检测重新入网初始化的制作方法

文档序号:18943519发布日期:2019-10-23 01:21阅读:174来源:国知局
检测重新入网初始化的制作方法

本公开涉及一种用于检测连接照明系统中的重新入网输出化的方法。



背景技术:

连接照明是指并非由(或者不仅由)传统的连线、电气通断(on-off)或调光器电路所控制,而是通过使用数据通信协议经由有线或更常见的无线连接——例如有线或无线网络——来控制的一个或多个发光器的系统。通常,发光器或者甚至发光器内的单独灯具可以各自配备有无线接收器或收发器以便根据诸如zigbee、wi-fi或蓝牙之类的无线联网协议从照明控制设备接收照明控制命令(以及可选地还用于使用无线联网协议向照明控制设备发送状态报告)。该照明控制设备可以采用用户终端的形式,例如诸如智能电话、平板电脑、膝上型电脑或智能手表的便携式用户终端;或者诸如台式计算机或无线壁面板的静态用户终端。在这样的情况下,照明控制命令可以源自于在用户终端上运行的应用,或者是基于由用户通过用户终端的用户接口(例如,触摸屏或点击式(point-and-click)接口)提供至应用的用户输入,和/或基于该应用的自动化功能。用户装备可以直接地,或经由诸如无线路由器、接入点或照明桥接器之类的中间设备向发光器发送照明控制器命令。

具有多个发光器和传感器的智能照明系统正在见证稳定增长。这样的系统使用例如占用或周围亮度测量形式的传感器输入来控制发光器的光输出并且将人为照明条件适应于普遍的环境条件。来自这样的智能照明系统中的传感器的数据越来越多地被存储在云端或者某后端数据库中。因此,在很长时段上的传感器和发光器控制数据(例如,占用、光传感器、能量消耗值)变得在分析引擎处可用。这就向例如围绕能源管理和空间利用提供启用新数据的分析和服务提供了可能性。

us8,159,156中考虑了一种对照明系统入网初始化的方法,其包括使得光源发射信号,在与每个光源共同定位的光传感器处检测该信号,并且将光传感器所获得的信号转换为距离测量以便创建光源的距离图谱。

us2016/323393a1公开了用于存在确定的方法、系统和装置,包括在计算机存储介质上编码的计算机程序。方法之一包括针对具有一个或多个相关联用户的一个或多个用户设备,确定用户的当前位置,其中该当前位置与多个不同空间的特定空间相关联。

ep3128817a1公开了用于基于vlc的室内定位系统的入网初始化和验证方法,并且应对填充用于基于vlc的照明系统的入网初始化数据库的方法。一种照明系统,包括在环境中的已知位置处安装的多个发光器。每个发光器被配置为向该环境中发射唯一的发光器标识符。数据库保存多个位置标识符,多个位置标识符中的每个位置标识符标识已知位置之一。基于位置标识符标识通过该环境的路线,该路线穿越多个已知位置。通过沿该通过环境的路线移动光学检测器所生成的数据被接收,该数据传达了该光学检测器从在沿该路线移动中遇到的发光器所检测到的发光器标识符的序列,该序列处于检测到的顺序。针对该序列中的至少一个发光器标识符通过以下来执行数据库更新:标识它在该序列中的方位,并且基于至少一个发光器标识符以及其在该序列中的所标识的定位来更新数据库。



技术实现要素:

然而,在照明系统在一个地点处初始安装之后,发光器和/或传感器的定位可能发生改变但是不一定在云端或后端数据库中被更新。诸如发光器和/或传感器的添加或移除之类的其它变化也可能发生。当这样的重新入网初始化发生时,将各种数据流与适当上下文信息正确关联很重要。在大多数系统中,这涉及到(易于出错的)手动介入,其中入网初始化员或用户在由照明系统照亮的环境中四处移动的同时收集照明系统的操作数据,并且将所收集到的数据报告给云端或后端数据库。作为结果,将期望开发一种可以自动检测这样的变化的方式。

本发明考虑具有连接至后端或控制系统的多个传感器和发光器的连接照明系统,具有能够在分析引擎处可用的数据。收集并分析来自连接照明系统的数据的可能性提出了围绕能源管理和空间利用启用新数据的分析和服务。这样的分析的示例是有助于标识出灯具和/或传感器故障的照明能耗趋势,以及指示不同应用区域的利用的空间利用度量。

在传达这样的分析和服务中的挑战之一是重新入网初始化。重新入网初始化是在初始安装之后,发光器和/或传感器的方位在一个地点处随时间发生变化。然而,这些变化在分析引擎处可能是未知的并且随后会对数据解释有所影响。

发明人已经意识到,为了解决以上问题需要解决以下问题:自动检测重新入网初始化使得所产生的分析仍然是可靠的。因此,问题就变成了如何自动检测重新入网初始化的问题。

当前描述呈现了一种用于确定是否已经存在重新入网初始化的动作的方法,其中措辞“重新入网初始化”描述了改变连接照明系统使得原始入网初始化信息不再准确的动作。也就是说,本申请所关心的是自动检测重新入网初始化的发生,在重新入网初始化中设备在已经入网初始化的连接照明系统内已经移动了位置。在使用当前所描述的技术首先检测未被记录的入网初始化变化的出现之后,随后可以手动地或自动地对入网初始化信息做出更正以考虑该动作。这样的更正是以上提到的现有技术的方法中所描述的那些更正。us8,159,156公开了用于检测发光器的方位的过程,但是其并未公开当这样的过程需要被重新运行时如何检测或触发。

发明人已经意识到,重新入网初始化的自动检测可以通过基于聚类技术检测附近范围(vlc代码、数据库条目)内的照明信号特征和相对应id(例如,rssi/ssid)的集合中的变化来实现。通常,“照明信号特征”、“信号特征”或简单地“特征”可以被定义为连接照明系统的发光器和/或传感器所生成的信号的特性或属性。“数据聚类”是指数据分类到不同群组中或者将数据集合划分为不同子集,其中该子集中的每个数据在理想情况下共享一些共同特质(trait)。这些照明信号特征被用来表征数据簇(datacluster)。重新入网初始化的检测将显示针对位置关于一个或多个照明信号特征的异常值。类似地,通过关于时间检测对应于位置的点亮小时数简档的变化,也可以通过检测点亮小时数的变化而检测到位置变化(例如,在简档被更新时,但是地图上的位置却未被更新)。

因此,根据本文所公开的第一方面,提供了一种自动检测照明系统中的变化的方法,照明系统包括各自包括发光器和/或传感器的多个设备,其中设备中的每个相应设备具有记录在入网初始化数据库中的、与相应设备报告的数据相关联的相应位置;方法包括:

标识位于预定空间划界内的所述设备的子集;自动监测所述子集中的设备中的每个设备的特性的相应值,由此形成包括所述子集中的设备的所述特性的值的数据簇;通过检测数据簇中的值中的一个值相对于值中的其余值的偏移而自动检测子集中的设备之一已经发生变化;以及响应于所述检测,自动输出入网初始化数据库很可能需要更新以反映变化的指示。

比如,该空间划界可以是特定的一个或多个房间、特定建筑物、房间或建筑物内的特定分区、建筑物的某一侧或者具体的室外区域。在一个特定示例中,该空间划界可以是与该子集的设备相关联的控制分区,例如移动用户终端在其中被准许访问设备(诸如在设备包括照明源的情况下控制所发射的照明)、但是移动用户终端在其之外则不被允许访问的分区。

在实施例中,所述多个设备或所述设备子集的设备中的一个、一些或全部可以各自采用发光器的形式,各自包括照明源中相应的一个照明源以及可选地传感器中相应的一个传感器。可替换地或另外地,所述多个设备或所述子集的设备中的一个、一些或全部可以各自采用包括所述传感器中相应的一个传感器(但是不包括照明源)的专用传感器单元的形式。

在实施例中,所述输出可以包括向照明系统的诸如入网初始化技术人员或操作人员之类的用户输出警告用户该数据库需要更新以反映该变化的指示。可替换地,所述输出可以包括输出信号以触发该照明系统结合任意适当定位技术使用向该设备传送或从该设备传送的无线信号来自动检测所移动设备的新位置,所述定位技术诸如三角计算、三边测量、多点定位或指纹识别。另一种可能性是该信号提示用户或自动使得系统从对数据库中的数据所执行的分析中排除所移动设备。

该方法可以由照明系统的任意适当的一个或多个组件来执行,例如在服务器上执行,或者在照明桥接器或专用控制单元中执行。该方法的功能性可以由存储在计算机可读存储上并且被布置为在所讨论的(多个)组件的一个或多个处理单元上运行的软件来实施,或者可以在(多个)组件的专用硬件电路中实施,或者以硬件和软件的任何组合来实施。

在实施例中,所述偏移的检测包括评价组合数据簇的值的度量,并且以所述度量来检测偏移。

在实施例中,所述度量包括所述数据簇值的形心。

在实施例中,所述特性包括无线节点从所述子集中的设备中的每个设备所接收的无线信号的属性,该值是所述接收信号的所述属性的相应测量。

在实施例中,所述属性包括所接收信号强度和/或飞行时间和/或到达角。

在实施例中,所述无线节点是位于所述空间划界内的设备中的另一个设备。

比如,无线信号可以是rf信号、超声信号或光学信号(例如,在每个设备包括照明源的情况下,嵌入在各个发射照明中的经编码光信号)。

在实施例中,所述特性包括测量每个设备的使用的参数。

在实施例中,所述参数包括该设备的能耗。

在实施例中,该子集中的设备的每个设备包括发光器,并且所述参数包括发光器的点亮小时数的数量。

在实施例中,所述子集中的设备中的每个设备包括传感器,并且所述特性包括每个传感器所感测到的传感器读数。

在实施例中,所述子集中的传感器中的每个传感器包括光传感器,并且传感器读数包括光照水平读数。

在实施例中,所述子集中的传感器中的每个传感器包括存在传感器,并且传感器读数包括存在感测结果。

在实施例中,所述特性包括用户应用于每个设备的控制设置。

在实施例中,所述子集中的设备中的每个设备包括照明源,并且所述设置包括每个照明源的调光水平。

根据本文所公开的第二方面,提供了一种用于检测照明系统中的变化的装置,照明系统包括各自包括发光器和/或传感器的多个设备,其中设备的每个相应设备具有记录在入网初始化数据库中的、与相应设备报告的数据相关联的相应位置;装置包括一个或多个处理单元,一个或多个处理单元被布置为从包括一个或多个存储器设备的计算机可读存储装置取得代码并运行代码,代码被配置为使得在一个或多个处理单元上运行时执行下述操作:针对位于预定空间划界内的所述设备的子集;自动监测所述子集中的设备中的每个设备的特性的相应值,由此形成包括所述子集中的设备的所述特性的值的数据簇;通过检测数据簇中的值中的一个值相对于值中的其余值的偏移而自动检测子集中的设备之一已经发生变化;以及响应于所述检测,自动输出入网初始化数据库很可能需要更新以反映所述变化的指示。

附图说明

为了帮助理解本公开并示出可以如何将实施例付诸实践,通过示例的方式参考附图,在附图中:

图1示出了示例连接照明系统;

图2示出了包含与子集的示例相关的照明数据的表格;

图3示出了说明入网初始化变化的检测结果的rssi数据的数据聚类;

图4示出了重新入网初始化的示例;

图5a和图5b分别示出了楼层平面图5a和楼层平面图5b,其中楼层平面图5b图示了已经发生一个或多个重新入网初始化动作之后的楼层平面图5a;以及

图6a和图6b示出了图示在所有会议室汇总的占用水平的时间趋势的两个图表,其中图表6a包括在重新入网初始化之前报告的数据,并且图表6b包括在重新入网初始化之后报告的数据。

具体实施方式

本文所描述的发明考虑了具有连接至后端或控制系统的多个传感器和发光器的连接照明系统,具有存储在数据库中的能够在分析引擎处使用的数据。收集并分析来自这样的系统的数据的可能性提供了关于能量管理和空间利用的启用新数据的分析和服务。在传达这样的分析和服务中的挑战之一是重新入网初始化。在初始安装之后,发光器和/或传感器的方位在客户现场可能随时间发生变化。此外,也可能发生诸如添加或移除发光器和/或传感器的其它变化。然而,这些变化在分析引擎处可能是未知的。这对于对数据解释有所影响。因此将期望开发自动检测入网初始化变化的方法。

具有多个发光器和传感器的连接智能照明系统要求复杂的入网初始化和配置软件以管理系统。当发生重新入网初始化时,所采取的典型步骤是检查照明控制功能性,例如如果占用传感器触发,该房间中的发光器是否开启。然而,重新入网初始化对于发光器和传感器所生成的数据以及它们与位置的关联也具有影响。因此,发明人已经意识到需要解决如“重新入网初始化如何能够被自动检测”的问题。

图1示出了根据本发明实施例的示例连接照明系统100。环境103包含多个灯具101a-d和开关105。灯具101a-c是吸顶型灯具,其被设计成从上方提供环境103中的光照。灯具101d是放置在桌子上的独立式(free-standing)灯类型的灯具,其被设计成从比吸顶型灯具101a-c更低的方位提供环境103中的光照。发光器101a-d中的每一个可以是任何适当类型的发光器,诸如白炽灯、荧光灯、led照明设备等。多个灯具101a-d可以包括多于一种类型的灯具,或者每个灯具101a-d可以是相同类型的。发光器可以共同定位在还容纳一个或多个传感器107的照明单元106内部。这些传感器可以是适于收集可以提供有关连接照明系统及其如何工作的信息的数据的亮度传感器、占用传感器,或者任何其它类型的传感器。

基本发光器可以简单地由一个或多个灯泡(例如,led、灯丝灯泡或气体放电灯具)以及任意相关联的支撑结构所组成。其它发光器例如也可以包括相关联的壳体或外壳,虽然另外的可能并非如此。发光器可以采用传统的天花板或墙壁安装的室内发光器的形式,或者立式发光器(诸如地灯或桌灯,或者便携式发光器);或者其可以采用不太传统的形式,诸如嵌入在表面或家具之中或安装于其上的led灯带、洗墙灯,或者适配以用特殊方式提供照亮的任何其它形式的照亮设备。用于与桥接器307进行通信的组件(例如,适用的专用电路、fpga、处理器和附随软件(例如,固件))可以利用标准配件被整合在灯泡中,以允许将连接照明的功能性容易地改造(retrofit)为现有的非专用照明系统。然而,这并非是必要的,并且这些通信组件一般可以被整合在照明系统中的任意适当位置以允许发光器和桥接器307之间的通信。

注意到,术语“发光器”、“光源”、“照明源”可以在本文中用于指不仅发射任何光而且还发射特殊照明的设备,所述特殊照明即适于对一人或多人所占据的环境的照明有所贡献的规模的光照(使得人类住户能够因此在物理空间中观看)。还注意到,术语“照明”也指这种意义上的照明。

开关105在图1中示出为壁装式开关,并且可以是允许用户输入控制多个灯具101a-d的任何合适类型的开关。例如,开关105可以是简单的通断控制器开关,或者可以允许更复杂的控制,诸如调光以及甚至可能控制诸如色调和饱和度的各个照明特性。开关105也可以是能够从一个环境移动到另一环境的便携式开关(便携式遥控器)。术语“开关”在本文中用于指代允许用户将命令输入到照明系统中的任何控制设备。

多个灯具101a-d、开关105连同照明桥接器307和多个传感器107一起形成连接的照明网络。也就是说,它们全部通过由图1中的虚线所指示的无线连接和/或有线连接互连。特别地,图1示出了诸如可以在zigbee照明网络中实现的“链接(chaining)”连接,其中不需要每个设备直接连接到每个其他的设备。相反,设备能够中继通信信号,该通信信号允许例如灯具101c通过将数据通过灯具101b和101a中继到照明桥接器307而与照明桥接器307通信。然而,不排除其他网络拓扑可以被采用。例如,可以使用“中心辐射(hub-and-spoke)”拓扑,其中每个设备(例如,无线地)直接连接到照明桥接器307而不连接到网络中的任何其他设备。

作为另一示例,可以根据一种通信协议(诸如zigbee)来配置网络中的每个灯具,并且可以根据另一通信协议(诸如wifi)来配置开关。因此应领会的是,灯具可以在不通过如图1所示的开关中继数据的情况下彼此通信以及与照明桥接器307通信,并且开关105可以直接与照明桥接器307通信。在任何情况下,应理解照明桥接器307能够通过任何适当的方式与照明网络中的每个其他设备通信。

照明桥接器307至少布置为(例如,从后端110或开关105)接收输入并将照明控制命令发送到灯具101a-d。应当理解的是,控制逻辑可以存储在连接照明系统中的其它地方,即存储在系统后端或云端平台处,并且并不一定处于桥接器307之内。还应当理解的是,允许照明系统设备连接至诸如网络313的网络的任何通信接口都并不一定被包括在与照明桥接器307相同的箱体之内。

图1还示出了用户309和诸如智能电话的用户设备311。用户设备311通过有线或无线连接(例如,wifi或zigbee)可操作地耦合到照明桥接器307,并因此形成照明网络的部分。用户309可以使用例如用户设备311的图形用户界面经由用户设备311向照明桥接器307提供用户输入。照明桥接器307然后解释用户输入并相应地将控制命令发送到灯具101a-d。如上文所提到的,用户设备311与开关105相比通常允许更复杂的控制。例如,用户309可以使用用户设备311来控制单个灯具。通常,所期望的是,开关控制在与开关本身相同的环境中的灯具,即在图1中开关105仅控制灯具101a-d,但是用户设备311可以控制照明网络内的任何灯具。例如,用户309可以使用用户设备311来控制另一环境中的灯具,诸如控制除了用户309和用户设备311当前所处的房间之外的不同房间中的灯具。这是特别有利的,原因在于用户设备311通常比开关(特别是壁装式开关)更便携,并且因此可以在不同的物理位置处使用。用户设备311可以用于例如通过用户309使用用户设备311的gui选择照明场景和期望的灯具来控制多个灯具101a-d以渲染照明场景。

如图1中所图示的,照明桥接器307还可以具备到网络313的连接。该网络可以是广域网(wan)连接,诸如到互联网的连接,或者可以通过其实现互联网接入的另一种中间网络。如本领域已知的,该连接允许照明桥接器307连接至如互联网的网络或者连接至诸如后端存储器315和分析引擎317的外部数据和服务。需要注意的是,用户设备311和照明桥接器307之间的无线连接在图1中示为直接连接,但所理解的是,用户设备311也可以经由网络(即,互联网)313连接到照明桥接器307。存储器315可以遍布系统的后端110在一个或多个物理位置的一个或多个计算机上分布。系统后端110可以位于网络313的一个或多个服务器上,并且存储器315可以作为软件、硬件或者它们的任何组合以类似方式在一个或多个物理位置进行分布并且通过网络313连接。网络313例如可以是互联网,或者可以通过其发送数字信息和数据的任何其它网络,例如被实施为后端系统的云计算平台的网络基础设施。

分析引擎317可以在后端110的一个或多个计算机上作为软件、硬件或者它们的任何组合以类似方式在一个或多个物理位置进行分布。分析引擎317被配置为使用从照明系统的设备报告的数据控制和/或运行一个或多个所选择的分析应用中的任何应用。分析引擎还将来自所执行的分析的结果输出给照明系统的用户,指示适应环境和/或照明系统的一个或多个特征的方式。

环境103内的传感器107a-e可以是包括发光器的照明单元的一部分或者是独立传感器。独立传感器107e是照明网络一部分,它在照明网络中被布置为经由有线或无线连接与该网络通信。也就是说,传感器107e被布置为以与发光器101a-d和/或传感器107a-d相同的方式至少可操作地耦合至照明桥接器307。多个传感器107可以是用于检测环境103内可以被用来汇集照明数据或链接至照明数据的属性的任何合适形式的传感器。例如,传感器107可以是被布置为检测环境103内的噪声并且后续确定占用值的麦克风。传感器107也可以是运动检测器、相机、热传感器和/或光照或光度传感器。

虽然在图1中被示为单个实体,但是所要理解的是,可以使用任何合适的传感器或多个传感器来提供本文中归于传感器107a-e的功能性。还要理解的是,独立传感器107e中的一个或多个可以位于环境103内的任意适当位置使得其可以相应地执行它的指定功能。

考虑到以上描述,意识到图1中所示的照明系统100被布置为充当连接照明系统,并且因此发光器101可以被配置为根据一种或多种自动化规则来表现。例如,桥接器307可以被配置为控制发光器101a-c从而以贯穿环境103提供组合的整体照明效果的方式对传感器107e(或多个这样的传感器)所感测到的某些周围照明条件做出响应。也就是说,取决于传感器107a处感测到的光照强度,发光器101a-c中任何发光器的调光水平可以被自动调适以实现环境103的预定义期望光度。该预定义设置可以被存储在数据库315处,经由网络313访问,并且相应地由桥接器307来实施。

本申请考虑了具有多个发光器和传感器的连接照明系统,其中该连接照明系统可以被划分为子集,每个子集在空间上被划界并形成控制分区。每个控制分区具有多个发光器和多个传感器。每个传感器例如可以是占用传感器或亮度/光照传感器等。控制分区中的发光器可以由该控制分区中的占用传感器之一进行占用控制。照明数据(例如,发光器处的能耗、发光器的调光状态以及来自占用传感器的占用值等)被报告回去并且存储在云端或后端数据库。例如能耗、占用、光照传感器值、灯具点亮或有效操作小时数、温度、湿度、空气质量、声音水平、致动水平、所处置的请求、故障率、报告的错误和/或能够被测量的任何其它数据值的这些不同类型的数据然后作为数据类型的数据值的特定实例被存储。通常,“照明数据”可以被定义为从连接照明系统的发光器和/或传感器所获取的数据或者这样的数据的衍生物。

如本文所描述的环境包括建筑物的内部空间。该内部空间可以包括一个或多个房间或分区。例如,如参考图1所描述的环境是单个房间。然而,该环境可以包括多个房间。该环境由此可以在照明系统内被划分为可控房间或分区。分区可以包括一个或多个房间。环境可以包括一个或多个分区。分区可以描述环境的房间内的一区域。例如,如演讲厅的大型开放式房间可以包括位于朝向主演讲者所站立的房间前方的分区以及观众可以就座的房间其余部分的另外的分区。

图2示出了包含与这样的子集的示例相关的照明数据的表格。该数据能够在后端110获得。因此,考虑到导致重新入网初始化的动作,有兴趣自动检测这些重新入网初始化的变化。发明人已经意识到,可能使用已经被收集的数据来自动确定该重新入网初始化。

例如,让我们考虑重新入网初始化的实例。

图2包含表示与连接照明系统的设备子集相关联的数据的数据结构的表格。该子集包含诸如发光器和/或传感器的设备,它们或者作为独立单元或者在组合到照明单元(下文一般全部称为(多个)单元)中并且基于共同空间划界(即包含在相同的房间之内或者位于彼此的某个空间范围内)而被分组。从空间划界子集内的这些设备所接收的数据在这里被描绘为按照数据类型以列来排列,并且按照单元以行来排列。这里存在构成子集的多个单元,其中所有单元都包括发光器和传感器二者。然而,应当理解的是,单独包括发光器或传感器的单元或者具有任何其它数量或类型的连接照明系统设备——诸如开关等——的组合的单元也可以以这种方式被表示。

列包括列202,其包含信息在其处被收集的时间戳(t)。也就是说,这里包含了数据在其被收集或存储的绝对时间或者用于在确定绝对时间时使用的指示符。在该示例中,使用了四个不同的时间戳t1、t2、t3和tn。t1是最早的时间,接着是是t2,并且然后是t3。tn是t3之后未来某个时间量的不定时间。这些时间戳t1-t3(以及tn)可以以规则或不规则的任何适当间隔来确定。

列204包含发光器id(l-id)。该标识符可以标识出连接照明系统设备的特定子集内的发光器,或者标识出来自整个连接照明系统内的所有发光器中的发光器。

列206包含以瓦时(wh)为单位的能量(e)。这是发光器自上一个时间戳起所消耗的能量。也就是说,时间戳t2处的lum_1的能量读数是由lum_1自时间t1处的先前读数起所使用能量的量。

列208包含发光器的调光状态(d%)。不包括发光器的单元的子集可以不包括该列,或者可以针对子集中这样的单元的数据值条目留空或者无信息。对于列206这同样适用。调光状态指示在该时间正在输出的特定发光器所能够输出的总光度的百分比。例如,lum_2在时间戳t1处具有90%的调光状态。

列210包含单元的占用传感器id(os-id)。这里,单元包括占用传感器和发光器,并且它们的条目出现在表格中的相同的行中。occ_sensor标识符可以标识出连接照明系统设备的特定子集内的占用传感器,或者标识出来自整个连接照明系统内的所有占用传感器的占用传感器。

列212包含在该具体时间戳所表示的时间处测量的占用值(o)。例如,在时间t2处,占用传感器os_1、os_2、os_3、os_4和os_5的占用值分别为1、1、1、1和0。这可以是占用状态的指示,其中“1”表示被占用并且“0”表示未被占用。可替换地,占用值可以表示时间t2处的绝对占用,例如,如果确定占用传感器os_2所覆盖的空间被3个人所占用,则值为3。更进一步地,该占用值可以是一段时间内绝对占用的平均值。例如,占用传感器os_2所覆盖的空间被5个人占用5秒,接着是被1个人占用2秒。这将导致时间t2处的占用值为6/7。在该示例中,所覆盖的总时段将处于时间t1和时间t2之间。

列214包含单元的物理位置(l)。例如,这里包含发光器lum_2和os_2的单元位于[bldg1;floor4;(x2,y2)]所指示的建筑1、4楼、方位(x2,y2)处,其中方位使用如在预先指定区域内所确定的笛卡尔坐标。在该示例中,x-y坐标指定了4楼上的方位。然而,应当理解的是,预定空间内的任何方位都可以以这种方式来指示。例如,x-y坐标可以很容易地指示4楼具体房间内的绝对方位,例如走廊1或办公室3,其可以作为位置信息的额外字段被包括。另外,应当意识到的是,x-y坐标的预定比例(scale)可以是基于粒度或准确性要求所确定的任何距离划分。例如,x和y方位可以形成1米粒度或2米粒度的网格。该预定粒度可以取决于所讨论空间中的照明单元密度,并且可以在楼层或者相同楼层的房间之间有所变化,或者基于任何其它预定空间边界。所讨论空间可以是2维空间或3维空间,由此可以在笛卡尔坐标系中规定另外的z坐标。这例如可以在具体单元可位于空间内的不同高度处的情况下被使用。即,位于墙面中间位置的开关、位于天花板高度的运动传感器或者位于桌面高度的亮度传感器。可以使用任何合适的坐标系来表示所讨论的空间。因此,应当意识到的是,上面位置指示以及它们的要素的任何组合只要它们能够确定位置,就可以被使用。只要地点以这种方式被映射,则跨多个建筑物和楼层的整个地点就可以是仅使用单个坐标集合所标识的位置。也就是说,建筑物1、楼层1可以包括坐标x0,y0至x20,y20,并且建筑物1、楼层2则可以使用坐标x21,y21至x31,y31来定义,等等。

考虑以下示例。在时刻t1和t2,(与行216和218上的条目相关联的)发光器和传感器单元lum_2/os_2处于位置[bldg1;floor4;(x2,y2)]。一段时间之后,在时刻t2和t3之间,发光器和传感器单元lum_2/os_2被移动至新位置。该新位置被指定为连接照明系统内的[bldg1;floor5;(x2’,y2’)]。而且,与此同时(即在t2和t3之间),不同的发光器/占用传感器单元被放置在位置[bldg1;floor4;(x2,y2)]处,也就是发光器/传感器单元lum_2/os_2的旧位置。

然而,如能够在表2c和2d的列中的位置条目220中所看到的,这些位置变化并没有键入至相对应的数据库条目中。由此,在时刻t3(以及以后),在位置[bldg1;floor4;(x2,y2)]处存在具有不同于lum_2/os_2的id的发光器和占用传感器。

因此,该位置(其处于bldg1、floor4的子集内)的能量、调光状态和占用值应当来自并非lum_2和os_2的不同发光器和占用传感器。另外,从发光器和占用传感器lum_2/os_2的所采集的信息应当对属于不同子集的数据有所贡献并在属于不同子集的数据中被加以考虑。

在本发明中,意在承认数据中的该差异(discrepancy),并且在对数据执行某种簇分析时不仅确定针对具体子集所采集的数据存在差异,而且还随后使得能够输出通知很可能已经发生重新入网初始化的指示。

图3示出了用于入网初始化变化检测的rssi数据聚类。

如上文陈述的,目标是自动确定已经发生了重新入网初始化。为此,随时间监测id/特征的集合。所述id/特征可以是macid/rssi值、vlc代码/光学信号强度、发光器id/光照传感器值等。也可以使用接收信号的属性/特征的其它各个测量,诸如飞行时间(timeofflight)和/或到达角。

在图3中,已经针对4个具体单元或设备的子集示出了数据簇。这里,接收信号强度指示符或rssi已经被用作特征并且其对应于在无线接收器处由于来自具体无线设备(在该特定情况下是具体发光器/传感器单元)的传输的无线电信号的强度。具体无线设备能够通过其macid可标识,其macid形成该具体id/特征集合的id部分。

其它id/特征集合可以包括vlc,其是指可见光通信,在可见光通信中发光器的光输出可以利用在vlc接收器处可检测到的代码进行调制。因此,该具体调制代码提供了所要确定的id,并且光学信号强度提供了所要测量的特征。

在给定实施例中,信号id/特征中的一个或多个在照明系统中被监测。更具体地,具体发光器处的传感器中的每个传感器记录其感测到的信号id/特征,每个具体发光器具有id和位置二者(其中位置可以由如图2中的发光器和传感器共用的单个位置所指示,或者作为单独的数据条目)。该id/特征数据值被收集并且链接至这些位置,并且照明系统设备的子集的特征数据簇使用所收集的数据被创建。如此,单个id的任何移动都将导致(多个)相对应特征数据值的可观察变化并且能够通过特征数据簇分析而被检测到。

数据簇可以比如由形心(centroid)和半径来表征。形心是簇中所有点的平均值。在其它实施例中,可以使用簇的中心点(medoid)或最具代表性的点。替代于半径(或欧式距离),可以使用曼哈顿距离或任何其它适当维度。因此,例如可以基于特征数据簇的特性之一的变化来确定具体发光器的位置变化。如果在给定时刻报告了并不属于特定特征数据簇的信号id/特征,则声明新id属于该特征数据簇的可能性。如果该可能性值在一段持续时间之后超过预设阈值,我们声明,新信号id已经在该特征数据簇中被标识。其位置可以归于在附近的不存在id/不再存在的id的位置,例如在单元的重新放置尚未被后端110所处理的情况下。

图3中图示了以上所讨论的方法。这里{rssin,i}是在n=1,2,…,4个邻居处从macidi所接收的rssi值。设备的物理布局可以如框306中所示的绘制。这里的相邻设备1-4被虚线图示为加入到具有macidi的设备。这些线条的长度指示在i处测量的信号强度。

从时间t_k到时间t_p之前的某个稍晚时间,特征簇显示了形心和半径302的一致性。当(在时间t_p)发生重新入网初始化时,因为例如具有macidi的发光器已经被移开,由于现在在设备i处所测量的rssi值的大小(magnitude)的下降,rssi形心304在rssin,i轴上下移。在该稍晚时间的设备物理布局可以如框308中所示的那样绘制。这里相邻设备1-4再次被虚线图示为加入到具有macidi的设备。这些线的长度指示在i处测量的信号强度。

在时间t_q处,可能性值超过预设阈值,并且声明入网初始化变化。该预设阈值可以是被设置为使得其与观察到形心变化的时段相关的可能性值,或者被设置为使得其取决于簇形心的变化程度的可能性值。例如,台灯可以从房间内的一个书桌移动至另一个书桌,但是仅针对其被借用的一天之内。该位置变化可以影响该房间中的光子集的特征数据簇的形心,但是由于仅针对单独一天观察到该变化,并且并未超过基于该变化的观察持续期间的可能性值的预设阈值,可以确定不需要对由于重新入网初始化所导致的变化进行自动或手动处理。然而,如果该台灯并未被借用,并且相反是台灯所有者永久性地移动了书桌,可以确定观察到该形心变化的时间段超过了预定阈值,并且该子集(或者甚至具体发光器)可以被标记为由于重新入网初始化而需要进一步处理。台灯可能只是从相同书桌的一侧移动至另一侧。在这种情况下,在延长时段内可以观察到特征数据簇的形心变化,然而该变化可能并不足够显著而导致超过预设阈值的可能性值。因此,同样不输出发信号通知所讨论子集应当由于可能的重新入网初始化而经历某些进一步处理的标志或指示。

可替换地,信号id(根据所接收的信号特征)使用任何已知的定位技术被本地化,诸如基于接收信号强度(例如,rssi)或者基于光的vlc信号或无线电信号的飞行时间(tof)。类似地,如果在具体时刻之后并未找到现有id,则该id在一旦可能性值降至低于指定阈值时就被声明丢失。

针对该分析,可以使用被称作簇分析的过程。簇分析或聚类是将对象集合进行分组的任务,其使得相同簇中的对象比(多个)另外簇中的那些对象(在某种意义上说)彼此更相似。

聚类因此可以被程式化为多对象优化问题。适当的聚类算法和参数设置取决于个体数据集合和结果的预期使用。在这种情况下,数据集合可以被视为从连接照明系统的所有单元接收的数据,或者仅是从属于具体子集的单元接收的数据。进一步地,可以利用预期结果对数据进行分析以示出与诸如占用的具体类型的数据点相关的特征簇,或者在考虑较大数据集合的情况下,可能对数据进行分析使得形成位置簇,在该位置簇中一个簇中的数据很可能被相同物理位置中的单元接收。因此,簇分析由此并不被视为自动任务,而是涉及到试错的知识发现或交互式多目标优化的迭代过程。通常有必要对数据进行预处理或者修改模型参数直至簇分析实现期望结果或者显示期望属性。

图4示出了两个房间“房间1”401和“房间2”403。两个房间都包含发光器/传感器单元a、b、c和d。房间1进一步包括大的窗户408和门410。房间2进一步包括门412以及比房间1的窗户小的窗户414。单元a402包括周围亮度传感器404和占用传感器406。最初,房间1中的单元a402被配置为基于周围亮度传感器404在房间中所测量的照明而在发光器处执行某个调光状态动作。房间1不经常使用,并且由此从占用传感器406所接收的数据典型地报告低占用水平。房间2也包括发光器/传感器单元a,其进而还包括周围亮度传感器416和占用传感器418。房间2并不通过窗户414接收很多照明。然而,房间2比房间1更经常使用,并且因此房间2中的单元a420最初被配置为基于占用传感器418在房间中所测量的占用而在发光器处执行某个调光状态动作。

在一个实施例中,在某个稍后时间,房间1的单元a(402)和房间2的单元a(420)被互换。并未因为单元位置的这些变化而对在系统后端处所接收的数据做出修改。因此,它们的位置仅是物理上发生变化,并且每个相应单元所采集并且报告回后端的数据也由于所采集的数据表示不同位置而发生了变化。例如,单元402开始向后端报告显著更低的能量值、显著更低的调光状态值以及显著更高的占用值,单元402仍然被配置为基于周围亮度传感器404在房间中所测量的照明而在发光器422处执行某个调光状态动作。作为结果,基于单元402所采集的数据类型中的任意类型,房间1的单元a-d的子集的特征数据簇将会在单元402已经移至房间2之后表现出显著变化。该变化可以通过使用簇分析查看数据而被确定。现在由单元a402返回的数据可能显著不同,使得数据点将它们自身与完全不同的形心对齐(例如,如果分析中所包括的数据还包括从其它位置采集的数据),或者单元a402所返回的数据中的差异可能刚刚足够以改变针对房间1的特征数据簇所创建的形心的中心点或半径,房间1的特征数据簇现在包括来自单元a402的改变的数据。以这种方式,数据点自动改变了它们在聚类分析中聚类的方式,使得可以确定房间1中的单元子集已经发生变化。重新入网初始化的检测将显示针对一个位置的异常值。该确定可以使用用于检测重新入网初始化的预定义阈值差异(例如特定簇的中心点或半径值的差异)来做出。

以上示例是其中发光器和/或传感器单元的简档以及发光器和/或传感器单元在地图上的位置都不被更新的一个示例。例如,管理发光器行为的规则、发光器的控制逻辑或控制功能性也不在其重新定位时发生变化。在其它真实世界的情形下,该单元可能的确使得其功能性或简档发生改变(例如,以匹配其在新位置的周边的那些单元并且因此与周边单元的运作相匹配),然而数据库内的位置可能仍然未被改变。

当简档被更新,但是单元的位置在系统后端并未更新时,该单元将开始返回将与其附近的其它单元相似的数据。然而,在系统后端的数据库内,该单元(尚且)不是其附近的单元的子集的一部分。针对重新定位的单元是其一部分的原始子集分析的所有数据都将是不准确的,并且由于包括来自重新定位的单元的数据而继续是不准确的。确定分析引擎317何时将返回不一致的数据以及后续能够确定原因可以导致从数据子集中移除不想要的数据,并允许对经更正的数据子集进行诸如效率分析之类的分析以对重新入网初始化进行补偿。

如上文陈述的,在点亮小时数将依赖于位置时,也可以通过检测点亮小时数的变化来检测位置变化。例如取走图4中原本在房间2的单元420。在将该单元移动至房间1时,该单元可能已经改变了其简档,使得其现在被配置为基于周围亮度传感器416在房间内所测量的照明在发光器424处执行某些调光状态动作。作为其结果,发光器424的点亮小时数可以显著增加(这里假设触发来自房间1中的发光器424的照明的情况下的、房间1中的低光照或黑暗的总小时数大于触发来自房间2中的发光器424的照明的情况的、下房间2的占用小时数)。然而,在系统后端从单元420所采集的点亮小时数数据将继续被包含于包括原本房间2中的单元的子集的点亮小时数中。因此,该特定子集的点亮小时数简档将显示不一致性。同样,可以使用预设阈值来确定不一致性何时足够显著以暗示很可能已经发生了重新入网初始化事件。因此,超过预设阈值的值可以被认为具有已经发生重新入网初始化的可能性值。第一预设阈值可以被用来分隔一致和不一致的数据,并且多个可能性值基于不一致性超出该第一预设阈值的程度而被指派给被发现不一致的所有数据。例如,可以向不一致数据指派三个不同的可能性值,其中值超出预设阈值并且落入三个有界范围之一内。因此,所采取的动作可以取决于不一致数据所落入的范围。如果预设阈值被一个大的量超过并且落入上边界内,该结果可能可以是从未来分析引擎处理中移除有责任的原始数据。如果预设阈值以落入中间范围的量被超过,结果可以是该数据被包括在分析引擎分析中,但是具有比其它数据低的权重。如果预设阈值以落入较低范围的量被超过,结果可以是该数据简单地被标记以便注意。在分析使用如上文讨论的簇分析所创建的形心时也可以使用该阈值和可能性值指派。

存在可能在重新入网初始化时发生的错误的两种可能原因,并且因此应当被加以考虑。第一种错误原因是重新入网初始化之后行为入网初始化和位置入网初始化都没有针对具体设备更新。第二种错误原因是行为入网初始化正确完成但是并未针对具体设备进行相对应的位置入网初始化的情况。为标识第二种情形,随时间对在特定位置根据信号(例如,光照传感器测量、控制预设设置)所导出的设备行为进行分析。行为简档的变化被认为指示了该设备的位置变化。在已经确定了位置变化的情况下,可以基于设备界限关联、位置界限关联或者设备和位置界限关联二者来完成在后端所接收的数据与正确特征数据簇的重新关联。

设备界限数据可以被用于诊断应用,诸如发光器/传感器健康、点亮小时数、诸如能量或占用值的发光器/传感器数据,相对应数据与发光器/传感器的id相关联。因此,例如为了获得id为lum_k的发光器的点亮小时数,随时间处理对应于lum_k下的条目的数据元素energy_k和dim_state_k。更具体地,考虑到针对每个发光器存储dim_state值,其中dim_state是发光器的光输出相对于该发光器所能够产生的最大光输出的分数,该分数具有0和1之间(或者可替换地0%和100%之间)的值。发光器k的点亮小时数因此被计算为:

∑ndim_state_kn(@lum_k)*△tn

其中是对dim_state样本进行记录/存储的时段(例如,每个样本可以被存储15分钟);△tn是第n个时段并且dim_state_kn是发光器k在该第n时段中的调光状态并且基于在△tn期间所存储的dim_state样本(例如,通过对dim-state数据值进行平均)。

在考虑诸如能量趋势或占用传感器值的时间图案的时间数据趋势时,例如可以使用位置界限数据,相对应的数据与发光器/传感器位置相关联。因此,在处理某个控制分区或者跨不同控制分区(例如,在不同层级(hierarchy)水平处)的能量趋势时,落入(例如,层级水平内的)(多个)感兴趣控制分区的所有位置都被考虑并且那些位置的能量值随时间被汇总到(例如,层级水平内的)所述(多个)控制分区。在每个时间戳处,该汇总可以构成来自这样的位置的能量水平的总和(或平均值)。

如上文所提到的控制预设设置是指所定义的对应于控制输入的行为。比如,其可能是在空间变为未占用时(在相邻空间被占用的同时),控制器设置点(set-point)驱动(多个)发光器以实现比该空间被占用情况下(例如,500lux)更低的光照水平(例如,300lux)。这种策略将节省照明能源,同时在视觉上对于仍然在相邻空间中工作的用户是舒适的。

例如,当考虑(例如,能量或占用的)空间数据地图时,,设备界限数据和位置界限数据都可以被使用,其中(例如,能量或占用的)数据与使用发光器/传感器id的地图位置相关联。空间数据地图是基于发光器/传感器id所取得的数据类型之一的空间表示。

因此,关键思想是根据所分析的感兴趣物理参数是设备的属性(例如,灯具点亮小时数是发光器的属性)还是位置的属性(例如,具体办公室房间中的平均能耗)还是其二者(例如,占用分布空间热图)而利用设备或位置结合来关联数据。

当对采集数据执行数据分析时,重要的是能够基于特定的感兴趣属性拉出(pullout)数据。例如,如果后端处的所有数据都被链接至设备id,但是你仅对区域中的特定位置而不是该区域内的具体设备感兴趣,则基于那些设备的位置信息来访问信息应当是可能的。因此,可能并不期望通过该区域中的设备的具体设备id来取得该数据。

因此,发明人相信,通过根据所采集数据可能被用于的分析类型将所采集数据与设备标识符(id)、设备位置或其二者相关联,可能得到更加可靠且有效地关联数据以便进行分析的方式。

如所讨论的,如上文所描述的这些检测照明系统中的变化的方法在重新入网初始化期间具有特定用途。主要地,当设备在连接照明系统内改变位置时,例如从一个房间移动至另一个房间,作为结果,从被重新定位的传感器或发光器所收集的数据的相关性也可能发生变化。

因此需要捕捉设备位置关于该设备所采集数据的变化,以及获知当发生重新定位时如何对待该数据。因此,重要的是将某些物理属性与某些传感器数据绑定起来。一些数据必须与位置绑定起来而一些要与设备id和位置二者相绑定,设备id是照明系统中的个体设备或者一组设备或一类设备的唯一标识符id。

所期望的是通过执行与特定属性相关的分析而向数据赋予含义,例如与被占用会议室的最大容量相比,对那些被占用会议室的数量随时间执行分析,可以指示该空间作为会议室使用的效率。如果针对(多个)会议室发生了某些变化(例如,增加或移除了会议室,或者会议室被移动(即,空间的重新划分或重新分配),或者会议室中的发光器/传感器被移动),则该分析的结果并不保持相同的相关性水平。也就是说,一定量的所使用数据与正被分析的境况不再相关,并且因此输出将会被误导。

现有技术数据库结构典型地使用设备id作为从设备取得具体数据以及取得设备的位置的密钥(key)。然而,该数据与设备id相关联,因此当要执行的分析仅涉及与链接至位置的特征时,用于分析该特征的数据并不与该位置直接链接而是经由设备id位置来链接,例如传感器id和传感器位置在数据库结构中绑定在一起。该链接可以由于重新入网初始化而随时间变化。通过根据数据/特征或者其要被用于的分析的类型而将所采集数据与位置、设备标识符或此二者进行关联,分析将更容易实施并且在正确数据集合方面更可靠。

例如,考虑已经从第一位置移动至第二位置的发光器或传感器设备。在感兴趣特征与第一位置相关的情况下,使用来自仍被不正确地指派到第一位置、但实际上已经位于第二位置的发光器或传感器的数据执行分析使得该分析毫无意义。

因此认识到,某些类型的数据需要与某些物理属性(例如物理位置)关联或绑定起来。

针对一些数据,设备id而不是设备位置将与所采集数据相关联,例如点亮小时数不应当跟踪位置,原因在于其被认为是特定于设备的特性。针对一些其它数据,设备位置而不是设备id将与所采集数据相关联,例如应当从具体房间的数据中提取能耗图,而考虑具体设备id。针对一些数据,设备id和设备位置都将被期望与所采集数据相关联,例如热图中的能量或传感器数据的时空趋势,其要求获知具有具体位置的具体设备。

考虑图5a和图5b所图示的示例。图5a示出了具有以图案填充的某个空间的楼层平面图。该图案指示了空间的类型或位置功能。填充图案512指示单元格办公空间的位置。填充图案514指示会议室空间的位置。填充图案516指示隔间(breakout)/项目空间的位置。填充图案518指示开放办公空间的位置。例如,单元格类型的办公室典型地是具有一个或两个占用者的办公室,并且是完全封闭且与其它工作空间相分离。这些单元类型办公室在包含条形填充图案的图5a和图5b中被示出。楼层平面图5a和5b还包括使用方形填充图案指示的会议室。通过对从楼层平面图5a的照明系统采集的数据执行分析,可以确定以这些目的来使用空间是否有效。还可以确定可能执行什么类型的重新分配以提高该空间的效率。例如,将一些单元格办公室重新分配为会议室可能将会提高该空间的效率。引入或移除空间类型可能会导致该空间更加有效的使用。

楼层平面图5b示出了作为这样的空间管理分析的结果的可能所建议空间重新分配。也就是说,使用特定楼层平面图5a的占用数据执行的分析认定会议室和一些单元格办公室未被充分使用。即,在多个监测时间段上进行的占用水平分析揭示出会议室的利用率低并且具体单元格办公室的利用率低。作为结果,执行空间重新分配而使得会议室的数量减少(或者可替换地,会议室所占据的大小或空间减小),并且一些特定的单元格办公室被改变用途。

该重新分配可以意味着隔墙的安装、移除或重新定位以创建适用于具体目的的新空间。这些类型的空间之前可能已经存在于该楼层但在另一个位置,可能根本不存在,或者一些类型的空间可能被一起移除。例如,返回参考图5a,会议室分区502已经在楼层平面图5b中被划分为两个分区,其中502a与502b完全分离。这可能已经通过增加墙实现(其中空间502a与502b之前包括单个会议室或者一系列邻接的房间)。之前会议室502的一部分的位置502b随后被变为单元格办公室。通过减少该楼层的会议室空间的大小,之前未被充分利用的会议室空间现在被更大程度地用作(较小)会议室以及另外的其它类型的空间(例如,单元格办公空间502b)。后续空间优化措施确实可以指示空间利用率的提高。原因可能在于,该特定会议室之前很少被用于具有明显足够的大小以完全占用该会议室空间的会议,特别是还有该大小或类似大小的会议室504潜在可用的情况下。对可用传感器数据执行分析因此可以指示潜在的空间管理改进选项。

空间504和506最初分别被指定为会议室和单元格办公室。然而,在如图5b中所指示的空间重新分配之后,会议室504的大小有所减小,并且剩下的空间508被添加至506的空间并且用新空间类型和新功能标记,称之为隔间或项目空间。因此,未利用或未充分利用的单元格办公室506和会议室504被重新分配或重新指派给具有更合适的容量和功能的空间以增加可用空间的有效使用。空间的这种重新分配和重新指派可以在与建筑物或楼层的客户和设施管理方磋商之后实施。空间组合(portfolio)的重新组织可以被用来更好地优化空间使用(可能跨多个楼层)并且更好地服务雇员的需要。在实施这样的空间管理建议之后,随后可以在多个时间段上对该建议的效能进行监测。然而,该进一步的分析要求空间向空间类别(例如,单元格办公室、会议室和/或开放办公空间)的正确指派,并且因此要求云或后端数据库的适当生命周期(lifetime)管理。也就是说,在对区域做出改变时必须更新区域定义信息,使得该具体区域的功能或目的被正确表示。例如,在将位置506从单元格办公室变为隔间空间的一部分时,重要的是有关该改变的信息被正确输入到云端或后端数据库中,使得从该位置所采集的所有信息都作为隔间空间数据被分析,而不是包括在用于单元格办公室的分析的数据之中。

为了详细说明这一点,考虑楼层平面图5a的空间502,但是现在假设该空间总共包括两个会议室(如楼层平面图5b中所划分),即502a和502b。在该示例中,整个空间502曾经/将始终被认为具有“会议室”类型,并且因此所有有关这些空间的数据都可以在云端或后端数据库内与所指定位置——即“会议室”——的属性相关联(或者能够从一些其它可访问的记忆库所取得)。现在假设期望取得例如所有会议室在一个月期间所消耗的能量的数据。然而,在两周之后(即,一个月数据收集时间段的中间位置),会议室502a和502b分别被重新分配为一个会议室和一个单元格办公室(如楼层平面图5b中所示)。因此,前两周的数据涉及到两个会议室502a和502b,并且后两周的数据涉及到一个会议室502a和一个单元格办公室502b。如果该重新分配并未被正确记录在云端或后端数据库中,则对该数据所执行的分析就引发不正确的结果。我们可能最终得到正确但是带有错误解释的数据,即针对来自两个会议室的数据现在仅被分配给一个会议室的数据。或者通过将单元格办公室数据并入会议室分析中,我们可能最终得到不正确的数据和不正确的解释。这里并未认识到仅由502a的设备所采集的数据才应当被包括在会议室分析中,也没有认识到502b的设备所采集的数据应当被排除。因此能够看到不正确的数据关联会如何导致不正确的分析结果。之后纠正这些错误不仅要求纠正关联而使得新数据与正确位置/目的相关联,还要求已经采集并存储的数据有所改变以纠正已经采集并存储的数据中的关联。可以通过将所采集数据适当地与位置而不是设备id关联、与设备id而不是位置关联或者与设备id和位置二者关联中的任一种来防止上述情形。该关联可以取决于所考虑数据的类型(也就是它与之相关的特征)以及所执行的分析(意在使用该数据的方式,例如能量效率)。

为数据提供上下文并且将数据连同上下文一起存储也是可能的。上下文(也称作上下文要素或上下文属性)可以指示如上文提到的房间类型或者房间表面积等。每种上下文可以包括某个生命周期。也就是说,具体上下文要素在其内有效或准确的起始和/或结束日期(即,上下文在其间正确的时段,例如由日期以及可能甚至一天中的时间所指定,和/或由其上的持续期间起始或结束所指定)。该上下文可以在重新入网初始化的物理动作时被手动输入,或者之后基于如本文所公开的自动检测的重新入网初始化而被输入。

因此,通过使用以上所陈述的原则来正确关联数据,基于所采集数据的分析可以被认为更加准确而且也更加有用。图6示出了图示在对会议室汇总的占用水平的时间趋势的两个图表。这些占用简档包括从如图5a和5b中的那些楼层平面图的楼层平面图内的占用传感器所感测的数据。图表6a对应于(与楼层平面图5a的那些会议室类似分配的)60个会议室在x轴上示出的日期上的占用。图表6b对应于(与楼层平面图5b的那些会议室类似分配的)50个会议室在x轴上示出的日期上的占用。可以看出,通过采取从对正确关联数据所执行的分析所得到的动作,例如将全部或部分会议室重新分配为其它功能,会议室空间的利用已经得到了优化。

在运行该分析的过程中,分析者可以选择用于对所报告并存储的数据值运行的分析度量(比如建筑物中的所有会议室在2017年1月的时段内的占用时间趋势)。该分析可以被配置为在选择时运行,或者以规律的编程时间间隔运行,在一天中预先选择的时间运行,在一月中预先选择的日期进行,在一年中预先选择的时间进行,等等。然后,为了进行分析以计算出相关占用度量值,需要获得不同的信息并且相应地进行关联以得到所有会议室中的占用传感器在所陈述时段中的数据值。第一信息用来确定在该时段内存在的所有有效会议室。第二信息用来确定存在于(使用第一信息所确定的)这些会议室中的所有占用传感器。并且第三信息用来确定来自(使用第二信息所获得的)占用传感器的位置的数据。

也可以出于优化能量效率或消耗的目的来执行分析。从单元格办公室变为开放办公区域可能影响到照明发光策略(例如,光如何被触发)并且随后影响能耗。例如,发光器是被周围光照条件(日光水平)所触发还是被占用(例如,运动的检测)所触发在评估办公空间中发光器的最能量有效的触发机制时可能是相关的,相比其中照明可能是聚光灯或者提供光岛(islandoflight)的单元格办公室,这在其中照明通常照亮整个空间的情况下,在公共区域中可能有所变化。在这种情况下,可以基于考虑由特定设备在特定位置所采集的发光器的能量输出的分析来执行空间管理分析。从其采集数据的设备以及设备位置对于这种类型的分析都是重要的,因为该数据是基于位置和设备具体特征二者。如此可以看到,使得所针对所消耗能量而采集的数据与位置和设备id相关联是有益的。

考虑示出了经在所选择时段内平均后的该楼层的每个发光器的能耗的楼层平面图。在这种情况下,能量数据必须使用发光器id和位置二者来提取。假设发光器中的三个发光器在该时段中发生移动并且使用仅对应于发光器id的数据来计算热图中所示出的能量值。其结果是,在所选择的时段中,所有发光器实际上位于相同空间中(如相同能量消耗简档所证明的)。然而,在所创建的地图中,发光器中的三个发光器在完全不同的方位被示出。这是因为它们被使用不正确的当前位置数据置于地图中。在其位置性质的上下文和/或有效性尚未被正确整合时会发生这种情况。这是其中能量数据必须从发光器id提取并且被正确关联于位置的示例,其中生命周期(有效性)管理被适当地应用于两个数据要素。

其中数据仅需要与设备id相链接的示例是其中分析所关心的是设备的诊断的情况。例如,标识出哪个特定设备出现故障可能是重要的,使得可以确定要求修理的设备。这在针对具有具体规格的设备或者例如具有具体功能的发光器——例如要在火灾情况下使用的照明——执行分析时也可能是重要的。

为了使得数据关联更加完整,归于数据值的有关房间或分区的属性的上下文信息及其有效性/生命周期可能需要被存储(例如,存储在云端或后端数据库中,或者存储在它可以从其容易地被取得的网络内的一些其它存储装置)。例如,房间在一个月内的前三周可能是会议室,并且然后在这个月的其余时间是灵活空间。在另一个示例中,空间的表面(地面)面积可以发生变化,例如当(具有相同功能或不同功能的)两个房间之间的隔墙在两个房间的包裹(envelop)内发生移动使得每个相应房间的表面积发生变化时。针对环境的可能改变感测数据的上下文和/或该数据和/或上下文的有效性/生命周期的任何其他变化可以类似地使用与该数据相关联的属性(例如,上下文)和生命周期的指示来表示。例如,如果属性指示房间是会议室,则该信息的生命周期是该特定上下文属性信息在其间正确的持续期间(由该生命周期时间段的起始和结束日期所指示)。在取得相关联数据并使用该指示的时间处输入的具体结束时间可能并不存在。

因此,与数据库中的数据相关联的上下文属性可能被用作工具以进一步向分析引擎通知关于哪些数据应当从数据库中被取走并且在分析中使用,并且上下文属性的有效性/生命周期可以被用来向分析引擎通知要关于可用的存储时间序列数据方面使用哪些数据。

应领会的是,仅通过示例的方式描述了上面的实施例。通过研究附图、公开内容和所附权利要求,本领域技术人员在实践所要求保护的发明时可以理解和实现所公开实施例的其他变化形式。

在权利要求中,词语“包括”不排除其他元件或步骤,并且不定冠词“一(a)”或“一个(an)”不排除多个。单个处理器或其他单元可以实现权利要求中陈述的若干项的功能。在相互不同的从属权利要求中陈述某些措施的纯粹事实并不指示这些措施的组合不能被用于获益。计算机程序可以存储和/或分布在合适的介质(诸如与其他硬件一起提供或作为其他硬件的一部分提供的光学存储介质或固态介质)上,但也可以以其他形式分布,诸如经由互联网或其他有线或无线电信系统。权利要求中的任何附图标记不应被解释为限制范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1