微波等离子体化学气相沉积装置及系统的制作方法

文档序号:30992239发布日期:2022-08-03 02:31阅读:88来源:国知局
微波等离子体化学气相沉积装置及系统的制作方法

1.本公开涉及微波等离子体技术领域,特别涉及一种微波等离子体化学气相沉积装置及系统。


背景技术:

2.微波等离子体化学气相沉积(microwave plasma chemical vapor deposition,mpcvd)技术是近几十年来发展起来的主要用于薄膜制造的新技术,以其产品质量高、可控性强、无污染等诸多优势在薄膜制造领域得到了广泛的应用。
3.目前,用于实现mpcvd技术的mpcvd装置结构,通过设置单一微波传输路径,将微波导入等离子体反应腔体内激发等离子体反应,单一微波传输路径限制了微波能量向等离子体腔体的导入,进而导致离子体反应腔体内的等离子体反应不均匀的问题。


技术实现要素:

4.为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种微波等离子体化学气相沉积装置及系统,有利于提高传导微波的能量容量,进而增加了等离子体反应腔体内的能量导入,提高了等离子体反应的均匀性。
5.第一方面,本公开实施例提供了一种微波等离子体化学气相沉积装置,包括:
6.矩形波导,所述矩形波导包括多条微波传输路径,所述多条微波传输路径共用微波导入端口,所述多条微波传输路径的微波导出端口分立设置,所述微波导入端口用于将导入的微波经由对应的所述微波传输路径传导至对应的所述微波导出端口;
7.等离子体反应腔体,所述等离子体反应腔体包括多个微波进入端口,所述微波导出端口与所述微波进入端口一一对应连通;
8.多个电磁转换结构,所述电磁转换结构对应所述微波导出端口与所述微波进入端口的连通位置设置并与所述矩形波导接触设置。
9.在一些实施例中,所述微波导入端口用于通过传导至所述微波导入端口处的横电波并拦截传导至所述微波导入端口处的非横电波。
10.在一些实施例中,所述微波等离子体化学气相沉积装置还包括:
11.第一密封窗口,所述等离子体反应腔体的顶部设置有第一微波进入端口,所述第一密封窗口用于将所述第一微波进入端口密封并传导所述微波至所述等离子体反应腔体内;
12.对应所述第一微波进入端口设置有第一电磁转换结构,所述第一电磁转换结构相对于所述第一密封窗口悬空设置。
13.在一些实施例中,所述第一电磁转换结构包括第一同轴传输线,所述第一同轴传输线用于将由所述微波导入端口传输至所述第一同轴传输线处的横电波转换为横磁波;其中,所述横磁波通过所述第一密封窗口传导至所述等离子体反应腔体内并用于激发所述等离子体反应腔体内的等离子体反应。
14.在一些实施中,构成所述第一密封窗口的材料包括石英材料。
15.在一些实施例中,所述微波等离子体化学气相沉积装置还包括:
16.等离子体沉积基台,所述等离子体沉积基台位于所述等离子体反应腔体的底部区域,所述等离子体反应腔体的底部设置有对应所述等离子体沉积基台所在位置的第二微波进入端口;
17.对应所述第二微波进入端口设置有第二电磁转换结构,所述第二电磁转换结构与所述等离子体沉积基台接触设置。
18.在一些实施例中,所述微波等离子体化学气相沉积装置还包括:
19.第二密封窗口,所述第二密封窗口位于所述等离子体沉积基台与所述第二微波进入端口之间并环绕所述第二微波进入端口设置,所述第二密封窗口用于密封所述等离子体沉积基台与所述等离子体反应腔体之间的间隙并传导所述微波至所述等离子体反应腔体内。
20.在一些实施例中,所述第二电磁转换结构包括第二同轴传输线,所述第二同轴传输线用于将由所述微波导入端口传输至所述第二同轴传输线处的横电波转换为横磁波;其中,所述横磁波通过所述第二密封窗口传导至所述等离子体反应腔体内并用于激发所述等离子体反应腔体内的等离子体反应。
21.在一些实施例中,构成所述第二密封窗口的材料包括石英材料。
22.第二方面,本公开实施例还提供了一种微波等离子体化学气相沉积系统,包括微波产生装置和如第一方面提供的任一种微波等离子体化学气相沉积装置,所述微波产生装置用于产生所述微波并将所述微波传导至所述微波导入端口。
23.本公开实施例提供的微波等离子体化学气相沉积装置通过设置矩形波导包括多条微波传输路径,可实现由微波导入端口导入的微波通过多个微波传输路径传导。将电磁转换结构设置在微波导出端口与微波进入端口的连通位置处,当微波传输路径中传导的微波通过电磁转换结构时,电磁转换结构将微波传输路径中传导的微波转换为可激发等离子体反应的微波,进一步地,可激发等离子体反应的微波通过微波进入端口传导至等离子体反应腔体内,进一步地,激发等离子体反应腔体内的等离子体反应。由此,通过设置矩形波导包括多条微波传输路径,微波能量可通过多条微波传输路径传导至等离子体反应腔体内,解决了由于单一微波传输路径限制微波能量的导入,进而导致等离子体反应腔体内的等离子体反应不均匀的问题,有利于提高微波传输路径的能量容量,进而增加了等离子体反应腔体内的能量导入,解决了等离子体反应不均匀的问题。
附图说明
24.此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
25.为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
26.图1为本公开实施例提供的一种微波等离子体化学气相沉积装置的剖面结构示意图;
27.图2为本公开实施例提供的一种微波等离子体化学气相沉积装置的立体结构示意图;
28.图3为相关技术中提供的一种微波等离子体化学气相沉积装置的剖面结构示意图;
29.图4为本公开实施例提供的一种微波等离子体化学气相沉积系统的结构示意图。
具体实施方式
30.为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
31.在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
32.化学气相沉积技术是以包含有薄膜沉积所需元素的混合气体为源气体,在反应腔中进行一系列复杂的基元反应,并在衬底表面进行一系列的表面反应,最终在衬底表面产生薄膜。
33.目前,化学气相沉积技术常常用来制备碳材料,并且碳材料有着多种存在形式,例如金刚石、石墨、石墨烯和碳纳米管等。其中金刚石的碳原子是正四面体排布的,石墨的碳原子是蜂巢式排布的,而石墨烯则是只有一层碳原子排布的石墨,碳纳米管是由单层或者多层石墨绕着中心轴围成的无缝的圆管状结构。正是由于碳原子排布方式的多样性,碳原子可以形成多种性质各异的存在。金刚石的原子结构决定了其具有一系列十分优秀的物理化学性质,例如极高的硬度、极高的强度、极高的导热系数、极高的纵波声速、极低的摩擦系数、极低的热膨胀系数、极高的电子迁移率、很低的介电常数和极强的化学稳定性。金刚石的上述物理化学性质大多数都是已知物质中最高的,由此可见金刚石是一种用途十分广泛且十分珍贵的材料,其可以应用于力学、热学、声学、电学和光学等诸多方面。后续通过对石墨采用机械剥削法获得了石墨烯。由此可见石墨烯可以看成是石墨构成的基本单元,但是其性质与石墨有着十分大的区别,也有着十分优越的物理化学性质。碳纳米管的首次发现到现在才将近30年,并且受到了材料界的广泛关注。碳纳米管作为一种准一维纳米材料,具有完美的六边形结构、质量轻、优越的力学和电场性能等,也具有十分广阔的应用前景。
34.在高品质金刚石膜的制备方法中,mpcvd技术因为具有等离子体密度高、无放电电极污染和控制性好等优点,所以被认为是制备高品质金刚石膜的首选方法。尤其是在研究高品质金刚石单晶生长和可控掺杂等领域,mpcvd技术制备的金刚石是唯一能够全面满足相应标准的制备技术。
35.图1为本公开实施例提供的一种微波等离子体化学气相沉积装置的剖面结构示意图,图2为本公开实施例提供的一种微波等离子体化学气相沉积装置的立体结构示意图。结合图1和图2,该微波等离子体化学气相沉积装置包括:矩形波导10,矩形波导10包括多条微波传输路径,多条微波传输路径共用微波导入端口11,多条微波传输路径的微波导出端口13分立设置,微波导入端口11用于将导入的微波经由对应的微波传输路径传导至对应的微波导出端口13;等离子体反应腔体12,等离子体反应腔体12包括多个微波进入端口15,微波
导出端口13与微波进入端口15一一对应连通;多个电磁转换结构14,电磁转换结构14对应微波导出端口13与微波进入端口15的连通位置设置并与矩形波导10接触设置,有利于实现转换微波模式。
36.图1和图2示例性地示出了矩形波导10包括两条微波传输路径,分别为第一微波传输路径以x示出和第二微波传输路径以y示出,对应地示出了两个电磁转换结构14,分别为第一电磁转换结构141和第二电磁转换结构142。在其它实施方式中,还可参照第一微波传输路径x和第二微波传输路径y的设置方法,通过共用微波导入端口11设置第三微波传输路径和第四微波传输路径等更多微波传输路径将微波传导至等离子体反应腔体12内,本公开实施例对此不限定也不赘述。
37.具体地,矩形波导10是由金属材料例如铜和铝等制成的,具有矩形截面且内部填充空气介质的规则金属。矩形波导10为传输微波的一种传输线,不仅具有结构简单和机械轻度大的优点,而且其结构封闭,可以避免外接干扰和辐射损耗。示例性地,矩形波导10具有高能量容量,可避免因传导过高的微波能量而产生过高的温度,进而导致烧坏传输线的问题。另外,矩形波导10反射功率小,可减小微波能量的损失。
38.示例性地,等离子体反应腔体12可以为不锈钢金属例如铜和镍等材料制成的,其结构封闭,内部容易形成真空,适用于作为等离子体反应的密闭空间。其中,矩形波导10的微波导出端口13与等离子体反应腔体12的微波进入端口15对应连通设置,可实现矩形波导10与等离子体反应腔体12一体成型。
39.具体地,结合如图1和图2,矩形波导10包括第一微波传输路径x和第二微波传输路径y。其中,第一微波传输路径x和第二微波传输路径y共用一个微波导入端口11,由此微波可通过微波导入端口11导入到第一微波传输路径x和第二微波传输路径y;进一步地,微波通过第一微波传输路径x和第二微波传输路径y传导至对应的微波导出端口13;进一步地,通过与微波导出端口13对应连通的微波进入端口15,将微波传导至等离子体反应腔体12内,进而实现激发离子体反应腔体12内的等离子体反应。
40.其中,分别在微波导出端口13与微波进入端口15的连通位置处设置电磁转换结构14,电磁转换结构14与矩形波导10接触设置,电磁转换结构14可将导入微波传输路径中传导的微波转换为用于激发等离子体反应的微波。需要说明的是,通过微波导入端口11导入至微波传输路径中的微波不能直接作为激发等离子体反应的微波,需要经由电磁转换结构14进行处理将其转换为可激发等离子体反应的微波。
41.本公开实施例提供的微波等离子体化学气相沉积装置通过设置矩形波导包括多条微波传输路径,可实现由微波导入端口导入的微波通过多个微波传输路径传导。将电磁转换结构设置在微波导出端口与微波进入端口的连通位置处,当微波传输路径中传导的微波通过电磁转换结构时,电磁转换结构将微波传输路径中传导的微波转换为可激发等离子体反应的微波,进一步地,微波通过微波进入端口传导至等离子体反应腔体内,激发等离子体反应腔体内的等离子体反应。由此,通过设置矩形波导包括多条微波传输路径,微波能量可通过多条微波传输路径传导至等离子体反应腔体内,解决了由于单一微波传输路径限制微波能量的导入,进而导致等离子体反应腔体内的等离子体反应不均匀性的问题,有利于提高矩形波导传导微波的能量容量,进而增加了等离子体反应腔体内的能量导入,提高了等离子体反应的均匀性。
42.在一些实施例中,结合图1和图2,微波导入端口11用于通过传导至微波导入端口11处的横电波并拦截传导至微波导入端口11处的非横电波。
43.具体地,矩形波导10具有滤波的功能,特定频率以及特定模式的微波可通过微波导入端口11导入到矩形波导10中。例如,微波导入端口11通过横电(transverse electric,te)模式的微波,即微波导入端口11用于通过横电波导入矩形波导10内,以及拦截非横电波导入矩形波导10内,以实现抑制次模的微波进入等离子体反应腔体12内,避免影响等离子体反应腔体12内的电场分布。
44.在一些实施例中,结合图1和图2,微波等离子体化学气相沉积装置还包括:第一密封窗口16,等离子体反应腔体12的顶部设置有第一微波进入端口151,第一密封窗口16用于将第一微波进入端口151密封并传导微波至等离子反应腔体12内;对应第一微波进入端口151设置有第一电磁转换结构141,第一电磁转换结构141相对于第一密封窗口16悬空设置。
45.具体地,第一微波进入端口151设置在等离子体反应腔体12的顶部,将第一微波进入端口151与第一微波传输路径x的第一微波导出端口131连通。在第一微波进入端口151处设置包括例如由石英材料构成的第一密封窗口16,在实现将第一微波传输路径x传导的微波经第一密封窗口16传导至等离子体反应腔体12内的同时,还可密封第一微波进入端口151即密封等离子体反应腔体12,有利于提高等离子体反应腔体12内的真空度。其中,在第一微波进入端口151和第一微波导出端口131处设置第一电磁转换结构141,第一电磁转换结构141的一端连接矩形波导10,另一端悬空设置,避免接触相对位置处的第一密封窗口16,影响其对等离子体反应腔体12的密封性。
46.图3为相关技术中提供的一种微波等离子体化学气相沉积装置的剖面结构示意图。如图3所示,微波传输线包括矩形波导10和同轴传输线19可将特定模式的微波传输到等离子体反应腔体12内,微波在等离子体反应腔体12内形成强电场,等离子体在强电场区域活化后获得活性分子,进而发生等离子体反应。为了实现等离子体反应腔体12内强电场区域集中以及较高的电场分离度,可通过提高等离子体反应腔体12内的高能量输入,因此微波传输线需要具备以下特性:微波传输线具有拦截功能,只允许特定频率的特定模式的微波传输导入,以实现抑制次模的微波进入等离子体反应腔体12内,避免影响等离子体反应腔体内的电场分布;微波传输线需要具有高能量容量,因为随着输入功率的不断提高,微波能量会产生过高的温度,进而烧蚀微波传输线;微波传输线的反射功率要小,以减小能量损失。
47.继续参照图3,导入到矩形波导10内的横电(transverse electric,te)波即te模式的微波经过矩形波导10传导至同轴传输线19,同轴传输线19将te模式的微波转换为横磁(transverse magnetic,tm)波即tm模式的微波,并且将tm模式的微波导入到等离子体反应腔体12内,通过在矩形波导10内安装包括石英材料的密封窗口(图中未示出),可有效避免等离子体对密封窗口的刻蚀,但是此种结构制造复杂,而且密封性差,从而难以保证等离子体反应腔体12内的真空度。
48.由此,本公开实施例提供的微波等离子体化学气相沉积装置通过在等离子体反应腔体的微波进入端口处设置包括石英材料的密封窗口,避免了因在矩形波导内安装密封窗口导致结构制造复杂,有利于简化微波等离子体化学气相沉积装置的结构制造,提高了等离子体反应腔体内的密封性以及可确保等离子体反应腔体内的真空度。
49.在一些实施例中,继续结合图1和图2,第一电磁转换结构141包括第一同轴传输线(图中未示出),第一同轴传输线用于将由微波导入端口11传导至第一同轴传输线处的横电波转换为横磁波;其中,横磁波通过第一密封窗口16传导至等离子体反应腔体12内并用于激发等离子体反应腔体12内的等离子体反应。
50.具体地,根据微波传输特性,矩形波导10传输te模式的微波即横电波,经过第一同轴传输线时,第一同轴传输线可将横电波转换为tm模式的微波即横磁波。具体地,当微波导入端口11导入的横电波通过第一微波传输路径x传导至第一同轴传输线时,第一同轴传输线将横电波耦合为横磁波;进一步地,横磁波通过第一微波进入端口151处的第一密封窗口16传导至等离子体反应腔体12内;进一步地,传导至等离子反应腔体12内的横磁波激发等离子体反应。
51.其中,第一同轴传输线将横电波耦合为横磁波为本领域技术人员的熟知技术手段,这里不再赘述。在其它实施方式中,还可采用本领域技术人员熟知的其它技术手段将横电波耦合为横磁波,在此不限定也不赘述。
52.在一些实施例中,继续结合图1和图2,微波等离子体化学气相沉积装置还包括:等离子体沉积基台18,等离子体沉积基台18位于等离子体反应腔体12的底部区域,等离子体反应腔体12的底部设置有对应等离子体沉积基台18所在位置的第二微波进入端口152;对应第二微波进入端口152设置有第二电磁转换结构142,第二电磁转换结构142与等离子体沉积基台18接触设置,有利于实现转换微波模式。
53.具体地,在等离子体反应腔体12的底部设置等离子体沉积基台18,等离子体沉积基台18用于放置基片,基片上用于沉积等离子体反应腔体12内反应的等离子体以形成所需薄膜。在等离子体沉积基台18的所在位置处即等离子体反应腔体12的底部设置第二微波进入端口152,将第二微波进入端口152与第二微波传输路径y的第二微波导出端口132连通。另外,在第二微波进入端口152和第二微波导出端口132处设置第二电磁转换结构142,第二电磁转换结构142的一端连接等离子体沉积基台18,另一端连接矩形波导10。
54.在一些实施例中,继续结合图1和图2,微波等离子体化学气相沉积装置还包括:第二密封窗口17,第二密封窗口17位于等离子体沉积基台18与第二微波进入端口152之间并环绕第二微波进入端口152设置,第二密封窗口17用于密封等离子体沉积基台18与等离子体反应腔体12之间的间隙并传导微波至等离子体反应腔体12内。
55.具体的,可设置包括例如由石英材料构成的第二密封窗口17,第二密封窗口17环绕等离子体沉积基台18与第二微波进入端口152之间设置,在实现将通过第二微波传输路径y传导的微波传导至等离子体反应腔体12内的同时,还可密封等离子体沉积基台18与等离子体反应腔体12之间的间隙,有利于提高等离子体反应腔体12内的真空度。
56.在一些实施例中,继续参照图1,第二电磁转换结构142包括第二同轴传输线(图中未示出),第二同轴传输线用于将由微波导入端口11传输至第二同轴传输线处的横电波转换为横磁波;其中,横磁波通过第二密封窗口17传导至等离子体反应腔体12内并用于激发等离子反应体腔体12内的等离子体反应。
57.具体地,当经微波导入端口11导入的微波即横电波通过第二传输路径y传导至第二同轴传输线时,第二同轴传输线可将横电波耦合为横磁波;进一步地,横磁波通过第二微波进入端口152处的第二密封窗口17传导至等离子体反应腔体12内;进一步地,激发等离子
体反应腔体12内的等离子体反应。
58.由此,本公开实施例提供的微波等离子体化学气相沉积装置,微波导入端口11仅允许特定频率的特定模式的微波即横电波导入矩形波导10中,横电波通过t型波导的多条微波传输路径并转换为横磁波传导至等离子体反应腔体12内,有效提高了波导传导微波的能量容量。
59.示例性地,参照图1和图2,一部分微波能量经过等离子体反应腔体12上方的第一传输路径x传导入等离子体反应腔体12内,另一部分微波能量通过等离子体反应基台18下方的第二传输路径y进入等离子体反应腔体12内,由此微波能量可通过两条不同的微波传输路径传导入等离子体反应腔体12内,提高了矩形波导10传导微波的能量容量,有效增加了微波能量导入,进而提高了传导入等离子体反应腔体12内的微波能量。另外,将适应窗口例如第二密封窗口17隐藏在等离子体反应基台18下方和矩形波导10内,可避免次生等离子体对石英窗口的刻蚀,进而提高了等离子体反应腔体12的密封性,确保了等离子体反应腔体12内的真空度。
60.在上述实施方式的基础上,本公开实施例还提供了一种微波等离子体化学气相沉积系统。图4为本公开实施例提供的一种微波等离子体化学气相沉积系统的结构示意图。结合图1、图2和图4,微波等离子体化学气相沉积系统20包括微波产生装置21和上述各实施方式中提供任一种微波等离子体化学气相沉积装置22,微波产生装置21用于产生微波并将微波传导至微波导入端口11。
61.上述实施例提供的微波等离子体化学气相沉积系统包括上述各实施方式中提供的任一种微波等离子体化学气相沉积装置,具有相同或相似的有益效果,在此不再一一赘述。
62.需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
63.以上仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1