具有超高充电稳定性的多层驻极体及其制造方法

文档序号:7687588阅读:340来源:国知局
专利名称:具有超高充电稳定性的多层驻极体及其制造方法
技术领域
本发明涉及一种用于电容器扩音器的驻极体及其制造方法,更具体地,涉及一种多层驻极体及其制造方法,该多层驻极体能抵御高温,从而能用表面安装技术(SMT)加工,并且具有超高充电稳定性。
背景技术
通常,扩音器基于将机械振动转变成电信号的方法分成利用碳晶粒的电阻特性的碳扩音器、利用四水合酒石酸钾钠的压电效应的晶体扩音器、在磁场中振动具有线圈的振动膜以产生感应电流的动圈式扩音器、利用设置在磁场中的金属片接收到声波而振动时产生感应电流的现象的速率扩音器(velocity microphone)、以及利用声波振动薄膜而产生的电容变化的电容式扩音器。
电容器类型被广泛用作小尺寸扩音器。然而,这需要DC电源(电池)以向电容器加载电压。为了解决此问题,利用具有准永久电荷的驻极体的驻极体电容器扩音器近年来得以采用。因为驻极体扩音器不需要偏置电压,所以其前置放大器被简化,且其性能可以通过低成本提高。
同时,随着电子产品制造技术的发展,所有产品都变得越来越小。为了制造这种小尺寸产品,表面安装技术(surface mount technology(SMT))得以广泛应用。SMT是一种工艺或方法,它将元件放置在印刷电路板(PCB)上。表面安装元件具有非常小的引线,以连接(焊接)到PCB上提供的焊接区上,或者它不具有引线。虽然产品的价格和性能在SMT被用来制造产品时能得以改善,但是SMT不能用于易受高温损坏的元件,因为高温在回流工艺中被施加到该元件上。
用于电容器扩音器的传统驻极体由氟化乙丙烯(F1uoro-Ethylene-Propylene(FEP))制造,如图1所示。然而,FEP易受高温损坏,使得SMT不能用于制造该驻极体。因此,不能降低使用扩音器的各种产品的生产成本,例如蜂窝电话终端。具体地,传统驻极体16由叠放在金属片11上的FEP膜12制成,且背侧驻极体结构通过用振动膜17形成一空间而构造,该振动膜按金属15被涂覆在PET14和隔离衬13上的方式构造。FEP膜12通过熔融挤出形成,从而在增加其结晶度方面有限制。另外,在FEP膜材料的物理特性中,熔融点大约是260℃。这意味着,它在低温下变成了液体。因此,难以制造通过利用FEP膜的SMT加工的驻极体。
为了解决上述问题,作为不断研究和开发的结果,SiO2、Si3N4等已经被开发来作为能抵御高温的驻极体的材料。然而,使用这些材料的驻极体的制造工艺是复杂的,且制造成本高,因为它们是陶瓷材料。此外,因为陶瓷材料的高密度,作为将介电体转化为驻极体的工艺的充电工艺难以进行。即使驻极体充了电,仅其表面充电,从而当湿气或其它杂质接触驻极体表面时,电荷量极易减少。所以,上述材料具有问题,即虽然它们能抵御热,但易受湿气或周围环境的影响。

发明内容
因此,本发明的一个目的是提供一种具有超高充电稳定性的能抵御高温和湿气的聚合物驻极体。
本发明的另一个目的是提供一种制造用于SMT的上述驻极体的方法。
为了实现本发明的目的,提供一种多层驻极体,它以这样一种方式构造,12.5μm~25μm厚的FEP膜熔融粘接在金属片表面,且30μm~100μm厚的PTFE膜熔融粘接在FEP膜的表面。
本发明还提供一种制造具有超高充电稳定性的多层驻极体的方法,包括第一步,将FEP膜叠置在金属片上;第二步,在高温下加热其上叠置有FEP膜的金属片并在其上施加高压,由此FEP膜和金属片彼此熔融粘接;第三步,在粘接到金属片上的FEP膜上叠置PTFE膜;第四步,加热该叠层结构并对其施加高压,由此PTFE膜熔融粘接到FEP膜上;第五步,冷却合成结构,以完成驻极体;以及第六步,用电荷充电冷却的驻极体。


通过结合附图的以下详细描述,本发明的其它目的和优点可以更充分地得以理解,其中图1示出用于传统扩音器的背部驻极体的结构;图2说明根据本发明的多层驻极体的制造原理;图3示出根据本发明的背部驻极体的结构;图4是示出根据本发明的多层驻极体的制造工艺的流程图;以及图5说明根据本发明的多层驻极体的制造原理。
具体实施例方式
现在,本发明将对参照附图的优选实施例进行说明。
参照图2,根据本发明的具有超高充电稳定性的聚合物驻极体以这样一种方式制造,即12.5μm~25μm厚的FEP膜12粘接在金属片11上,且具有高结晶度的30μm~100μm厚的聚四氟乙烯(以下称为PTFE)膜20叠置在FEP膜12上。从而,多层驻极体得以构造。
由FEP膜和PTFE膜制造的驻极体可以通过SMT加工,因为其具有高结晶度。PTFE膜通过总体上不同于FEP膜的制造方法的工艺形成。
FEP膜难以形成具有高的结晶度,因为它通过熔融挤出形成。即使它具有高的结晶度,其一个晶粒变大,使得不能在整个膜上形成细晶粒。因此,对提高FEP膜的充电稳定性有限制。然而,PTFE膜以如下方式形成,即PTFE树脂成形,且成形体被切割薄,使得大量的细晶粒可以在整个膜上形成,导致结晶度和充电稳定性的提高。PTFE树脂是大量的细微晶粒,每个晶粒具有10~20μm的尺寸。于是,通过在成形过程中施加高压力和热,晶粒变得更细微。
参照图3,使用如上所述形成的驻极体制造的用于扩音器的背部驻极体由驻极体22、振动膜17和隔离衬13构成,该驻极体以FEP膜12和PTFE膜20叠置在金属片11上的方式构造,该振动膜以金属膜15叠置在聚对苯二甲酸乙二酯膜14上的方式形成,隔离衬用于在振动膜17和驻极体22之间形成间隔。在扩音器中,如上构造的背部驻极体将声压转变成电信号。
图4是用于示出根据本发明的多层驻极体的制造工艺的流程图,图15示出了根据本发明的多层驻极体的制造原理。
通常,金属片和薄膜的熔融粘接通过叠层工艺进行。PTFE膜未很好地粘接到金属片上,因为其熔点约为327℃,此温度较高。另外,即使PTFE膜粘接到了金属片上,因为在叠层操作中对PTFE膜施加了高的压力和热,所以驻极体的充电稳定性明显降低。于是,本发明提前将FEP膜粘接到金属片上,然后将PTFE膜粘接到FEP膜上,从而构造多层驻极体。当施加以热和压力时,为同一氟族的FEP和PTFE具有强粘接性。PTFE膜粘接到FEP膜上的多层聚合物驻极体具有超高充电稳定性。PTFE膜具有超高充电稳定性,因为其结晶度高,如上所述。高结晶度意味着在薄膜材料内大量晶粒边界的存在。这些晶粒边界成为充电过程中电子可以在容积内通过其而移动的通道,或成为电子被稳定俘获的俘获位。于是,电子稳定地留存在材料内,从而驻极体的充电稳定性能增加。
参照图4和5,根据本发明的多层驻极体的制造工艺包括用于将FEP膜叠置在金属片上的第一叠层步骤S1和S2、在FET膜上叠置PTFE膜的第二叠层步骤S3和S4、冷却步骤S5、以及充电步骤S6。
在第一叠层步骤中,如图5所示,FEP膜12叠置在金属片11上并在经过引导加热辊52和加压辊54之间的同时熔融粘接到金属片上。FEP膜的厚度优选地是12.5~25μm。
具体地,在卷绕起来的FEP膜12在步骤S1中展开并叠置在金属片11上后,使叠层结构在辊之间经过,同时通过设置在金属片11下方的引导加热辊52加热,并同时由加压辊54施压,由此FEP膜12在步骤S2中熔融粘接到金属片11上。优选的是,加压辊54施加的压力约为10Kgf~100Kgf,且根据引导加热辊52的加热温度为330℃~400℃。当高温加热工序和加压工序如上同时进行时,FEP膜和金属片彼此接触的所有部分熔融,另一方面FEP膜内的局部熔融。
如图5所示,第二叠层步骤以这样一种方式进行,即卷绕起来的PTFE膜20叠置在已在第一叠层步骤中粘接到金属片11上的FEP膜12上,且PTFE膜在经过引导加热辊52和加压辊54之间的同时熔融粘接到FEP膜12上。PTFE膜的厚度优选地是30μm~100μm。
具体地,在卷绕起来的PTFE膜20在步骤S3中展开并叠置在粘接到金属片11上的FEP膜12上后,合成结构在辊之间经过,同时通过设置在金属片11下方的引导加热辊52加热,并同时由加压辊54施压,由此PTFE膜20在步骤S4中熔融粘接到粘接在金属片11上的FEP膜12上。优选的是,加压辊54施加的压力约为30Kgf~150Kgf,且根据引导加热辊52的加热温度为400℃~500℃。
金属片和薄膜的接触表面或两层薄膜的接触表面在上述叠层步骤中整个或局部熔融。聚合物的非晶性和晶格彼此不一致的界面由局部熔融形成。此界面俘获电子,使得驻极体的充电稳定性可以通过控制该界面的位置和尺寸提高。
在熔融粘接之后的冷却材料的步骤S5中,控制冷却速率以调节上述界面的位置和尺寸。然后,在充电步骤S6中,叠置的薄膜用电荷充电。在驻极体通过连续工艺制造的情形下,优选的是,直线传输速度(运行速度)为0.3m/min~0.7m/min。
如上所述,根据本发明,由FEP膜和PTFE膜制造的多层聚合物驻极体使用聚合物制造,使得可以获得优秀的可加工性,且制造成本因非常简单的制造工艺而可以减小。此外,因为PTFE膜因其高结晶度而在其内具有大量晶粒边界,所以驻极体的充电稳定性被提高。这使得可以通过SMT加工的扩音器的制造成为可能。此外,驻极体电容器扩音器(ECM)的可靠性显著提高。
此外,因为多层聚合物驻极体的形状与用于传统驻极体电容器扩音器的背部驻极体的相似,所以所有传统驻极体电容器扩音器均可用SMT工艺制造。
虽然已经说明和描述了包括优选实施例的具体实施例,对本领域技术人员而言,明显的是,在不背离本发明的、仅由所附权利要求限定的精髓和范围的情况下,可以作各种更改。
权利要求
1.一种多层驻极体,其由如下方式构造,即12.5μm~25μm厚的FEP膜熔融粘接在金属片表面,且30μm~100μm厚的PTFE膜熔融粘接在FEP膜的表面。
2.如权利要求1所述的多层驻极体,其特征在于,PTFE膜在PTFE树脂被成形后通过切割而形成为薄膜。
3.一种制造具有超高充电稳定性的多层驻极体的方法,包括第一步,将FEP膜叠置在金属片上;第二步,在高温下加热其上叠置有FEP膜的金属片并在其上施加高压,由此FEP膜和金属片彼此熔融粘接;第三步,在粘接到金属片上的FEP膜上叠置PTFE膜;第四步,加热该叠层结构并对其施加高压,由此PTFE膜熔融粘接到FEP膜上;第五步,冷却合成结构,以完成驻极体;以及第六步,用电荷对冷却的驻极体充电。
4.如权利要求3所述的方法,其特征在于,在第四步骤中,加压通过加压辊在约30Kgf~150Kgf的压力下进行,加热通过引导加热辊在400℃~500℃的加热温度下进行。
5.如权利要求3所述的方法,其特征在于,该制造方法以0.3m/min~0.7m/min的运行速度进行。
全文摘要
一种具有超高充电稳定性的多层驻极体及其制造方法,该驻极体能抵御高温以通过表面安装技术加工。该多层驻极体构造成12.5~25μm厚的FEP膜熔融粘接在金属片表面且30~100μm厚的PTFE膜熔融粘接在FEP膜表面。制造具有超高充电稳定性的多层驻极体的方法包括一、将FEP膜叠置在金属片上;二、在高温下加热其上叠置有FEP膜的金属片并在其上施加高压,由此FEP膜和金属片彼此熔融粘接;三、在粘接到金属片上的FEP膜上叠置PTFE膜;四、加热该叠层结构并对其施加高压,由此PTFE膜熔融粘接到FEP膜上;五、冷却合成结构以完成驻极体;六、用电荷充电冷却的驻极体。
文档编号H04R31/00GK1427430SQ0211806
公开日2003年7月2日 申请日期2002年4月22日 优先权日2001年12月13日
发明者赵琴行, 李源泽 申请人:Bse株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1