范围被分为四个重叠的信号范围。第一个信号范围覆盖-98dBm至iJ-61dBm,第二个信号范围覆盖-65dBm到-40dBm,第三个信号范围覆盖-44dbm到-21dBm,并且第四个信号范围覆盖-25dBm到-4dBm。在此实施例中,信号范围相互间覆盖4dB。第一到第四信号范围由AGC状态1到4分别覆盖。从在天线连接器接收的信号功率到ADC输入动态范围的映射显示在图3中。由标示为"信号范围"的垂直线表示每个AGC状态的信号范围。在图3中显示的实施例中,AGC状态1在当天线连接器处接收的信号水平在-98dBm到-61dBm之间时被选择。为了增加在天线连接器处接收到的信号水平,在接收到的信号水平超过-61dBm时,选择AGC状态2,在接收到的信号水平超过-40dBm时选择AGC状态3并且在接收到的信号水平超过-21dBm时选择AGC状态4。为了减小接收到的信号水平,从AGC状态4开始,在接收到的信号水平低于-25dBm时选择AGC状态3,在接收到的信号水平低于-44dBm时选择AGC状态2,并且在接收到的信号水平低于-65dBm时,选择AGC状态1。图3也显示出每个AGC状态的高禾n/或低转换阈值。每个AGC状态m,m=l,2,3,与接收到的信号水平的高阈值Hm相关。如果接收到的信号水平超过高阈值Hm,则选择具有较低模拟增益的下一个AGC状态m+l。每个AGC状态m,m=2,3,4,与接收到的信号水平的低阈值Lm相关。如果接收到的信号水平低于低阈值Lm,则选择具有较高模拟增益的下一个AGC状态m-l。在图3中显示的实施例中,4dB的滞后被用于AGC状态间的转换。例如,如果接收到的信号水平低于-65dBm,则做出从AGC状态2到AGC状态1的转换,如果接收到的信号水平超过-61dBm,高出4dB,则从AGC状态1向回转换到状态2。此4dB的滞后需要接收到的信号水平在转换回之前的AGC状态前,沿着反方向移动4dB,这能防止由于在功率测量中的随机波动而产生的AGC状态间的连续切换。滞后量可被选择以提供良好的性能并且可以是固定或可编程的值。如图3所示,每个AGC状态的信号范围很好地落入ADC输入动态范围。一个设计目的是保持每个AGC状态的接收的信号水平在ADC量化噪声级以上至少指定的量(例如13dB),以实现希望的信号与量化噪声比(SQR)。另一个设计目的是保持每个AGC状态的最高平均接收到的信号水平在ADC总标度以下至少预定量(例如,lldB),以防止DC的饱和。此在ADC总标度以下的预定量被称为ADC补偿。ADC补偿可产生OFDM波形的较高的峰均功率比(PAPR)并且防止由使ADC饱和而产生的高能量信号点。ADC补偿也可考虑到接收到的信号中的干扰,并且防止在出现干扰时ADC的饱和。一般情况下,希望的信号的平均功率加上干扰应该是在ADC总标度以下的预定量。可选择转换阈值以实现这些目的。在图3显示的实施例中,四个AGC状态的四个信号范围被映射到ADC输入动态范围的不同区域。在AGC状态1中,信号范围仅为高于ADC量化噪声级以上的13dB。因为热噪声和接收的信号将增加相同的量,则增加AGC状态1中的模拟增益不能提高SNR(信号噪声比)。AGC状态1中的更大的ADC补偿对于处理相对AGC状态1中的弱的希望的信号的大的干扰可能是有利。图3显示出四个AGC状态的示例性的图。AGC状态也可以其它方式定义。一般情况下,任何数目的AGC状态可被定义,并且每个AGC状态可覆盖任何范围的接收的信号水平,以使对接收机150实现良好的性能。图3还显示出4dB的示例性的滞后和示例性的高和低阈值,其被给出作为用于示例目的的实例。也可对滞后和高和低的阈值使用其它值。图2也显示出在接收机150处的AGC单元170的一个实施例的框图。AGC单元170试图压缩接收到的信号的宽的动态范围以适于ADC220的较小的输入动态范围,从而防止ADC的饱和并且实现可接受的SQR。AGC单元170也试图提供具有用于后续处理的恒定的平均功率的输出采样。在AGC单元170中,DC偏移去除单元222估计并且去除输入采样中的直流(DC)偏移。DVGA230将来自单元222的采样乘以可变数字增益GD并且提供具有希望的平均功率的输出釆样x(k)。功率检测器240确定输出采样r(k)的功率并且提供功率测量P(n),其中n为AGC更新间隔的索引。AGC控制器250接收功率测量并且确定测量的功率和参考功率水平间的误差,参考功率水平也可被称为DVGA给定值(setpoint)。AGC控制器250滤波该误差并且提供控制信号a(n)到模拟增益控制单元270,控制信号指示相对于DVGA给定值的ADC220的输入处的基带信号的平均功率。单元270基于控制信号a(n)选择接收单元160的适当的模拟增益级GA。如果选择了新的模拟增益级,则单元270提供增益改变c(n)到AGC控制器250,增益改变c(n)是新的和之前的AGC状态的模拟增益之间的差值。在考虑到将被应用到接收机单元160的模拟增益Ga后,AGC控制器250提供控制信号d(n)到数字增益计算单元260,控制信号d(n)指示基带信号的平均功率。单元260为DVGA230选择适当的数字增益GD,以使输出采样的平均功率保持在DVGA给定值或其附近。在一个实施例中,AGC单元170支持多操作模式,例如获取模式和跟踪模式。在获取模式中,AGC环路更新以较快速率和以第一环路增益值执行,以实现更快速的收敛。如果更新速率较快,则小环路增益值可以被使用以实现收敛速率和时间平均之间的良好的平衡。在跟踪模式中,AGC以较低速率和以第二环路增益值执行以实现在收敛速率和时间平均之间的好的平衡。AGC单元170中的一些块的操作取决于AGC操作模式。功率检测器240确定相对于DVGA230的DVGA给定值的输出采样x(k)的功率。在一些实施例中,功率检测器240计算功率,如以下P(n)=4tlxn(k)|2,公式(l)其中)Uk)是更新间隔n中的第k个输出采样,P(n)是更新间隔n的功率测量。一般情况下,可基于所有更新间隔的相同数目的输出采样或不同更新间隔的不同数目的输出采样获得功率测量P(n)。在一个实施例中,P(n)基于获取模式中的较少(例如,128)采样和跟踪模式中的较多(例如,2048)采样获得。这允许AGC在获取模式中以较高速率更新并且在跟踪模式中获得更准确的能量估计。图4显示出AGC单元170中的AGC控制器250和模拟增益控制单元270的一个实施例的框图。在此实施例中,AGC环路在对数(log)域被实现,并且AGC环路的大多数的量是以分贝为单位。log域中操作AGC环路可提供如下所述的多种好处。在其它实施例中,AGC环路可在线性域中被实现。以下说明log域AGC环路。在AGC控制器250中,log误差计算单元410从功率检测器240接收功率测量P(n)并接收确定输出采样的平均功率的DVGA给定值Pref。DVGA230由特定数目比特实现并且具有特定范围。高DVGA给定值增加了限幅高能量采样的相似性,而低DVGA给定值降低了SQR(信号与量化噪声比)。DVGA给定值可基于这两种考虑之间的平衡被设置为特定值(例如,DVGA总标度以下lldB)。在每一个更新间隔n,单元410确定功率测量P(n)和DVGA给定值Pref间的误差的log,并且提供log误差e(n),其可表示为e(n)=log2(Prd/P(n)),=log2(Pref)-log2(P(n)).公式(2)在公式(2)中显示的实施例中,误差e(n)使用以2为底的对数或log2获得。对AGC环路使用log2运算可提供一定优点。首先,DVGA230可由偏移和低位宽乘法器(lowbitwidthmultiplier)的组合有效实现。第二,较快速收敛可通过线性运算上的1og2运算实现。第三,为线性域中的乘法失真的功率变化可为og域中的加法失真并且通过线性反馈技术可被减小。第四,可通过Iog域AGC环路为两个强的和弱的信号实现均衡的瞬时响应。乘法器412将log误差e(n)乘以环路增益F^并且提供成比例的log误差b(n)。环路增益f^确定AGC环路的收敛速率。适当的环路增益值可被用在每一个模式中以实现希望的收敛速率和时间平均。AGC环路滤波器420滤波成比例的log误差b(n)并且提供环路滤波器输出。在AGC环路滤波器420中,加法器422将成比例的log误差b(n)加上寄存器426的输出,并且提供第一环路滤波器输出a(n)到模拟增益控制单元270。对于给定的AGC状态,数字増益Gd由第一坏路滤波器输出a(n)确定。因为数字增益GD将放大输出采样到固定的DVGA给定值,则输入采样的平均功率是低于固定DVGA给定值GDdB。因此,对于给定的AGC状态并且缺少限幅时,第一环路滤波器输出a(n)表示在ADC220的输入处相对于DVGA给定值,以dB为单位的基带信号的平均功率。模拟增益控制单元270确定是否保持当前AGC状态或转换到新的AGC状态,以使在ADC输入处基带信号水平被保持在希望的范围中,如图3所显示。在单元270中,接收信号强度指示(RSSI)计算单元432从环路滤波器420接收第一环路滤波器输出a(n),并从寄存器438接收当前AGC状态m。单元432确定基带信号的平均功率,RSSI(n),如下所示RSSI(n)=f(a(n),m},等式(3)其中f(a(n),m〉是a(n)和m的函数,并且可取决于AGC单元170的设计。AGC状态选择器434从单元432接收RSSI(n),并且从查询表436接收当前AGC状态m的高阈值和低阈值Hm和Lm。选择器434确定是否停留在当前AGC状态或基于其输入转换到其它AGC状态,如下所述。如果选择新的AGC状态,则寄存器438存储新的AGC状态,并且查询表436发出命令到模拟电路(例如,图2中的LNA210、混频器212或两者)以转换AGC增益状态和AGC增益状态转换的增益改变c(n)。如果选择新的AGC状态则增益改变c(n)为非零,并且如果保持当前AGC状态则增益改变c(n)为零。在环路滤波器420中,加法器424从第一环路滤波器输出a(n)中减去增益改变c(n),并且提供第二环路滤波器输出d(n)到数字增益计算单元260。无论何时选择AGC状态,模拟增益改变并且ADC输入处的基带信号水平增加,如图3中所示。第二环路滤波器输出d(n)指示AGC状态的相对于DVGA给定值的基带信号的期望的基带功率。数字增益计算单元260基于第二环路滤波器输出d(n)计算DVGA230的数字增益GD以使输出采样的功率为DVGA给定值或其附近。数字增益DD跟踪接收的信号水平的变化并且也补偿模拟增益中的阶段改变。数字增益GD可被提供在两部分中,第一部分为2的幂并且第二部分为线性单位。输入采样与第一部分的乘法可通过比特移动操作简单地实现。输入采样与第二部分的乘法可通过使用低位宽乘法器实现。延迟一般在应用新的模拟和数字增益中出现。应用新的模拟增益中的延迟可比应用新的数字增益中的延迟长。这是因为各种原因,例如,向接收机单元160提供新的模拟增益中的较长延迟,在转换接收机单元160中的电路块的增益中的附加延迟等。尽管为了简便,在图4种没有显示出,但是增益改变c(n)可被延迟等于应用新的模拟和数字增益的延迟中的差的量。这样,在选择了新的模拟增益时,新的模拟增益和相对应的新的数字增益可同时出现,并且可防止输出采样中的大的瞬变。在图4显示的实施例中,AGC环路由确定模拟和数字增益两者的第一阶反馈环路实现。因为接收到的信号水平一般从一个更新间隔到下一个更新间隔缓慢变化,此AGC环路设计为足够的。其它类型的反馈环路、多反馈环路、前馈结构和/或一些其它设计也可用于控制模拟和数字增益。模拟增益控制单元270可例如在加电时首先选择具有最高模拟增益的AGC状态1。其后,在每一个更新间隔中,单元270可比较基带信号的平均功率,RSSI(n),与当前AGC状态的高阈值和低阈值以确定是否转换到其它AGC状态。单元270中的査询表436可为每一个AGC状态存储高阈值和低阈值以及在AGC状态间转换时的模拟增益中的阶段改变,如表1中所显示。对高阈值和低阈值的特定值,RSSI的计算和增益改变取决于执行并且可根据设计不同而不同。<table>tableseeoriginaldocumentpage22</column></row><table>不同操作特性可通过选择高阈值和低阈值的不同值获得。高阈值和低阈值确定在何种功率水平转换AGC状态,并且因此确定模拟域和数字域之间的整体增益的分割。高阈值和低阈值也确定滞后的量,其可由如下式计算<formula>formulaseeoriginaldocumentpage22</formula>公式(4)图5显示出用于可由图4中的AGC状态选择器434执行的选择AGC状态的处理500的一个实施例。以下说明假定AGC状态m为当前AGC状态,其中mE{l,2,3,4}。最初,做出基带信号的平均功率RSSI(n)是否低于当前AGC状态m的低阈值Lm的确定(框510)。如果'是',则较高模拟增益是所希望的。随后做出当前AGC状态是否具有最高模拟增益的确定(框512)。如果结果为'是',则处理中止,因为接收机单元己经在最高模拟增益下操作。否则,如果在框512结果为'否',则选择具有下一个较高模拟增益的新的AGC状态m-(框514)。根据新的AGC状态增加接收机单元的模拟增益(框516)。增益改变c(n)随后被确定为新AGC状态m-1的模拟增益与之前的AGC状态m的模拟增益之间的差(框518)。因为较高模拟增益被用于接收机单元,则对数阈中的增益改变c(n)为正值。如果基带信号的平均功率在当前AGC状态m不低于低阈值Lm并且框510的结果为'否,,则做出RSSI(n)是否超过当前AGC状态m下的高阈值Hm的确定(框530)。如果在框530为'是',则较低的模拟增益是所希望的。随后做出当前AGC状态是否具有最低模拟增益的确定(框532)。如果结果为'是',则处理中止,因为接收机单元已经在最低模拟增益下操作。否则如果在框532结果为'否',则选择具有下一个较低的模拟增益的新的AGC状态m+l(框534)。根据新的AGC状态减小接收机的模拟增益(框536)。增益改变c(n)随后被确定为新的AGC状态与之前AGC状态的模拟增益间的差(框53S)。因为较低模拟增益被用于接收机单元,则对数域中的增益改变c(n)为负值。图5显示出其中基带信号的平均功率被用于选择AGC状态的实施例。如上所述,第一环路滤波器输出a(n)指示在ADC输入处的基带信号相对于DVGA给定值的平均功率并且也可被用于选择AGC状态。然而,因为a(n)与基带信号水平反向相关,则图5中的框510和530可被因此更改。此外,可为a(n)定义适当的高阈值和低阈值,并且该适当的高阈值和低阈值可被用作选择AGC状态。图6显示出DVGA230的AGC环路的示例性模型600的框图。在此实施例中,AGC环路被实现为在log域中操作的第一阶反馈环路。因此,模型600中的量由dB为单位或任何底数的对数给出。模型600假定AGC在一个AGC状态中操作并且增益改变c(n)在每一个更新间隔等于零。在每一个AGC更新间隔n中,加法器612将在DVGA的输入端的输入功率Pinit与DVGA的数字增益GD(n-l)相加,并且提供在DVGA的输出端的功率P(n)。在对数域中的加法相当于在线性域中的乘法。加法器612通过DVGA230模拟线性域中的乘法。加法器614从DVGA给定值Pref中减去DVGA输出功率P(n),并且提供log误差e(n)。乘法器616将log误差e(n)乘以环路增益Kl,并且提供成比例的log误差b(n)。加法器61S将成比例log误差b(n)加上来自延迟单元620的数字增益Gd(ii-1),并且提供更新的数字增益GD(n)。延迟单元620存储来自加法器618的数字增益Go(n),并且在下一个更新间隔中提供此数字增益。延迟单元620模拟在图4中的寄存器426。模型600的转换功能可由本领域的技术人员容易地得到。第一阶反馈环路的时间常数t可被表示为t=~~^--T,公式(5)其中Tl是两个AGC环路更新之间的时间间隔。对于获取模式和跟踪模式Tl可以不同。对于小环路增益Kp时间常数可近似为t"!VKb其与环路滤波器的平均窗口的有效长度相对应。对于小的K^时间常数和平均窗口较长,导致AGC环路的较慢的收敛。对于大的K^,收敛较快。然而,测量噪声通过平均窗口被较少地抑制,这样可能对测量准确度不利。剩余跟踪误差可以是由于功率测量中的误差而产生的输出采样的平均功率中的误差。剩余跟踪误差的方差,c^可被表示为《-:^V.^公式(6)其中c7:为功率测量误差的方差。公式(6)表示剩余跟踪误差取决于环路增益kl和功率测量误差c^。可为环路增益!^选择适当的值以实现关于收敛速率、剩余跟踪误差和可能的其它标准的良好性能。如果S可忽略,例如通过在足够多数目的采样上求平均,则较高环路增益K^可被使用以实现较快速收敛。相反地,如果功率测量为有噪声的,则较小的环路增益kl可被使用以平均噪声。在一个实施例中,&为从1/16到15/16范围间的4比特值。对于此实施例,最大时间常数近似16个更新间隔。环路增益Ki也可被选择以为不同信道分布(profile)最小化分组错误率(PER)。更高的K^可以低到中等速率针对多径衰减信道和瑞利平(Rayleighflat)衰减提供较好性能。可确定接收机150的信道分布,并且可基于确定的信道分布选择适当的环路增益值来使用。接收机150可以多种方式执行AGC,例如,取决于由系统使用的波形、接收机的操作模式等。作为一个实例,对于OFDM波形,可能希望更新AGC环路和在OFDM符号边界处的模拟和数字增益,以减少接收到的OFDM符号中的瞬变。图7显示出可用于系统100的示例性超帧结构700。在图7中显示的实施例中,传输时间线可被分到超帧中,每一个超帧具有特定时间的持续时间,例如大约1秒。每一个超帧包括时分多路复用(TDM)导频的字段712、开销/控制信息的字段714和具有用于业务数据的N个帧的字段716,其中N》1。超帧也可包括如图7中所示的不同的和/或附加字段。在图7中显示的实施例中,TDM导频由S个相等的导频序列组成,每一个导频序列包含L个时域采样,其中S〉1并且]>1。TDM导频可被用于信号检测、帧同步、频率错误估计、时间同步和/或其它目的。开销信息可传送用于恢复在超帧的N帧中发送的数据信道的信息。每一帧携带多个(M)OFDM符号。每一个OFDM符号由K个采样的数据部分和C个采样的循环字首(cyclicprefix)组成。在一个实施例中,K=4096,C=512,并且每-一个OFDM符号由4608个采样组成。在一个实施例中,L=128,S=36,并且TDM导频包括长度为128的36个相等的导频序列。其它值也可被用作K,C,L和S。图7显示出特定超帧结构。此处说明的AGC技术可被用于其它帧接收机150可以是间断性活动的,并且可周期性地唤醒以接收数据。例如,感兴趣的数据信道可被在每一帧中的一个或多个OFDM符号中发送。接收机150可随后在感兴趣的数据信道的OFDM符号之前唤醒、按需要更新模拟和数字增益、调整频率和时间、接收感兴趣的OFDM符号,再度休眠直到下一帧。希望AGC在每一个唤醒间隔的开始快速收敛。图8显示出在获取模式和跟踪模式中的AGC操作的一个实施例。接收机150基于加电和唤醒时间段的开始时始于获取模式中。在获取模式中,AGC环路被以较快速率和以第一环路增益值被更新,以实现快速收敛并且密切跟踪接收到的信号水平。在获取模式中,每一个更新间隔跨越Taeq秒,例如,T,-256个图7中显示的超帧结构的采样周期。在一个实施例中,在每一个更新间隔中,接收机150基于更新间隔的较后部分中的输出采样获得功率测量,该输出采样例如256采样更新间隔中的最后128个采样。如果模拟和/或数字增益在之前的更新间隔改变,则可能在输出采样中引入瞬变。可通过丢弃在更新间隔的较前部分(例如,第一半)中的输出采样,并且使用在更新间隔的较后部分(例如,第二半)中的输出采样用于功率测量来防止瞬变。接收机150随后基于功率测量更新AGC环路。接收机150可一直保持处于获取模式中直到(1)粗略的计时被获得并且OFDM符号边界能被确定禾卩/或(2)—些其它条件被满足。例如,接收机150可保持在最小数目(例如16)的更新的间隔期间处于获取模式中。接收机150可随后转换到跟踪模式。在跟踪模式中,AGC环路以较低速率更新和用第二环路增益值进行更新。在跟踪模式中,每一个更新间隔跨越T^k秒,例如,Ttn)ek=l,一个OFDM符号周期。在一个实施例中,在每一个更新间隔中,接收机基于更新间隔的较后部分(例如,第二半)中的输出采样获得功率测量,以再次防止由增益转换产生的瞬变。接收机50随后基于功率测量更新AGC环路。一般情况下,第一和第二环路增益值的每一个可被选择以实现希望的收敛速率和时间平均。第一环路增益值可等于、大于或小于第二环路增益值。图9显示出通过离散模拟增益和连续数字增益执行AGC的处理900的一个实施例。基于例如为来自DVGA的输出信号的功率测量而更新AGC环路(框912)。基于AGC环路从多个离散增益值中选择模拟电路的第一增益,以在ADC输入处将基带信号的平均功率保持在预定范围(框914)。基于AGC环路选择DVGA的第二增益以将来自DVGA的输出信号的平均功率保持在参考功率水平或在接近该参考功率水平(框916)。基带信号可以是具有高PAPR的OFDM波形。ADC输入处的预定范围可以是ADC总标度下的第一补偿,其中可基于基带信号的PAPR,或各种干扰的功率来选择第一补偿。参考功率水平可以是DVGA总标度以下的第二补偿,其中,可基于来自DVGA的输出信号的PAPR来选择第二补偿。对于框914,在基带信号的平均功率低于低阈值时,如果可用的话,可以为第一增益选择下一个较高的离散增益值。在基带信号的平均功率高于高阈值时,如果可用的话,可以为第一增益选择下一个较低的离散增益值。多个离散增益值可与多个增益状态相关联。每一个增益状态可与各自高阈值(如果可应用)和各自的低阈值(如果可应用)相关联。可定义增益状态的高和低阈值以提供希望的增益转换特性并且提供希望的转换滞后。当前增益状态的高和低阈值可被用于确定是否转换增益状态。图10显示出用离散模拟增益和连续数字增益执行AGC的设备1000的一个实施例。设备1000包括用于基于例如对来自DVGA的输出信号的功率测量更新AGC环路的装置(框1012),用于从多个离散增益值中选择用于模拟电路的第一增益以将ADC输入处的基带信号的平均功率保持在预定范围中的装置(框1014),和用于为DVGA选择第二增益以将DVGA输出信号的平均功率保持成处于参考功率水平或接近参考功率水平的装置(框916)。图11显示出用于在log域执行AGC的处理1100的一个实施例。例如使用以2为底的对数确定输出信号水平相对于参考水平的log误差(框1112)。log误差由环路增益按比例调整以获得成比例的log误差(框1114)。成比例的log误差由环路滤波器滤波以获得环路滤波器输出(框1116)。可在获取和跟踪模式中对环路增益使用不同的值。基于环路滤波器输出确定用于校正输出信号水平中的log误差的第一增益(框1118)。第一增益可包括是二的幂的第一部分和是线性单位的第二部分。输入信号可被数字地乘以第一增益以获得输出信号,并且可基于输出信号水平和参考功率水平确定log误差。也可基于环路滤波器输出确定用于模拟电路的第二增益(框1120)。多个离散增益值可用于第二增益。可基于环路滤波器输出为第二增益选择一个离散增益值。可随后基于环路滤波器输出和第二增益确定第一增益。图12显示出用于在log域执行AGC的设备1200的一个实施例。设备1200包括用于例如使用以2为底的对数确定输出信号水平的log误差的装置(框1212),用于用环路增益按比例调整log误差以获得成比例的log误差的装置(框1214),用于通过环路滤波器滤波成比例的]og误差以获得环路滤波器输出的装置(框1216),用于基于环路滤波器输出确定用于校正输出信号水平中的log误差的第一增益的装置(框1218),和用于基于环路滤波器输出确定用于模拟电路的第二增益的装置(框1220)。图13显示出采用多模式执行AGC的处理1300的一个实施例。AGC环路始于获取模式中,例如,通过加电或从休眠中唤醒(框1312)。在获取模式中,以第一更新速率和采用第一环路增益值更新AGC环路(框1314)。例如在预定数目的AGC环路更新或满足一些其它条件后,AGC环路转换到跟踪模式(框1316)。在跟踪模式中,以低于第一更新速率的第二更新速率,采用第二环路增益值更新AGC环路(框1318)。例如,AGC环路(1)可在获取模式中对每一个OFDM符号更新多次,并且(2)在跟踪模式中对至少一个OFDM符号的每一个范围更新一次,例如对每个OFDM符号和在OFDM符号的边界。用于更新AGC环路的功率测量可基于(1)在获取模式中的第一预定数目的采样和(2)在跟踪模式中的第二预定数目的采样获得,其中,第二预定数目大于第一预定数目。第一环路增益值可等于、大于或小于第二环路增益值。图14显示出用于采用多种模式执行AGC的设备1400的一个实施例。设备1400包括用于在获取模式中启动AGC环路的装置,例如通过加电或从休眠中唤醒来启动(框1412),用于在获取模式中以第一更新速率和利用第一环路增益值更新AGC环路的装置(框1414),用于在预定数目的AGC环路更新或满足一些其它条件后将AGC环路转换到跟踪模式的装置(框1416),用于在跟踪模式中以比第一更新速率小的第二更新速率和利用第二环路增益值更新AGC环路的装置(1418)。此处说明的AGC技术可由不同装置实现。例如,这些技术可在硬件、固件、软件或其组合中实现。对于硬件实现,用于执行AGC的处理单元可在一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑装置(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、电子装置、其它设计以执行此处说明的功能的电子单元或其组合中实现。对于固件和/或软件实现,此技术可由执行此处说明的功能的模块(例如,程序、功能等)实现。固件和/或软件码可被存储在存储器(例如,图1中的存储器182)中,并且由处理器(例如,处理器180)执行。存储器可在处理器内部或外部实现。提供公开的实施例的前述说明以使本领域中的技术人员做出或使用本发明。这些实施例的不同更改对于本领域技术人员是明显的,并且此处定义的一般性原理可被应用到其它实施例而不偏离本发明的精神或范围。这样,本发明不旨在被限制于此处显示的实施例,而是符合与此处公开的原理和新颖特性相一致的最宽泛范围。权利要求1.一种设备,包括至少一个处理器,其被配置成从多个离散增益值中选择用于模拟电路的第一增益,并且选择用于数字可变增益放大器(DVGA)的第二增益,其中所述第一增益将模数转换器(ADC)的输入处的基带信号的平均功率保持在预定范围中,并且其中,所述第二增益将来自DVGA的输出信号的平均功率保持在参考功率水平上;和连接到所述至少一个处理器的存储器。2.如权利要求1所述的设备,其中,所述基带信号为OFDM波形。3.如权利要求1所述的设备,其中,所述预定范围是所述ADC的总标度以下的至少一个特定补偿,并且其中,所述特定补偿是基于所述基带信号的峰均功率比(PAPR)、干扰信号的功率或其组合而被选择的。4.如权利要求1所述的设备,其中,所述参考功率水平是DVGA的总标度以下的特定补偿,并且其中所述特定补偿是基于所述输出信号的峰均功率比(PAPR)而被选择的。5.如权利要求1所述的设备,其中所述至少一个处理器被配置成基于功率测量更新自动增益控制(AGC)环路并且基于所述AGC环路选择所述第一和第二增益。6.如权利要求5所述的设备,其中,所述至少一个处理器被配置成基于所述AGC环路的输出和用于所述第一增益的离散增益值确定所述基带信号的所述平均功率。7.如权利要求1所述的设备,其中所述至少一个处理器被配置成当所述基带信号的所述平均功率低于低阈值时,如果可获得下一个较高的离散增益值,则选择下一个较高的离散增益值用于所述第一增益,和当所述基带信号的所述平均功率高于高阈值时,如果可获得下一个较低的离散增益值,则选择下一个较低的离散增益值用于所述第一增8.如权利要求7所述的设备,其中,所述高阈值和低阈值取决于用于所述第一增益的所述离散增益值。9.如权利要求7所述的设备,其中,所述高阈值和低阈值是基于ADC补偿和信号与量化噪声比(SQR)要求而被定义的。10.如权利要求l所述的设备,其中,所述多个离散增益值与多个增益状态相关联,其中,除了具有最低模拟增益的最低增益状态之外的每个增益状态与用于选择下一个较低的增益状态的相应的高阈值相关联,并且其中,除了具有最高模拟增益的最高增益状态之外的每个增益状态与用于选择下一个较高的增益状态的相应的低阈值相关联。11.如权利要求IO所述的设备,其中用于多个增益状态的所述高阈值和低阈值被定义以提供在增益状态间转换的预定的滞后量。12.如权利要求IO所述的设备,其中用于所述多个增益状态的所述高阈值和低阈值是可编程的。13.如权利要求1所述的设备,其中,所述至少一个处理器被配置成确定所述第一增益中的改变,和延迟在所述第二增益中应用所述改变,以使所述改变同时被应用到所述模拟电路和所述DVGA,以减小所述输出信号中的瞬变。14.一种处理器,其被配置成从多个离散增益值中选择用于模拟电路的第一增益并且选择用于数字可变增益放大器(DVGA)的第二增益,其中,所述第一增益将模数转换器(ADC)的输入处的基带信号的平均功率保持在预定范围中,并且其中所述第二增益将来自DVGA的输出信号的平均功率保持在参考功率水平上。15.如权利要求14所述的处理器,还被配置成基于功率测量更新自动增益控制(AGC)环路并且基于所述AGC环路选择所述第一和第~^增显。16.如权利要求14所述的处理器,还被配置成当所述基带信号的所述平均功率低于低阈值时,如果可获得下一个较高的离散增益值,则选择下一个较高的离散增益值用于所述第一增益,并且当所述基带信号的所述平均功率高于高阈值时,如果可获得下一个较低的离散增益值,则选择下一个较低的离散增益值用于所述第一增益。17.—种方法,其包括从多个离散增益值中选择用于模拟电路的第一增益,其中,所述第一增益将模数转换器(ADC)的输入处的基带信号的平均功率保持在预定范围中;和选择用于数字可变增益放大器(DVGA)的第二增益,其屮所述第二增益将来自DVGA的输出信号的平均功率保持在参考功率水平上。18.如权利要求17所述的方法,还包括基于功率测量更新自动增益控制(AGC)环路,并且其中基于所述AGC环路选择所述第一和第二增益。19.如权利要求17所述的方法,其中,所述选择用于所述模拟电路的所述第一增益包括当所述基带信号的所述平均功率低于低阈值时,如果可获得下一个较高的离散增益值,则选择下一个较高的离散增益值用于所述第一增益,和当所述基带信号的所述平均功率高于高阈值时,如果可获得下一个较低的离散增益值,则选择下一个较低的离散增益值用于所述第一增显o20.—种设备,包括用于从多个离散增益值中选择用于模拟电路的第一增益的装置,其中,所述第一增益将模数转换器(ADC)的输入处的基带信号的平均功率保持在预定范围中;和用于选择数字可变增益放大器(DVGA)的第二增益的装置,其中,所述第二增益将来自DVGA的输出信号的平均功率保持在参考功率水平上。21.如权利要求20所述的设备,还包括用于基于功率测量更新自动增益控制(AGC)环路的装置,并且其中,基于所述AGC环路选择所述第一和第二增益。22.如权利要求20所述的设备,其中用于选择用于所述模拟电路的所述第一增益的所述装置包括用于当所述基带信号的所述平均功率低于低阈值时,如果可获得下一个较高的离散增益值,则选择下一个较高的离散增益值用于所述第一增益的装置,和用于当所述基带信号的所述平均功率高于高阈值时,如果可获得下一个较低的离散增益值,则选择下一个较低的离散增益值用于所述第一增益的装置。23.—种由计算机程序编码的计算机可读介质,用于从多个离散增益值中选择用于模拟电路的第一增益,其中,所述第一增益将模数转换器(ADC)的输入处的基带信号的平均功率保持在预定范围中;和选择用于数字可变增益放大器(DVGA)的第二增益,其中,所述第二增益将来自所述DVGA的输出信号的平均功率保持在参考功率水平上。24.—种设备,包括至少一个处理器,其被配置成确定输出信号水平的对数(log)误差,用环路滤波器滤波所述Og误差以获得环路滤波器输出,并且基于所述环路滤波器输出确定第一增益,其中所述第一增益被用来校正所述输出信号水平中的所述log误差;和连接到所述至少一个处理器的存储器。25.如权利要求24所述的设备,其中,所述至少一个处理器被配置成使用以2为底的对数确定所述log误差。26.如权利要求24所述的设备,其中,所述至少一个处理器被配置成用环路增益按比例调整所述log误差以获得成比例的log误差,并且用所述环路滤波器滤波所述成比例的log误差以获得所述环路滤波器输出。27.如权利要求26所述的设备,其中,所述至少一个处理器被配置成在获取模式中使用所述环路增益的第一值和在跟踪模式中使用所述环路增益的第二值。28.如权利要求24所述的设备,其中,所述至少一个处理器被配置成将输入信号数字地乘以所述第一增益以获得输出信号,并且基于所述输出信号水平和参考功率水平确定所述log误差。29.如权利要求28所述的设备,其中,所述第一增益包括为2的幂的第一部分和为线性单位的第二部分。30.如权利要求24所述的设备,其中,所述至少一个处理器被配置成基于所述环路滤波器输出选择多个离散增益值中的一个,并且提供所述选择的离散增益值作为用于模拟电路的第二增益。31—种处理器,其被配置成确定输出信号水平中的对数(log)误差,用环路滤波器滤波所述log误差以获得环路滤波器输出,并且基于所述环路滤波器输出确定第一增益,其中,所述第一增益被用来校正所述输出信号水平中的log误差。32.如权利要求31所述的处理器,还被配置成将输入信号数字地乘以所述第一增益以获得输出信号,并且基于所述输出信号水平和参考功率水平确定所述log误差。33.—种方法,其包括确定输出信号水平中的对数(log)误差;用环路滤波器滤波所述log误差以获得环路滤波器输出;和基于所述环路滤波器输出确定第一增益,其中所述第一增益被用来校正所述输出信号水平中的所述log误差。34.如权利要求33所述的方法,还包括将输入信号数字地乘以所述第一增益以获得输出信号,并且其中,基于所述输出信号水平和参考功率水平确定所述log误差。35.—种设备,包括用于确定输出信号水平中的对数(log)误差的装置;用于用环路滤波器滤波所述log误差以获得环路滤波器输出的装置;和基于所述环路滤波器输出确定第一增益的装置,其中所述第一增益被用来校正所述输出信号水平中的所述log误差。36.如权利要求35所述的设备,还包括用于将输入信号数字地乘以所述第一增益以获得输出信号的装置,并且其中基于所述输出信号水平和参考功率水平确定所述log误37.—种用计算机程序编码的计算机可读介质,用于确定输出信号水平中的对数(log)误差;用环路滤波器滤波所述log误差以获得环路滤波器输出;和基于所述环路滤波器输出确定第一增益,其中,所述第一增益被用来校正所述输出信号水平中的所述log误差。38.—种设备,包括至少一个处理器,其被配置成在获取模式中以第一更新速率更新自动增益控制(AGC)环路,并且在跟踪模式中以第二更新速率更新所述AGC环路,其中所述第二更新速率低于所述第一更新速率;和连接到所述至少一个处理器的存储器。39.如权利要求38所述的设备,其中,所述至少一个处理器被配置成在获取模式中为每个OFDM符号更新AGC环路多次,和在跟踪模式中,为至少一个OFDM符号的每个持续时间更新AGC环路一次。40.如权利要求38所述的设备,其中,所述至少一个处理器被配置成在跟踪模式中在OFDM符号边界处更新所述AGC环路。41.如权利要求38所述的设备,其中,所述至少一个处理器被配置成当从休眠中唤醒吋在获取模式屮启动,并且在至少预定数目的AGC环路更新期间内保持在所述获取模式中,或直到满足退出条件才转换到跟踪模式。42.如权利要求38所述的设备,其中,所述至少一个处理器被配置成在获取模式中基于第一预定数目的采样获得功率测量,在跟踪模式中基于第二预定数目的采样获得功率测量,其中所述第二预定数目大于所述第一预定数目,并且根据所述功率测量更新AGC环路。43.如权利要求38所述的设备,其中,所述至少一个处理器被配置成在获取模式中用第一环路增益值更新所述AGC环路,并且在跟踪模式中用第二环路增益值更新所述AGC环路。44.一种处理器,其被配置成在获取模式中以第一更新速率更新自动增益控制(AGC)环路,并且在跟踪模式中以第二更新速率更新所述AGC环路,其中,所述第二更新速率低于所述第一更新速率。45.如权利要求44所述的处理器,还被配置成在所述获取模式中为每个OFDM符号更新所述AGC环路多次,并且在所述跟踪模式中为至少一个OFDM符号的每个持续时间更新所述AGC环路一次。46.如权利要求44所述的处理器,还被配置成在所述获取模式中基于第一预定数目的采样获得功率测量,在所述跟踪模式中基于第二预定数目的采样获得功率测量,其中,所述第二预定数目大于所述第一预定数目,并且根据所述功率测量更新所述AGC环路。47.—种方法,包括在获取模式中以第一更新速率更新自动增益控制(AGC)环路;禾口在跟踪模式中以第二更新速率更新所述AGC环路,其中,所述第二更新速率低于所述第一更新速率。48.如权利要求47所述的方法,其中,在所述获取模式屮以所述第一更新速率更新所述AGC环路包括,在所述获取模式中对每个OFDM符号更新所述AGC环路多次,并且其中,在所述跟踪模式中以所述第二更新速率更新所述AGC环路包括,在所述跟踪模式中对至少一个OFDM符号的每个持续时间更新所述AGC环路一次。49.如权利要求47所述的方法,还包括在所述获取模式中,基于第一预定数目的采样获得功率测量;在所述跟踪模式中,基于第二预定数目的采样获得功率测量,其中所述第二预定数目大于所述第一预定数目;禾口根据所述功率测量更新所述AGC环路。50.—种设备,包括在获取模式中以第一更新速率更新自动增益控制(AGC)环路的装置;和在跟踪模式中以第二更新速率更新所述AGC环路的装置,其中所述第二更新速率低于所述第一更新速率。51.如权利要求50所述的设备,其中用于在所述获取模式中以所述第一更新速率更新所述AGC环路的所述装置包括,用于在所述获取模式中对每个OFDM符号更新所述AGC环路多次的装置,并且其中,在所述跟踪模式中以所述第二更新速率更新所述AGC环路的所述装置包括在所述跟踪模式中对至少一个OFDM符号的每个持续时间更新所述AGC环路一次的装置。52.如权利要求50所述的设备,还包括用于在所述获取模式中基于第一预定数目的采样获得功率测量的装置;用于在所述跟踪模式中基于第二预定数目的采样获得功率测量的装置,其中所述第二预定数目大于所述第一预定数目;和用于根据所述功率测量更新所述AGC环路的装置。53.—种用计算机程序编码的计算机可读介质,用于在获取模式中以第一更新速率更新自动增益控制(AGC)环路,和在跟踪模式中以第二更新速率更新所述AGC环路,其中,所述第二更新速率低于所述第一更新速率。全文摘要本发明描述了用于在无线接收机处执行自动增益控制(AGC)的技术。无线接收机的总增益可通过模拟电路的离散增益级和数字可变增益放大器(DVGA)的连续增益实现。基于来自DVGA的输出信号的功率测量更新AGC环路。基于AGC环路从多个离散增益值中选择用于模拟电路的第一增益,以将模数转换器(ADC)输入处的基带信号的平均功率保持在预定范围中。基于AGC环路选择DVGA的第二增益以将输出信号的平均功率保持在参考功率水平。第一增益以防止由基带信号产生的ADC的饱和及提供转换滞后的方式被转换。AGC可在log域中并且用多种模式执行。文档编号H03G3/30GK101171746SQ200680015986公开日2008年4月30日申请日期2006年3月13日优先权日2005年3月11日发明者L·李,R·克里希纳穆蒂,V·默西申请人:高通股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1