硅基压电薄膜体声波谐振器的制作方法

文档序号:26135107发布日期:2021-08-03 13:21阅读:67来源:国知局
硅基压电薄膜体声波谐振器的制作方法

本实用新型涉及谐振器技术领域,具体地,涉及硅基压电薄膜体声波谐振器。



背景技术:

随着5g通信系统的迅速发展,基于微机电系统的谐振器因其体积小、兼容性高等优点已然成为最具潜力的器件之一。该谐振器主要分为两种,一种是电容式谐振器。

专利文献cn106992768a公开了一种多对驱动感应电极的电容式mems谐振器;专利文献cn111010138a提出了一种高q值体声波谐振器。现有技术的不足之处是:常规的电容式谐振器动生阻抗太高,压电式谐振器q值又较低,而本专利所提出的硅基压电薄膜式谐振器,在保证低动生阻抗的同时可以极大的提高谐振器的q值;常规的震荡堆悬置型谐振器的机械强度和温度稳定性较差,而本专利所提出的谐振器在震荡堆下放置有硅和二氧化硅层,可以有效的帮助提高谐振器的机械强度和温度稳定性;常规的谐振器顶电极形状单一、适用性不广,而本专利提出了三种基础的顶电极形状,可以有效的激励起lamb波谐振,为不同实用环境提供了多种选择;常规的谐振器加工工艺复杂,难度较高,而本专利针对所提出谐振器提供了一套加工方法,可以简化加工工艺,获得高质量的谐振器。



技术实现要素:

针对现有技术中的缺陷,本实用新型的目的是提供一种硅基压电薄膜体声波谐振器及制备方法。

根据本实用新型提供的一种硅基压电薄膜体声波谐振器,包括:电极、氮化铝压电薄膜层3以及绝缘体上硅soi;所述电极包括:顶电极1;所述氮化铝压电薄膜层3以及绝缘体上硅soi设置于顶电极1的下方;所述绝缘体上硅包括:单晶硅顶层4、绝缘二氧化硅中间层5、硅衬底层;所述硅衬底层的厚度大于设定阈值;所述绝缘二氧化硅中间层5的厚度小于设定阈值;所述单晶硅顶层4的厚度大于绝缘二氧化硅中间层5;所述单晶硅顶层4的厚度小于硅衬底层;

优选地,所述电极还包括:底电极2;所述底电极2设置于顶电极1的下方;所述底电极采用电性浮接;所述底电极接地。

优选地,所述电极采用以下电极材料:-铂pt;-铝al;-钼mo;-金au;-银ag;-钌ru;所述压电薄膜层采用以下任意一种材料:-氮化铝aln;-掺钪氮化铝alscn;-氧化锌zno;-锆钛酸铅pzt。

当顶电极被施加信号时,氮化铝压电薄膜层中会被激励起lamb波谐振模式,从而得到高q值和低动生阻抗的谐振器。

谐振器的底部二氧化硅层还可以一定程度上的补偿压电薄膜层的频率温度系数,从而减小谐振频率因温度变化而产生的漂移,提高其温度稳定性。

优选地,所述顶电极1采用以下任意一种结构:-环状结构;-同心圆环结构;-叉指状电极。

优选地,还包括:焊盘;所述顶电极1采用的环状结构被均等的分为四个部分,其中相对的四分之一部分相互连接并连接到一侧的焊盘上。

在这种结构下,施加在两个相邻四分之一部分的电信号将会有相反的相位,从而在氮化铝薄膜层中很好的激励起lamb波谐振。

优选地,还包括:焊盘;所述顶电极1采用的同心圆环结构的中心的圆盘状电极与一端的焊盘相连;所述顶电极1采用的同心圆环结构中心的圆盘状电极外围环绕的圆环与另一端的焊盘相连。当在两端焊盘施加存在电势差的信号时,产生的电场可以在氮化铝薄膜层中激励起lamb波谐振。

优选地,还包括:焊盘;所述顶电极1采用的叉指状电极中交互的叉指电极分别连接到两端的焊盘上。当在该叉指电极两端施加信号时,交互的电极之间会形成水平电场,从而在氮化铝薄膜中激励起lamb波谐振。

优选地,制备硅基压电薄膜体声波谐振器,其特征在于,包括:步骤s1:制备绝缘体上硅;

步骤s2:在绝缘体上硅的基础上制备硅基压电薄膜体声波谐振器;

所述步骤s1包括:

步骤s1.1:进行第一硅片和第二硅片清洗、准备;

步骤s1.1.2:在设定条件下,以设定能量向第一硅片注入设定剂量的氢离子或氦离子,用以在硅表层下特定深度产生一层气泡层;

步骤s1.3:对第二硅片的表面进行氧化处理,得到一层特定厚度的绝缘二氧化硅层;

步骤s1.4:将第一硅片和第二硅片进行键合,第二硅片表面的二氧化硅层作为未来绝缘体上硅结构中的绝缘层,而第二硅片将成为绝缘体上硅的衬底;

步骤s1.5:对键合后的第一硅片与第二硅片进行热处理,使得第一硅片从氢离子气泡层处分开,上层硅膜与第二硅片键合在一起,从而得到绝缘体上硅。

优选地,步骤s2包括:

步骤s2.1:清洗、准备绝缘体上硅;

步骤s2.2:在绝缘体上硅表面生长金属层作为底电极;

步骤s2.3:在底电极表面生长设定厚度的氮化铝压电薄膜层;

步骤s2.4:涂覆光刻胶,并曝光、蚀刻出顶电极的形状;

步骤s2.5:沉积金属层,采用揭开、剥离工艺得到设定形状的顶电极;

步骤s2.6:从硅衬底背面利用干法或湿法蚀刻出谐振器震荡堆所在区域,从而得到所需的谐振器。

与现有技术相比,本实用新型具有如下的有益效果:

1、本实用新型通过采用硅基压电薄膜结构,解决了基于压电换能机制的谐振器q值低的问题,同时解决了基于电容换能机制的谐振器动生阻抗高的问题。本专利所提出的硅基压电薄膜结构结合了上述两类谐振器的优点,从而方便设计出同时具有高q值和低动生阻抗的谐振器。

2、本实用新型通过采用硅基压电薄膜结构,解决了常规震荡堆悬置的谐振器机械强度差、功率容量低的问题。且本专利所提出的谐振器底部的二氧化硅层还可以一定程度上的补偿压电薄膜层的频率温度系数,提高谐振器的温度稳定性。

3、本实用新型通过提出三种顶电极形状以便于激励起不同形式的lamb波谐振,解决了常规体声波谐振器因结构单一而适用性不广的问题。本专利所提出的环状、同心圆状和叉指状顶电极为不同的应用环境提供了更多的设计选择,并可以在这三种顶电极形状的基础上进行顶电极的衍生设计。

4、本实用新型通过采用智能剥离技术来制备绝缘体上硅结构,解决了常规制备方法退火温度高、工艺难度大、所制成的绝缘体上硅质量低等问题。

附图说明

通过阅读参照以下附图对非限制性实施例所作的详细描述,本实用新型的其它特征、目的和优点将会变得更明显:

图1为本实用新型实施例中的硅基压电薄膜体声波谐振器示意图。

图2为本实用新型实施例中的一种新型顶电极环状结构示意图。

图3为本实用新型实施例中的一种新型顶电极同心圆环结构示意图。

图4为本实用新型实施例中的一种新型顶电极叉指状电极示意图。

图5为本实用新型实施例中的第一硅基压电薄膜体声波谐振器制备方法流程示意图。

图6为本实用新型实施例中的第二硅基压电薄膜体声波谐振器制备方法流程示意图。

图中:

1-顶电极5-绝缘二氧化硅中间层

2-底电极6-硅衬底

3-氮化铝压电薄膜层7-光刻胶

4-单晶硅顶层

具体实施方式

下面结合具体实施例对本实用新型进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本实用新型,但不以任何形式限制本实用新型。应当指出的是,对本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变化和改进。这些都属于本实用新型的保护范围。

常规的基于微机电系统的谐振器主要分为两种:基于电容换能机制的谐振器和基于压电换能机制的谐振器。基于这两种换能机制的谐振器之间存在着一种矛盾的平衡--动生阻抗和品质因素q。一方面,基于压电换能机制的谐振器动生阻抗一般小于50ω,但是由于压电材料本身的高损耗特性,这种谐振器的q值很难提高。另一方面,由于硅材料的低损耗特性,基于电容转换机制的谐振器可以达到极高的q值,然而由于微弱的容性电声耦合,这种谐振器的动生阻抗一般在kω级别。基于此,本专利结合上述两种谐振器的优点,提出一种硅基压电薄膜体声波谐振器。通过将高q值硅(si)材料和低动生阻抗的压电薄膜材料结合,使得所设计出的谐振器同时具有高q值和低动生阻抗。

图1所示为本专利所提出的硅基压电薄膜体声波谐振器。该谐振器由顶电极1、底电极2、氮化铝压电薄膜层3、和绝缘体上硅(soi)组成,而绝缘体上硅则是由一层较薄的单晶硅顶层4、一层很薄的绝缘二氧化硅中间层5和很厚的硅衬底层组成。其中底电极可以为电性浮接、接地或者直接不用底电极。电极材料可以为铂(pt)、铝(al)、钼(mo)、金(au)、银(ag)、钌(ru)等,氮化铝压电薄膜层也可以用其他有效的压电薄膜材料替代,比如掺钪氮化铝(alscn)、氧化锌(zno)、锆钛酸铅(pzt)等。当顶电极被施加信号时,氮化铝压电薄膜层中会被激励起lamb波谐振模式,从而得到高q值和低动生阻抗的谐振器。谐振器的底部二氧化硅层还可以一定程度上的补偿压电薄膜层的频率温度系数,从而减小谐振频率因温度变化而产生的漂移,提高其温度稳定性。

在硅基压电薄膜结构的基础上,本专利还提出了三种新型顶电极结构。一种是图2所示的环状结构。该环状结构被均等的分为四个部分,其中相对的四分之一部分相互连接并连接到一侧的焊盘上。在这种结构下,施加在两个相邻四分之一部分的电信号将会有相反的相位,从而在氮化铝薄膜层中很好的激励起lamb波谐振。另一种是如图3所示的同心圆环结构,中心的圆盘状电极与一端的焊盘相连,圆盘外围环绕的圆环与另一端的焊盘相连。当在两端焊盘施加存在电势差的信号时,产生的电场可以在氮化铝薄膜层中激励起lamb波谐振。最后一种顶电极形状是如图4所示的叉指状电极,交互的叉指电极分别连接到两端的焊盘上。当在该叉指电极两端施加信号时,交互的电极之间会形成水平电场,从而在氮化铝薄膜中激励起lamb波谐振。

本专利所提出的硅基压电薄膜体声波谐振器可以通过标准的光刻技术进行加工制备。其加工流程主要分为绝缘体上硅的制备和谐振器的制备两个部分。绝缘体上硅的制备主要采用智能剥离技术,其制备流程如图5所示:1.第一硅片和b清洗、准备;2.在特定条件下,以一定能量向第一硅片注入一定剂量的氢离子或氦离子,用以在硅表层下特定深度产生一层气泡层;3.对第二硅片的表面进行氧化处理,得到一层特定厚度的绝缘二氧化硅层;4.将第一硅片和b进行键合,第二硅片表面的二氧化硅层作为未来绝缘体上硅结构中的绝缘层,而第二硅片将成为绝缘体上硅的衬底;5.对键合后的第一硅片与b进行热处理,使得第一硅片从氢离子气泡层处分开,上层硅膜与第二硅片键合在一起,从而得到绝缘体上硅结构。在得到绝缘体上硅后,在该基板上的谐振器制备流程如图6所示:1.绝缘体上硅清洗、准备;2.在绝缘体上硅表面生长金属层作为底电极;5.在底电极表面生长特定厚度的氮化铝压电薄膜层;6.涂覆光刻胶,并曝光、蚀刻出顶电极的形状;7.沉积金属层,采用揭开-剥离工艺得到特定形状的顶电极;8.从硅衬底背面利用干法或湿法蚀刻出谐振器震荡堆所在区域,从而得到所需的谐振器。

在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。

以上对本实用新型的具体实施例进行了描述。需要理解的是,本实用新型并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本实用新型的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1