用于压控振荡器的系统和方法与流程

文档序号:15882659发布日期:2018-11-09 18:16阅读:236来源:国知局

本公开总体上涉及电子设备,更具体地,涉及用于压控振荡器(VCO)的系统和方法。



背景技术:

毫米波频率领域的应用由于低成本半导体技术(诸如硅锗(SiGe)和精细几何互补金属氧化物半导体(CMOS)工艺)的快速发展而在过去几年得到广泛关注。高速双极和金属氧化物半导体(MOS)晶体管的可用性导致对60GHz、77GHz和80GHz以及超过100GHz的mm波应用的集成电路的需求增加。这种应用例如包括汽车雷达和数千兆位通信系统。

在一些雷达系统中,雷达和目标之间的距离通过以下处理来确定:发射频率调制信号、接收频率调制信号的反射以及基于频率调制信号的发射和接收之间的时间延迟和/或频率差来确定距离。雷达系统的分辨率、精度和敏感度可部分地取决于雷达的频率发生电路的相位噪声性能和频率捷变,其中频率发生电路通常包括RF振荡器和控制RF振荡器的频率的电路。

然而,随着RF系统的工作频率的持续增加,这种高频率下信号的生成面临重大挑战。在高频下操作的振荡器会经受由包括VCO的设备中的1/f和热噪声所引起的较差的相位噪声性能。



技术实现要素:

根据一个实施例,一种压控振荡器(VCO)包括:VCO核,具有多个晶体管;以及变容二极管电路,具有耦合至VCO核的发射极终端的第一端和耦合至调谐终端的第二端。变容二极管电路包括随着相对于VCO核的发射极终端的施加给调谐终端的电压的增加而增加的电容。

附图说明

为了更完整地理解本发明及其优势,现在结合附图进行以下描述,其中:

图1包括示出了示例性汽车雷达系统的操作的图1a和图1b、示出了传统VCO的示意图的图1c、示出了传统VCO的性能的图1d以及示出了示例性频率发生系统的框图的图1e和图1f;

图2示出了示例性VCO的示意图;

图3示出了另一示例性VCO的示意图;

图4示出了又一示例性VCO的示意图;

图5示出了用于示例性VCO的频率对调谐电压的曲线图;

图6示出了示例性方法的框图;以及

图7示出了示例性雷达系统。

不同附图中的对应数字和标号通常表示对应的部分,除非另有指定。绘制附图以清楚地示出优选实施例的相关方面而没有必要按比例绘制。为了更清楚地示出特定实施例,表示相同结构、材料或工艺步骤的字母可以跟随在附图标号后面。

具体实施方式

以下详细讨论优选实施例的制造和使用。然而,应该理解,本发明提供了许多可在各种具体条件下具体化的可应用发明概念。所讨论的具体实施例仅仅是制造和使用本发明的具体方法,而不用于限制本发明的范围。

现在将在具体条件下(用于雷达系统的系统和方法,诸如汽车雷达系统)参照优选实施例描述本发明。本发明还可应用于使用RF振荡器的其他系统和应用,诸如一般的雷达系统和无线通信系统。

在本发明的实施例中,VCO的调谐特性被配置为使得VCO的频率随着施加给VCO的变容二极管电路的电压的增加而减小。通过配置VCO的调谐特性使得VCO随着电压的增加而减小,VCO以最低kvco和最低相位噪声操作的区域对应于低或最小电压。相应地,示例性VCO可以以具有低控制电压的操作的高性能和低噪声区域进行操作。例如,这种实施例适合于具有低电源电压的系统中的操作。

图1a示出了示例性汽车雷达场景100,其中汽车102具有汽车雷达系统104。汽车雷达系统104例如发射和接收频率调制连续波(FMCW)信号,并检测该发射信号的反射以确定汽车雷达系统104与道路上的其他车辆或对象之间的距离。在所示场景中,诸如卡车的大型汽车16比诸如摩托车的小型车辆108更接近汽车102。在正常操作条件下,大型车辆106的回声或反射的幅度大于小型车辆108的反射,因为大型车辆106与小型车辆108相比更大且更接近汽车102。

图1b示出了针对图1a的场景的接收信号水平对接收频率的曲线图120。信号水平对频率曲线122对应于来自大型车辆106的接收反射,并且信号水平峰值130的频率f1对应于汽车雷达系统104和大型车辆106之间的距离。类似地,信号水平对频率曲线126对应于来自小型车辆108的接收反射,并且信号水平峰值132的频率F2对应于汽车雷达系统104和小型车辆108之间的距离。相应地,大型车辆106和小型车辆108之间的距离与频率F1和F2之间的间隔成比例。

与期望的输出信号一起,雷达发射器的相位噪声也被发射和接收。从大型车辆106反射的相位噪声被表示为虚线124。如曲线图120所示,相位噪声124影响雷达接收从小型车辆108反射的信号的能力。由于小型车辆108的信号水平峰值132与由于从大型车辆106反射的相位噪声的对应本底噪声之间的信噪比被表示为长度134。从图1b的曲线图可以看出,相位噪声影响汽车雷达系统104识别小型和遥远对象的能力。雷达发射器的相位噪声越大,雷达系统能够识别小型和遥远对象的能力就越弱。

图1c示出了根据“推-推”架构的传统VCO 150。VCO包括VCO核(具有晶体管153和电感器154)、匹配网络152、变容二极管158和电流源160。晶体管153根据偏置电压Vbias而被偏置,并且变容二极管158的电容根据调谐电压Vtune而调整。VCO 150的振荡频率近似为:

其中,L154是电感器154的电感,C158是变容二极管158的电容。VCO 150的输出为Vout,其提供fOSC的两倍的输出频率。

变容二极管158可以实施为与施加于其终端两侧的电压成反比的二极管电容。如图所示,调谐电压Vtune耦合至组成变容二极管158的变容二极管的阴极。随着调谐电压Vtune相对于地增加,变容二极管逐渐变得反向偏置,并且变容二极管158的电容也具有对应的下降。电容相对于所施加电压的这种下降可以归因于反向偏置二极管中的耗尽区域的宽度随二极管两端电压的增加而增加。由于VCO 150的振荡频率fOSC与变容二极管158的电容C158成反比,所以振荡频率fOSC随着调谐电压Vtune的对应增加而增加。

在图1d中的曲线170中示出了振荡频率fOSC与调谐电压Vtune之间的示例性关系。在图1d中还示出了表示VCO增益Kvco相对于Vtune的曲线172以及表示相位噪声PNssb相对于Vtune的曲线174。如图所示,相位噪声PNssb随着所施加的调谐电压Vtune的增加和VCO增益Kvco的降低而降低。

由于最好的相位噪声性能的区域对应于更高的施加Vtune电压,所以其对于设计利用这些VCO的低压系统来说是具有挑战的。例如,如果诸如PLL的特定低压系统被限制为仅传输大约0.2V和大约2.0V之间的调谐电压,则系统不能够在操作的最低相位噪声区域中操作VCO。这会在确保可用调谐电压范围映射到具有充分相位噪声性能的特定输出频率范围方面存在系统设计挑战。

图1e示出了具有前端电路182的示例性RF系统180的框图,前端电路182包括RF振荡器184,通过微控制器单元(MCU)188中的数模转换器(DAC)187控制RF振荡器184的频率。如图所示,前端电路182可以在与MCU 188独立的封装件中和/或独立的集成电路管芯上实施。在一个实施例中,前端电路182可以在实施RF晶体管(诸如SiGe HPT)和其他类型的晶体管的高性能RF工艺中实施。另一方面,MCU 188可以使用精细几何CMOS工艺来实施。在一个实施例中,前端电路182可以包括又一DAC 186以驱动附加的调谐端口。在一些实施例中,可施加于MCU 188的最大电源电压通过制造MCU 188的具体半导体工艺来限制。在一些情况下,该最大电源电压可以为大约1.2V,然而,不同的半导体工艺能够容忍不同的最大电源电压。在一个示例中,可由DAC提供的可用调谐电压范围可以在大约0.2V和大约1V之间。例如使用电平移位器185来修改该调谐范围。

在一个实施例中,除了执行被实施的具体RF系统的其他功能之外,MCU 188可用于实施基于数字和/或软件的PLL。与PLL相比,软件PLL可在示例性雷达或通信系统中使用,以利用较高偏移频率(即,1MHz偏移)处的较低相位噪声来用于自由运行VCO。

根据又一实施例,如图1f所示,RF前端电路182以及系统的MCU功能可以在单个MCU集成电路190上实施。MCU集成电路包括用于调整振荡器184的DAC 186和187。

在一个实施例中,VCO的调谐特性被反转,使得较低的调谐电压对应于具有较低相位噪声的操作区域。图2示出了具有这种调谐特性的示例性VCO 200。如图所示,VCO 200包括VCO核202、包含变容二极管230的变容二极管电路204以及偏置电路210和电压参考电路260。VCO核202包括晶体管212、电容器214和传输线元件216,传输线元件216以及在VCO 200中使用的其他传输线元件可以使用微带结构和/或本领域已知的其他传输线结构来实施。在一个实施例中,VCO被配置为在大约5GHz和大约40GHz之间的频率处振荡,例如大约20GHz。然而,在可选实施例中,可以使用其他振荡频率范围。传输线元件216的尺寸被确定为在晶体管212的基极处产生电感性阻抗。通过经由传输线元件222耦合至VCC的偏置电路210来提供晶体管212的基极的基极电压。在一个实施例中,传输线元件222的尺寸被确定为在VCO 200的振荡频率的两倍处具有四分之一波长。在一些实施例中,经由具有传输线元件240和电容器242的偏置过滤网络207来过滤偏置电压VBIAS。在一些实施例中,传输线元件240具有大约为VCO 200的振荡频率的四倍的四分之一波长。

晶体管212的集电极经由传输线元件218、反馈电阻器220和传输线元件222耦合至VCC。在一个实施例中,传输线元件218的尺寸被确定为使得信号摆幅最大化。在一些实施例中,反馈电阻器220缓解使变容二极管230的调谐曲线失真的高VCO振幅的自偏置效应,如2013年9月30日提交的美国专利申请第14/041,931中所描述的,其内容结合于此作为参考。在一些实施例中,对于大约为20mA的偏置电流,反馈电阻器的电阻在大约5Ω和大约10Ω之间。可选地,可以使用偏置电流和用于反馈电阻器220的其他电阻值。

变容二极管204包括变容二极管元件230、AC耦合电容器228、串联传输线元件232和包括传输线元件234的RF扼流(choke)电路。在一些实施例中,经由传输元件234向变容二极管电路提供偏置电压。提供该偏置电压的节点235可以称为变容二极管参考终端。如图所示,变容二极管元件230的阳极耦合至调谐电压Vtune。在一些实施例中,经由具有传输线元件244和电容器246的偏置过滤网络208来过滤调谐电压VTUNE。在一些实施例中,传输线元件240具有大约为VCO 200的振荡频率的四倍的四分之一波长。每个RF扼流电路和传输线元件232的组合可以形成感应式分压器。在一个实施例中,AC耦合电容器228允许变容二极管230基于所施加的调谐电压Vtune和参考电压Vn1来偏置。串联传输线元件232和AC耦合电容器228形成串联谐振电路,其允许振荡器的基本频率传输至变容二极管同时衰减VCO 200的谐波。在一些实施例中,串联传输线元件232可以使用在一个示例中具有大约400μ的长度的传输线来实施。在另一示例中,串联传输线元件232的长度可以在大约100μ和大约500μ之间。然而,应该理解,根据实施例及其具体说明书,串联传输线元件232的长度可以在该范围外。在一些可选实施例中,可以使用电感式元件来实施串联传输线元件232。

在一个实施例中,包括传输线元件234、236和电容器238的RF扼流电路在大约为VCO 200的振荡频率的两倍处产生针对晶体管212的发射极的高阻抗,并且在振荡频率的其他谐波处提供较低的阻抗。通过经由串联传输线元件232和RF扼流电路向振荡谐波提供较低的阻抗,由于变容二极管的降低的非线性行为而改善了相位噪声。

电压参考电路260向变容二极管230的阴极提供偏置电压。在一个实施例中,电压参考电路260包括电阻器268,其经由传输线元件222以及二极管262、264和266耦合至VCC。在本发明的可选实施例中,电压参考电路260可以包括比图2所示三个二极管262、264和266更多或更少的二极管。在一个实施例中,二极管262、264和266两端的电压限定Vtune的电压范围。例如,VCO 200可以具有大约0V和大约三个二极管压降之间的调谐电压范围。如果二极管262、264和266是具有大约0.7V的正向电压的硅二极管,则输入调谐电压范围在0V和大约2.1V之间。

在一个实施例中,变容二极管的电容对电源电压VCC的敏感性根据使用电阻器268而降低。例如,随着电源电压VCC的降低,通过电阻器268的电流减小,从而引起电阻器268两端的电压的对应降低。电阻器268两端的电压的这种降低衰减了变容二极管230两端的电压的降低。

VCO 200的输出VOUT经由传输线元件224和226(将VCO核与输出隔离)耦合至晶体管212的发射极,从而迫使VCO的基本信号保留在VCO核中。因此,VCO 200的输出频率是VCO核的振荡频率的两倍。这还提高了谐振器的质量因子,并产生更好的相位噪声性能。通过传输线元件248和偏置电阻器250提供用于晶体管212的尾电流。在一个实施例中,传输线元件248在VCO 200的振荡频率的两倍处具有四分之一波长。

应该理解,在一些实施例中,VCO 200内的传输线的尺寸可以根据具体实施例及其说明书而随上述长度和对应波长变化。

图3示出了根据本发明的又一实施例的VCO 270。VCO 270类似于图2所示VCO 200,除了变容二极管230的阴极使用低压差电压调节器(LDO)272(代替电压参考电路260)来参考。LDO 272例如可以使用本领域已知的低压差电压调节器来实施,例如使用顺序通道晶体管的线性调节器。可选地,可以使用其他已知的电压调节器电路。在一些实施例中,使用低噪声电路来实施LDO 272。在一些实施例中,LDO 272可以在与VCO 270相同的集成电路上实施,或者可以在VCO 270外实施。

图4示出了根据本发明的另一实施例的VCO 280。VCO 280类似于图3所示的VCO 270,除了LDO 282耦合在VCC和传输线元件222之间。如图所示,变容二极管230的阴极经由由传输元件234实施的RF扼流电路连接至传输线元件222。在实施例中,LDO 282可以在与VCO 280相同的集成电路上实施,或者在设置VCO 280的集成电路外实施。

图5示出了对于VCO的实施例的振荡频率相对于所施加的调谐电压Vtune的曲线。如图所示,振荡频率随着施加的调谐电压Vtune的增加而降低。在所示的具体调谐曲线中,可以利用大约0.5V和大约2.5V之间的施加调谐电压来调整大约60.25GHz和大约65.25GHz的振荡频率范围。在许多实施例中,在各种标准CMOS半导体工艺中实施使用DAC支持的该电压范围。

图6示出了操作示例性VCO的示例性方法的框图400,其中示例性VCO包括具有多个晶体管的VCO核以及变容二极管电路,其中变容二极管电路的第一端耦合至VCO核的发射极终端且第二端耦合至调谐终端。如根据本文的实施例所讨论的,变容二极管电路包括随着相对于VCO核的发射极终端施加于调谐终端的电压的增加而增加的电容。

在步骤402中,通过降低相对于VCO核的发射极终端施加给调谐终端的电压来增加VCO的频率。在步骤404中,通过增加相对于VCO核的发射极终端施加给调谐终端的电压来降低VCO的频率。通过执行步骤402和404,可以调整振荡频率。在一个实施例中,通过降低VCO的调谐电压增加VCO的频率的步骤402使得VCO在操作的较低相位噪声区域中进行操作。

图5示出了包括升频器502、功率放大器504和频率发生电路506的单芯片雷达传输系统500。如图所示,升频器502将基带信号BB升频为更高频的信号,然后该信号被功率放大器504放大且在管脚OUT上输出。在一些实施例中,基带信号BB可以是用于雷达系统的扫频或其他信号类型。频率发生电路506基于管脚REF上的参考频率产生本地振荡器信号LO,其例如使用晶体振荡器来生成。在一个实施例中,频率发生电路506使用具有相位检测器512、环路滤波器510、VCO 508和分频器514的锁相环(PLL)来实施。VCO 508可以使用本文描述的示例性VCO来实施。在一些实施例中,可以使用数字电路和本领域已知的系统以及使用模拟电路来数字地执行相位检测器512、环路滤波器510的功能。例如,这些功能可以使用定制数字逻辑、标准单元数字逻辑来实施和/或可以以在处理器、微控制器或数字信号处理器上运行的软件来实施。这些处理器例如可以包括处理器核、耦合至处理器核的存储器以及一个或多个输入/输出端口。可选地,本领域已知的其他电路和系统可用于实施这些功能。应该理解,系统500仅仅是可利用示例性振荡器的示例性系统的许多示例中的一个示例。可选系统例如可以使用无线和有线通信系统以及使用VCO的其他系统。

根据一个实施例,压控振荡器(VCO)包括具有多个晶体管的VCO核以及变容二极管电路,其中变容二极管电路具有耦合至VCO核的发射极终端的第一端和耦合至调谐终端的第二端。变容二极管电路包括随着相对于VCO核的发射极终端施加于调谐终端的电压的增加而增加的电容。

实施方式可以包括以下特征中的一个或多个。在一个实施例中,变容二极管电路包括:第一电容器,其第一终端耦合至VCO核的第一发射极终端;第一变容二极管,其阴极耦合至第一电容器的第二终端,且阳极耦合至调谐终端;以及RF扼流电路,耦合在第一电容器的第二终端和变容二极管参考终端之间。VCO可进一步包括耦合至变容二极管参考终端的电压参考电路。在一些实施例中,电压参考电路包括:电阻器,耦合在第一参考终端和变容二极管参考终端之间,其中第一参考终端耦合至VCO核的集电极终端;以及二极管,耦合在变容二极管参考终端和第二参考终端之间。该二极管可包括多个二极管,和/或第二参考终端可以是地终端。

在一个实施例中,电压参考电路包括耦合在变容二极管参考终端和第一参考终端之间的电压调节器。电压调节器例如可以包括低压差(LDO)电压调节器。第一参考终端可以耦合至VCO核的集电极终端,和/或VCO核的集电极终端可以耦合至变容二极管参考终端。变容二极管参考终端可以经由第二电阻器耦合至VCO核的集电极终端。

在一些实施例中,VCO包括耦合至VCO核的发射极终端的输出节点。VCO可以具有大约10GHz和大约30GH在之间的操作频率。

根据又一实施例,一种VCO包括具有多个晶体管的VCO核以及耦合至VCO核的发射极终端的变容二极管电路。变容二极管电路包括:第一电容器,其第一终端耦合至VCO核的第一发射极终端;第一传输线元件,其第一终端耦合至第一电容器的第二终端;第一变容二极管,其阴极耦合至第一传输线元件的第二终端,阳极耦合至调谐终端;以及RF扼流电路,耦合在第一电容器的第二终端和变容二极管参考终端之间。VCO进一步包括耦合在第一参考终端和VCO核之间的反馈电阻器以及电压参考电路,其中电压参考电路具有耦合至变容二极管参考终端的输出节点。

实施方式可以包括以下特征中的一个或多个。电压参考电路包括:第一电阻器,耦合在第一参考终端和变容二极管参考终端之间;以及至少一个二极管,耦合在变容二极管参考终端和第二参考终端之间。VCO可进一步包括耦合在VCO核的发射极终端与第二参考终端之间的偏置电阻器。

在一些实施例中,电压参考电路包括电压调节器,其耦合在第一参考终端和变容二极管参考终端之间。在一些实施方式中,电压调节器耦合在第一参考终端和反馈电阻器之间,并且变容二极管参考终端耦合至反馈电阻器。

根据另一实施例,操作VCO的方法包括:通过相对于VCO核的发射极终端降低施加给调谐终端的电压来增加VCO的频率;以及通过相对于VCO核的发射极终端增加施加给调谐终端的电压来降低VCO的频率。VCO包括具有多个晶体管的VCO核以及变容二极管电路,其中变容二极管电路的第一端耦合至VCO核的发射极终端且第二端耦合至调谐终端,其中变容二极管电路包括随着相对于VCO核的发射极终端施加给调谐终端的电压的增加而增加的电容。

实施方式可以包括以下特征中的一个或多个。在该方法中,变容二极管电路包括:第一电容器,第一终端耦合至VCO核的第一发射极终端;第一变容二极管,阴极耦合至第一电容器的第二终端且阳极耦合至调谐终端;以及RF扼流电路,耦合在第一电容器的第二终端和变容二极管参考终端之间。在一些实施例中,该方法还包括偏置变容二极管参考终端。偏置变容二极管参考终端可包括向变容二极管参考终端施加电压参考电路的输出。

本发明的实施例的优势包括生成具有非常低的相位噪声的频率的能力。又一优势例如包括宽VCO调谐范围。

虽然参照所示实施例描述了本发明,但说明书不用于限制。本领域技术人员在阅读说明书的基础上可以明白所示示例的各种修改和组合以及本发明的其他实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1