用于全球定位系统的接口的制作方法

文档序号:7865258阅读:349来源:国知局
专利名称:用于全球定位系统的接口的制作方法
技术领域
本发明一般涉及无线通信领域。具体地说,本发明涉及一种用于将全球定位系统(“GPS”)装置连接到不同通信装置而不依赖于该通信装置发出的任何辅助特定协议的方法和设备。
背景技术
无线装置(也称为“移动装置”),例如双向无线电通信装置、便携式电视、个人数字助理(“PDA”)、蜂窝电话(也称为“无线电话机”、“无线电话”、“移动电话机”、“移动电话”、和/或“移动台”)、卫星无线电接收机和例如全球定位系统(“GPS”)的卫星定位系统(“SATPS”)(也称为NAVSTAR),在世界范围的应用正在快速增长。随着采用无线装置的人数的增加,无线业务提供商提供的功能(features)数目也在增加,这通过将这些无线装置与其他产品集成在一起而实现。
自从在二十世纪七十年代早期由美国国防部(“DoD”)创建了NAVSTARGPS系统以来,已出现了许多利用与GPS关联的新技术的民用项目。作为示例,这些新技术包括允许用户确定他们在地球表面位置的个人GPS接收机、以及利用GPS时钟基准来工作的例如码分多址(CDMA)和时分多址(TDMA)蜂窝网络的许多通信网络。作为这些新技术的结果,存在对这样一种移动通信装置的增长的需求,该移动通信装置能在紧急情况下发送它们的地点,合并位置信息和通信装置,定位和跟踪旅游者、儿童和老人,以及为贵重财产提供保护。
一般来说,GPS系统通常是基于卫星(也称为“宇宙器”或“SV”)的导航系统。GPS的例子包括但不限于美国(“U.S.”)海军卫星导航系统(“NNSS”)(也称为TRANSIT)、LORAN、肖兰导航系统(shoran)、台卡导航系统、TACAN、由美国国防部(DoD)开发的称为NAVSTAR的联合计划处(“JPO”)全球定位系统、称为全球导航卫星系统(“GLONASS”)的俄罗斯副本、以及例如提出的“伽利略”计划的任何未来的西欧GPS。NAVSTARGPS(此后简称为“GPS”)被初始开发为军用系统以满足美国军队的需求;然而,美国国会后来也指令DoD促进GPS的民用用途。结果,GPS现在是可由美国政府机构(如军队)和平民访问的双用途系统。在Global PositioningSystemTheory and Practice,fifth,revised ed.,by Hofmann-Wellenhof,Lichtenegger and Collins;Springer-Verlag;Wien,New York,2001中描述了GPS系统,通过引用而全部合并到其中。
通常,GPS的利用包括标识地球上的精确地点,并同步例如军用通信网络的电信网和例如CDMA和TDMA类系统的蜂窝电话网。另外,随着美国国会通过联邦通信委员会(“FCC”)发出对能在紧急情况下(一般称为“增强911”服务或“E911”)提供50英尺之内的蜂窝电话用户地点的移动电话网的命令,正采用GPS用于许多蜂窝应用中的地点确定和同步。
一般来说,GPS卫星阵列(一般称为“GPS星群”)发送高度精确的时间编码的信息,该信息允许GPS接收机计算其关于在地球上的纬度和经度以及海平面之上的海拔的地点。设计GPS为非军队用户提供具有大约100米之内的精度的基本导航系统并甚至为军队和其它授权用户提供更高的精度(将选择可用性“SA”设置为ON)。
一般来说,GPS包括三种主要系统段空间、控制、和用户。GPS的空间段是在地球上空沿轨道运行的星群,其包含发射机,并向地球上的GPS接收机发送高度精确的定时信息。现在,实现的GPS星群包括21颗主要工作卫星加上3颗活动共享卫星。这些卫星沿6个轨道安排,每一个轨道包含3或4个卫星。这些轨道平面与赤道形成55°角。这些卫星在地球上方大约10898海里(20200公里)的高度以每颗卫星大约12小时的轨道周期沿轨道运行。
一般来说,每一沿轨道运行的卫星包括4个高度准确的原子钟(两个铷和两个铯)。这些原子钟提供用于产生发送到地球的唯一二进制码(也称为伪随机“PRN码”或伪随机噪声“PN码”)的精度计时脉冲。PRN码标识GPS星群中的特定卫星。卫星也发送数字编码信息集,该数字编码信息集包括已知作为年历(almanac)数据和星历(ephemeris)数据的用于确定卫星的空间地点的两类轨道参数。
星历数据(也称为“历元(ephemerides)”)定义卫星的精确轨道。星历数据表示在任何给定时间该卫星在哪儿,并且可根据精确纬度和经度测量的卫星地面轨迹而标识其地点。星历数据中的信息被编码并在任何给定时间从提供地球上方的卫星位置的精确表示的卫星发送出去。通常,当前星历数据足够用于在当前SA的级别确定空间中几米或几十米的地点。地面控制站每小时更新一次星历数据以确保精度。然而,在大约两小时后,星历数据的精度开始降低。
年历数据是星历数据的子集。年历数据包括关于星群中所有卫星地点的较低精度信息。年历数据包括相对少的参数并一般足以确定空间中几公里的地点。每一GPS卫星以十二点五(“12.5”)分钟的周期而向GPS星群中的所有GPS卫星广播该年历数据。所以,通过仅跟踪一颗卫星,可获得轨道中所有其他卫星的年历数据。该年历数据每几天更新一次并直到大约几个月一直有用。因为其相对长的寿命,已关闭超过几个小时的GPS接收机通常利用该年历数据来确定哪个GPS卫星是可见的(in-view)。然而,年历和星历数据都仅在有限数量时间中有效。这样,随着年历和星历数据的老化,基于该信息的卫星地点越来越不精确,除非及时以适当的间隔更新该数据。
星历数据包括在任何时刻在陆地坐标系统中确定卫星的位置和速度向量可用的三个数据集。这三个数据集包括年历数据、广播历元、和精确历元。这些数据在精度上不同并实时可用或在事件之后(after the fact)可用。通常,年历数据的目的在于为用户提供较少精确数据以便于接收机卫星搜索或用于例如能见度图表的计算的计划任务。年历数据至少每六天被更新一次并作为卫星消息的部分而广播。年历消息必要地包括用于所有卫星的轨道和卫星时钟校准项的参数。GPS年历数据在由Arlington,Va.的NavTech Seminars &NavTech Book and Software Store出版的1995年2月的重印本“GPS InterfaceControl Document ICD-GPS-200”for the “NAVSTAR GPS Space Segment andNavigation User Interfaces”中进行了描述,通过引用而合并在这里。
在典型操作例子中,当GPS接收机首次开启(一般称作“冷启动”)或从超过几小时的长待令状态中醒来时,GPS接收机将扫描GPS频谱以获取从可用GPS卫星发送的GPS信号。一旦获取了GPS信号,GPS接收机将然后从所获取的GPS卫星下载GPS星群的GPS年历数据、星历数据和时钟校准信息。一旦下载了年历数据,GPS卫星将然后扫描GPS频谱以得到年历数据所示的可用(即“可见”)GPS卫星。理想地,给定充足时间并假定GPS接收机周围的环境状态允许GPS接收机获取两个或三个附加可见GPS卫星,则GPS接收机从这三到四个卫星接收距离和定时信息并计算其在地球上的位置。
不幸地是,在很多应用下,尤其在室内或有限天空能见状态下,时间和环境状态可限制GPS接收机下载GPS年历数据的能力。与时间关联的问题通常由Time-to-First-Fix(“TTFF”)值进行描述。如果TTFF值高,则GPS接收机将具有有限的应用,因为它将花费太长时间而不能确定其初始地点。
作为一个例子,在无线或移动(例如蜂窝)电话应用中,具有集成GPS接收机的移动电话或个人数字助理(“PDA”)可能不得不在进行呼叫之前等待GPS接收机下载GPS年历大约12.5分钟(假设所有必要可见卫星可看得见的理想环境状态)。这对于多数应用是不能接受的。
在蜂窝电话应用中,考虑到要求蜂窝电话在E911紧急呼叫中将其位置信息发送到应急人员的E911命令,该限制更是不可接受的。如果用户发现他们自己处于紧急情况中,并且带有的GPS的蜂窝电话关机或处于长待令状态,则这些用户在进行将用户地点发送到应急人员的紧急呼叫之前,将一般不得不首先等待大约12.5分钟,以保持连续不间断卫星可见性(因为GPS接收机通常需要强信号来可靠地获取年历和/或星历数据)。在典型城市或自然阻塞的环境中,该等待将长于12.5分钟,因为该环境状态使得获取第一卫星更困难。应注意这尤其在生死攸关的情况下是不可接受的。
以往的降低下载年历数据所需的时间量的方案包括在GPS接收机的存储单元(例如只读存储器“ROM”)中存储一些种类的年历(例如工厂安装的年历数据)。通常,利用该预先存储的年历数据来降低冷启动状态下的TTFF。在该方案中,该冷启动状态一般由于与卫星位置关联的不确定性以及该预先存储年历的老化而仍然具有相对长的TTFF时间。一旦获取第一固定点(fix),该GPS接收机可然后从该获取的卫星下载更新的年历数据并更新ROM(或随机存取存储器“RAM”)用于将来使用。然而,该方案仍然要求该GPS接收机从用于未来获取的卫星接收更新的年历数据(即接收年历数据的“新鲜”拷贝)。接收更新的年历数据将仍然需要非常大的时间量,这将影响GPS接收机的性能。
响应于这些问题,已为移动电话开发了辅助方案,其为了例如获取、定位计算和/或灵敏度改善的目的通过从通信模块(也称为“呼叫处理机”或“CP”)提供辅助数据而帮助GPS接收机。不幸地是,这些无线网络中的辅助方案通常是蜂窝网络(即例如TDMA、GSM、CDMA等的蜂窝平台)和特定卖主,并由位于该蜂窝网络的地理定位服务器站(Geolocation ServerStation)提供。结果,移动电话(也称为“移动台”或“MS”)中的GPS接收机通常必须与该蜂窝网络的地理定位服务器站兼容。
然而,在美国及国外存在许多工作的蜂窝网络,所述蜂窝网络合并或将合并利用彼此不兼容的地理定位服务器站协议的地理定位服务器站。所以,需要这样一种系统,该系统能够允许GPS接收机与使用独立地理定位服务器站协议的许多地理定位服务器站一起工作。

发明内容
一种用于在移动装置中处理利用全球定位系统(“GPS”)接口在呼叫处理机处接收的协议辅助数据的协议独立接口,其中公开了根据地理定位服务器站协议而产生该协议辅助数据。该协议独立接口可包括用于在GPS接口接收在该呼叫处理机处接收的协议辅助数据的部件;用于将所接收的协议辅助数据转换为对该地理定位服务器站协议透明的接口数据的部件;和用于将该接口数据传递到GPS模块的部件。
操作中,该协议独立接口执行用于在移动装置中处理利用全球定位系统(“GPS”)接口在呼叫处理机处接收的协议辅助数据的处理,其中该协议辅助数据根据地理定位服务器站协议而产生。该协议独立接口执行以下处理在GPS接口接收在该呼叫处理机处接收的协议辅助数据;将所接收的协议辅助数据转换为对该地理定位服务器站协议透明的接口数据;和将该接口数据传递到GPS模块。
一旦检查了下图和详细描述,本发明的其他系统、方法、特征和优点对于本领域技术人员来说将是或变得清楚。意欲将所有这些其他系统、方法、特征和优点包括在该描述中、包括在本发明的范围中、并受到所附权利要求的保护。


附图中的组件没有必要按比例绘制,其重点在于图示本发明的原理。在图中,相同的附图标记指明不同视图中的对应部件。
图1是工作中的典型公知GPS接收机的图示。
图2图示了GPS的多个不同已知应用的示意图200。
图3示出了经由路径302和304从GPS星群226接收GPS数据的已知无线移动定位系统架构300。
图4示出了包括经由信号通道406与GPS模块404进行信号通信的呼叫处理机402的移动装置400的典型实现。
图5示出了在无线移动定位系统架构中的协议独立接口的示范实现的方框图。
图6示出了利用根据图5的GSM环境中的FSM的移动装置的示范实现的方框图。
图7示出了利用根据图5的CDMA环境中的FSM的移动装置的示范实现的方框图。
图8示出了地理定位服务器站、呼叫处理机和GPS模块之间的RRLP到协议独立接口消息流程图的例子。
图9示出了呼叫处理机、GPS模块和基站(“BS”)之间的协议独立接口消息流程图的例子。
具体实施例方式
首先转到图1。在图1中,图示了已知全球定位系统(“GPS”)的示范实现的示意图100。在工作中,位于地球104上的GPS接收机102被设计为同时分别从几个GPS卫星114、116、118和120拾取信号106、108、110和112。该GPS接收机102对信息进行解码,并利用时间和星历数据计算地球104上GPS接收机102的位置。该GPS接收机102通常包括执行必要计算的浮点处理器(未示出),并可在显示器122上输出纬度、经度以及海拔的十进制或图形显示。一般来说,需要分别来自至少3个卫星114、116和118的信号106、108和110用于纬度和经度信息。需要来自卫星120的第四卫星信号112来计算海拔。
图2图示了GPS的多种不同已知应用的示意图200。在图2中,许多示例装置206、204、202、208、210和212被示出用于分别接收和利用来自卫星的GPS星群226(其中未示出单个卫星)的GPS信号214、216、218、222、220和224。该示例装置可包括手持GPS接收机202、汽车GPS接收机204、集成蜂窝电话GPS接收机206、集成个人数字助理(PDA)GPS接收机208、集成移动计算机(例如典型“膝上”或“笔记本”计算机)GPS接收机210、集成计算机(非移动)GPS接收机212、或可集成GPS接收机的任何其他类似类型的装置。
本领域技术人员应注意以往GPS接收机典型是从GPS星群226接收GPS信号的单机装置而没有来自外部源的任何帮助。然而,随着国会E911命令以及蜂窝和非蜂窝网中无线通信的持续增长,越来越多的通信装置开始将GPS接收机集成在通信装置中以满足E911命令和/或用于对GPS接收机的网络辅助帮助。
这些新集成通信装置可通过例如基站塔228的连接(collection)节点与蜂窝电话通信网通信或通过非蜂窝连接点230与非蜂窝通信网通信。该蜂窝通信网可为TDMA、CDMA、GSM、宽带CDMA(也称为“W-CDMA”和/或通用移动电信系统“UMTS”)、CDMA-2000、通用无线分组业务(“GPRS”)、或增强移动电话业务(“AMPS”)类型蜂窝网络。非蜂窝通信网可包括例如蓝牙、基于IEEE 802.11的无线保真(“Wi-Fi”)网、或其他类似无线网的网络。作为示例,手持GPS接收机202、集成汽车GPS接收机204、集成蜂窝电话GPS接收机206、PDA 208、和移动计算机210可分别经由信号通道232、234、236、238和240与蜂窝基站228进行通信。类似地,手持GPS接收机202、PDA 208、和移动计算机210可分别经由信号通道242、246和244与非蜂窝连接点230进行通信。
作为非无线通信环境中的集成GPS接收机的例子,非移动计算机212可包括通过内部添加的外围装置而内部集成在母板上的集成GPS接收机(未示出)、或作为外部连接的外围装置。在该例中,集成GPS接收机(未示出)可经由网络250和调制解调器252而从网络服务器248接收帮助。网络250可为公知简易老式电话业务(“POTS”)、以太网、因特网或其他类似网络。应注意也可以与非移动计算机212相同的方式利用连接到POTS、以太网和因特网的其他装置(例如自动售货机、办公和商业器材、或其他重要器材)。
图3示出了经由信号通道302和304从GPS星群226接收GPS数据的已知无线移动定位系统架构300。该架构300可包括移动装置306、基站308、无线网络基础设施310、地理定位服务器站312、GPS基准接收机314和可选最终用户316。该GPS基准接收机314经由信号通道302从GPS星群226接收GPS信号。该移动装置306经由信号通道304从GPS星群226接收GPS信号并经由信号通道318与基站308进行信号通信。一般来说,移动装置306包括呼叫处理机320和GPS模块322。呼叫处理机320和GPS模块322经由信号通道324进行信号通信。信号通道324可为RS232链路、经由软件数据结构的内存共享的逻辑接口或其他类型电气和/或逻辑接口。本领域技术人员应注意GPS模块322可实现为单独模块和/或装置、或实现为位于包括呼叫处理机320的移动装置306内任何地方的功能单元。
一般来说,图3示出的架构300要求GPS模块322利用与地理定位服务器站312所利用的协议相同的协议,以从地理定位服务器站312接收任何GPS辅助信息。
图4示出了包括经由信号通道406与GPS模块404进行信号通信的呼叫处理机402的移动装置400的典型实现。该移动装置400可为图2所示的示例装置202、204、206、208、210、和212。该呼叫处理机402经由信号通道318与基站308进行信号通信,而GPS模块404经由信号通道304从GPS星群226接收GPS数据。作为示例,如果呼叫处理机402和GPS模块404为物理独立的装置,则可用RS232数据链路实现信号通道406。该信号通道406也可实现为经由软件数据结构的内存共享的逻辑接口或其他类型电气和/或逻辑接口。
在典型操作中,移动装置400如图3所示从GPS星群226接收GPS信号304,并通过基站塔308从蜂窝电话通信网基础设施310接收通信信号318,或通过非蜂窝连接点230利用非蜂窝通信网(未示出)接收通信信号318,图2。
图4的呼叫处理机402可为能与外部通信网(例如图3的蜂窝电话通信网基础设施310)、或非蜂窝无线或非无线网(未示出)进行单向或双向通信的任何通信装置。呼叫处理机402包括用于建立和管理电信连接的专用硬件(未示出)和软件(未示出)。
蜂窝电话类型的呼叫处理机402的例子可包括伊利诺斯州Schaumberg的摩托罗拉公司生产的蜂窝电话呼叫处理集成调度增强网络(“iDENTM”),芬兰的诺基亚、瑞典的索爱、加利福尼亚州圣地亚哥的高通公司利用的CDMA20001X类型芯片组,或能够与GPS模块308内的GPS接收机进行通信的任何类似类型的GSM/CDMA/TDMA/UMTS类通信装置。非蜂窝电话类型通信装置的例子可包括由德国西门子SA生产的SX45 GPS辅助设备、能够与BlueTooth通信的任何通信装置、基于IEEE 802.11的无线保真(“Wi-Fi”)网络、或其他类似无线网。GPS模块404可包括能够与呼叫处理机402进行通信的任何GPS接收机。
在图5中,示出了协议独立无线移动定位系统架构500的示范实现。在图5中,架构500可包括移动装置506、基站508、无线网络基础设施510、地理定位服务器站512、GPS基准接收机514、和可选最终用户516。移动装置506和GPS基准接收机514分别经由信号通道504和502从GPS卫星星群226接收GPS信号。
移动装置506可包括呼叫处理机520、GPS模块522和协议独立接口(这里称为“PI2”)524。PI2 524是允许GPS模块522从地理定位服务器站512接收辅助数据的接口,而不要求GPS模块522利用与地理定位服务器站512所利用的协议相同的协议。所以,PI2 524使得GPS模块522能够免于不同地理定位服务器站的多协议的特定实现。术语模块的使用可为独立模块或集成在主板或集成电路中的子系统。
操作中,每一地理定位协议可经由PI2 524中的变换器来实现,该变换器将地理定位服务器站512协议变换为GPS模块522使用的独立协议。这允许随着移动装置506不干涉从一种无线通信标准到另一种无线通信标准,而实现地理定位信息的无缝可用性,从而改变移动装置506从呼叫处理机520接收辅助数据并向地理定位服务器站512发送位置或其他地理定位结果的方式。结果,因为PI2 524能够将来自由移动装置506的用户(未示出)预订的通信系统的地理定位服务器站512的GPS信息变换为GPS模块522所利用的协议,所以在全世界各地利用的所有不同空中接口的每一唯一地理定位信息(例如IS-817、IS-801等)可由GPS装置506提供,而无需复位或重新配置该GPS模块522。PI2 524的例子包括但不限于由加利福尼亚州圣何塞的SiRF科技公司开发和拥有的辅助独立互用性接口(“AI3”)。
本领域技术人员应注意存在为不同类型无线网络开发的不同地理定位标准。作为示例,基站508和基础设施510之间的接口526可为任何空中接口。该接口526典型由呼叫处理机520制造商控制。通常,PI2 524包括统称为“F”接口(未示出)和“G”接口(未示出)的两种接口。
作为GPS模块522和呼叫处理机520之间的客户机系统接口的F接口担当自举协议,该自举协议总是存在并允许呼叫处理机520在运行时选择如何将帮助传送到辅助封装层的GPS模块522。呼叫处理机520可在空中接口(例如端对端系统架构情况下的接口526)或G接口之间选择。F接口可执行以下任务来自呼叫处理机520的GPS模块522硬件管理(上电/断电、复位);如果可用,隐含辅助接口,即经由呼叫处理机520发送来自网络(或来自呼叫处理机520实时时钟)的时间和频率变换、以及移动装置506的大致位置(如果其存在,一般隐含在网络中);会话打开/关闭(即通知GPS模块522已打开/关闭空中接口连接);以及在双模式移动装置506中,通知GPS模块522打开了哪个空中接口,由此通知GPS模块522使用哪组地理定位空中接口协议来与地理定位服务器站对话。
与F接口不同,利用G接口将从基站508接收的GPS辅助信息传送到GPS模块522。由于通常存在许多现有地理定位(Geolocation)协议,所以G接口被设计为可在大范围地理定位标准和独立的空中接口上使用,即对于可应用空中接口是唯一的。PI2 524可实现为可应用地理定位标准的简化。
操作中,呼叫处理机520通过G接口而将PI2格式的位置请求信息和网络辅助信息发送到GPS模块522。反过来,GPS模块522通过同一接口将位置结果或误差通知发送到呼叫处理机520。应注意包括SAMPS、GSM、和CDMA的所有地理定位协议工作在交互作用典范下。基站508仅将移动装置506所请求的发回来。一般来说,执行交互作用的对策高度依赖于GPS模块522处理的知识。
另外,与许多协议堆栈级相反,地理定位协议是应用协议,这意味着它们处理消息的语义(含义)。所以,它们并不仅将数据从一方运输到另一方,无需TCP-IP堆栈中交换或重复的误差校正和消除。这样,处理该协议(例如判决请求一些数据)的任何实体需要知道这些数据用于什么,以及在该协议上交换的每一参数的含义(即其需要知道GPS方发生了什么)。这样,地理定位协议的实施者应为GPS“了解”。
所以,PI2 524利用空中接口有限状态机(“FSM”)(未示出)。一般来说,这导致FSM当前驻留的状态被GPS存储器(未示出)的内容的当前知识强加,并导致发送请求消息以完成一些不完全的GPS信息的判决被内建在FSM自身中。
回到图6,图6示出了利用FSM的移动装置600的方框图。移动装置600包括呼叫处理机602和GPS模块604。呼叫处理机602包括空中接口CP模块606、空中接口协议到GPS模块接口转换器608、GPS模块数据结构610、GPS模块空中接口汇编程序/反汇编程序612、GPS模块/CP系统消息协议汇编程序/反汇编程序614、和GPS模块接口模块616。GPS模块604包括CP接口模块618、PI2接口模块620、PI2数据结构622、CP系统接口FSM 624、和GPS内核626。GPS内核626经由信号通道632从GPS卫星星群226接收GPS信号,并且空中接口CP模块606经由信号通道630与基站(未示出)进行信号通信。
图6示出了将在基于IS-801的CDMA移动装置600内部实现的PI2的高级架构。呼叫处理机602可经由信号通道(包括但不限于RS232链路)628和硬件线路(用于时间和频率变换)而与GPS模块604进行通信。信号通道628可实现为RS232接口、经由软件的内存共享的逻辑接口、数据结构、其他电气和/或逻辑接口。F和G接口636和634是用于RS232接口的两个单独逻辑信道。G接口634被设计为将PI2辅助数据传递到GPS模块604。辅助数据的剩余部分将经由F接口636而传递到GPS模块604。在GPS模块604方,F接口638是标准GPS(例如SiRFLoc)客户机接口,而G接口640对于任何标准空中接口协议是透明的。对于IS-801呼叫处理机602,PI2数据将经由空中接口协议到GPS模块接口协议转换器(也称为IS-801消息到PI2转换器)而产生。PI2数据在经由信号通道628传递到GPS模块604之前,经由GPS模块空中接口汇编程序/反汇编程序(也称为PI2接口消息处理程序(handler))612而包装为G消息格式。呼叫处理机602从合适的空中接口消息获得时间、地点和频率数据。该地点数据经由“F”接口636消息(近似移动装置600定位响应消息)被传递到GPS模块604。该时间和频率数据被传递到GPS模块604。
PI2数据结构包括关于电离层、卫星星历和移动装置600位置请求参数的信息。所有这些数据通常按字节定位。在呼叫处理机602建立与基站(未示出)的通信链路之后,PI2数据结构需要被复位为0。存在少数辅助数据源,包括近似移动装置600位置、地点请求参数、星历数据、GPS时间、和频率。可用基站位置的知识获得第一源。基站位置可用作近似移动装置600位置。存在得到基站位置数据IS-95隐含消息和IS-801协议消息的两种方式。IS-95寻呼信道“系统参数消息”包括经度和纬度的BS位置数据。由于海拔数据在该消息中不可用,所以该近似移动装置600位置的海拔将被设置为0。呼叫处理机602也可经由IS-801“提供基站年历”消息而得到基站位置数据。该消息包括可用于计算基站经度、纬度和海拔的充足数据。在该方法中,在PDE能应答该“提供基站年历”消息之前,呼叫处理机602将需要发送IS-801“请求基站年历”消息。与IS-95隐含方法相比,这通常需要附加消息处理。
该地点请求参数也可帮助定位移动装置600。该IS-801“请求地点响应”消息提供数据来计算PI2地点请求参数的固定点之间的时间和固定点数目。另外,利用该星历数据,IS-801“提供GPS星历”消息将为RI2提供要转换为星历数据的所有数据。
辅助的GPS时间也允许GPS时间不确定性的减小,GPS模块604可经由时间变换方法而同步GPS时钟和CDMA系统时钟。呼叫处理机602同步听筒(handset)时钟和可从CDMA同步信道“同步信道消息”获得的CDMA系统时间。类似地,频率辅助可用于降低GPS频率不确定性,GPS模块604可经由频率变换方法而同步GPS时钟和呼叫处理机602以及基站时钟。
操作中,呼叫处理机602软件经由IS-801和IS-95消息协议而为网络辅助数据处理与基站的通信。PI2数据包括移动装置600位置请求参数和星历辅助数据。呼叫处理机602可通过利用将从IS-801“请求地点响应”消息恢复的位置固定点数据的数目而计算移动装置600位置请求参数。呼叫处理机602通过从IS-801“提供GPS星历”消息恢复压缩的星历数据而产生PI2格式的星历辅助数据。呼叫处理机602应将移动装置600位置请求参数和星历辅助数据存储到PI2数据结构中。
呼叫处理机602可使用在移动装置600空闲状态期间从IS-95“系统参数消息”获得的基站位置数据,并将其用作近似移动装置600位置。由于在IS-801“系统参数消息”中缺少基站的海拔信息,所以呼叫处理机602将近似移动装置600位置的海拔设置为0。
呼叫处理机602可选择以从IS-801“提供基站年历”消息获得BS位置数据。通过选择该方法,呼叫处理机602需要在移动装置600系统空闲状态期间发送IS-801“请求基站年历”消息或业务信道状态上的移动装置600控制。与隐含IS-95方法相比,该方法要求处理两个IS-801消息并具有时延-晚于移动装置600空闲状态。在“基站年历”消息中发现的多个基站坐标中,呼叫处理机602应拾取与其具有直接无线电连接的基站作为用于近似移动装置600位置的参考基站。
呼叫处理机602使用从IS-95“同步信道消息”获得的CDMA系统时间作为呼叫处理机602时间。呼叫处理机602经由时间变换方法而发送定时信息到GPS模块604。类似地,呼叫处理机602经由频率变换方法而同步其时钟频率和GPS模块604频率。
呼叫处理机602经由G接口634“PI2数据消息”而发送PI2数据到GPS模块604。呼叫处理机602经由合适的F接口636消息而发送近似移动装置600位置、时间和频率变换数据。
为了提供基于PI2的定位业务,呼叫处理机602将合适的值设置到IS-801消息中的某一数据字段。当呼叫处理机602经由F接口636从GPS模块604接收位置结果时,它将该位置结果转换为要发送到PDE的IS-801消息格式。
响应于从PDE发送的IS-801“请求MS信息”消息,呼叫处理机602将IS-801“提供移动装置600信息”消息的REQ_PAR_RECORD设置如下1.将RESP_PAR_RECORD的GPS_ACQ_CAP和LOC_CALC_CAP设置为下述值GPS_ACQ_CAP(12比特)-比特4(GPS星历)和比特7(GPS自主获取能力)被设置为“1”,其他比特被设置为“0”;和2.LOC_CALC_CAP(12比特)-比特5(利用星历的地点计算能力)和比特7(自主地点计算能力)被设置为“1”,其他比特被设置为“0”。
如果呼叫处理机602选择以经由IS-801基站年历数据而获得近似移动装置600位置,然后呼叫处理机602将IS-801“请求基站年历”消息的REQ_PAR_RECORD设置如下EXT_BS_ALM(1比特)-设置为1。
呼叫处理机602发送IS-801“请求GPS年历”消息以获得年历辅助数据。呼叫处理机602将IS-801“请求GPS年历”消息的REQ_PAR_RECORD设置如下AB_PAR_REQ(1比特)-设置为1。
在从GPS模块604接收“F”接口“位置结果”消息之后,呼叫处理机602如下将该位置结果数据转换为IS-801“提供定位响应”消息1.TIME_REF_CDMA(14比特)。呼叫处理机602将GPS时间转换为CDMA系统时间。该GPS时间由“F”接口“位置结果”消息的MEAS_GPS_WEEK和MEAS_GPS_SECONDS定义。MEAS_GPS_WEEK是扩展GPS星期编号,而MEAS_GPS_SECONDS是以1/1000秒为单位的从当前GPS星期开始之后过去的时间的编号。该CDMA系统时间在TAI/EIA-95-B的1.2中定义。而TIME_REF_CDMA应设置为如IS-801中定义的(t/50)mod16384,其中t是帧中的CDMA系统时间。
2.LAT(25比特)LAT=scale_factor_meas_lat×MEAS_LAT(位置结果消息)。LAT以180/225为单位,而MEAS_LAT以180/232为单位,所以scale_factor_meas_lat=(180/232)/(180/225)=1/27;3.LONG(26比特)LONG=scale_factor_meas_long×MEAS_LONG(位置结果消息)。LONG以360/226为单位,而MEAS_LONG以360/232为单位,所以scale_factor_meas_long=(360/232)/(360/226)=1/26;4.LOC_UNCRTNTY_ANG(4比特),LOC_UNCRTNTY_A(5比特),LOC_UNCRTNTY_P(5比特)。如果OTHER_SECTIONS(位置结果消息)的比特0(LSB)等于“0”(数据中无水平误差部分),然后LOC_UNCRTNTY_ANG=0,LOC_UNCRTNTY_A=‘11111’(不可计算的),LOC_UNCRTNTY_P=‘11111’(不可计算的);5.FIX_TYPE(1比特)。如果POS_TYPE(位置结果消息)=0×00,然后FIX_TYPE=0。如果POS_TYPE=0×01,然后FIX_TYPE=1;6.VELOCITY_INCL(1比特),VELOCITY_HOR(9比特),VELOCITY_VER(8比特),HEADING(10比特)VELOCITY_INCL(IS-801,1比特)=OTHER_SECTIONS(位置结果消息)的比特2;如果VELOCITY_INCL=‘1’,则VELOCITY_HOR=scale_factor_hv×HOR_VEL(位置结果消息),scale_factor_hv=0.0625/0.25=0.25;HEADING=scale_factor_heading×HEADING(位置结果消息);scale_factor_heading=(360/216)/(360/210)=2-6;如果VELOCITY_INCL=‘1’且FIX_TYPE=‘1’;则VELOCITY_VER(IS801,8比特)=VER_VEL(位置结果消息);如果VELOCITY_INCL=‘0’,然后IS-801“提供定位响应”不应包括VELOCITY_HOR、VELOCITY_VER和HEADING参数;7.CLOCK_INCL(1比特),CLOCK_BIAS(18比特),CLOCK_DRIFT(16比特)。CLOCK_INCL=OTHER_SECTIONS(位置结果消息)的比特3;如果CLOCK_INCL=‘1’,CLOCK_BIAS=scale_factor_clk_bias×CLK_BIAS(位置结果消息)+offset_clk_bias;其中,scale_factor_clk_bias=le9;offset_clk_bias=13000ns。
8.HEIGHT_INCL(1比特),HEIGHT(14比特)。HEIGHT_INCL=OTHER_SECTIONS(位置结果消息)的比特1;如果HEIGHT_INCL=‘1’,则HEIGHT=scale_factor_height×HEIGHT(位置结果消息),scale_factor_height=0.1;和9.LOC_UNCRTNTY_V(5比特)。如果HEIGHT_INCL=’1’,则LOC_INCRTNTY_V=HEIGHT_STD_ER(位置结果消息)。
呼叫处理机602响应于IS-801“请求基站年历”而从PDE接收IS-801“提供基站年历”消息。该消息提供IS-95隐含方法的替换以获得近似移动装置600位置数据。
在该部分中描述从IS-801“提供基站年历”到“F”接口“近似移动装置600位置响应”的消息映射。“F”接口“近似移动装置600位置响应”的字段名称被标以(F)。IS-801“提供基站年历”的字段名称被标以(IS-801)。
“提供GPS星历”消息提供星历数据作为PI2接口数据的一部分。根据星历数据集的大小,PDE可分几部分发送IS-801“提供GPS星历”。消息的部分总数和部分编号分别在TOTAL_PARTS和PART_NUM的元件中表示。当呼叫处理机602接收星历数据的所有部分时,呼叫处理机将它们映射到PI2结构。
操作中,呼叫处理机602经由“F”接口消息与GPS模块604相互作用。无论何时只要新呼叫处理机602可用(没有来自GPS模块604的请求),呼叫处理机602应发送PI2数据到GPS模块604。不存在经由PI2接口的CP和GPS模块604之间的相互作用。
在GPS模块604加电之前或在GPS模块604会话(用PI2接口标志设置)打开之前,呼叫处理机602的IS-801会话可打开。在IS-801会话关闭之前,GPS模块604会话应关闭。当IS-801会话打开时,呼叫处理机602应复位该PI2数据结构。
如果在GPS模块604加电之前打开IS-801会话,则在呼叫处理机602准备用GPS模块604执行时间变换之前,该CDMA系统时间将可用。在该方案中,在GPS模块604准备发送“F”接口“近似移动装置600位置请求”之前,呼叫处理机602也可得到近似移动装置600位置数据,并因此可进一步优化GPS模块604的GPS性能。
呼叫处理机602能经由IS-95隐含方法(来自IS-95“系统参数消息”)或IS-801消息而获得近似移动装置600位置。该IS-95隐含方法被认为是比IS-801消息更快地得到BS位置的方式。IS-95“系统参数”是在CDMA移动装置600空闲状态期间将从基站发送到呼叫处理机602的需要的消息,而与IS-801会话无关。另一方面,IS-801“请求/提供基站年历”不仅需要两个交互消息交换,而且在打开IS-801会话之前将不被调用。
当呼叫处理机602经由IS-801接口转换来自BS的全新星历数据集时,认为PI2数据准备好。在PI2数据准备好之后,呼叫处理机602应以少于2秒的时间发送PI2数据到GPS模块604,而无需来自GPS模块604的请求。呼叫处理机602应周期性地请求基站,以便以不长于2小时的速度发送星历数据。速度越快,GPS性能越优化。
GPS模块604应基于PI2数据结构中指定的位置固定点的数目经由“F”接口而周期性地发送位置结果到呼叫处理机602。即使数据不可用,呼叫处理机602也应在PI2结构中设置位置固定点的数目。
转到图7,图7示出了利用GSM环境中的FSM的移动装置700的方框图。该移动装置700包括经由信号通道706进行信号通信的呼叫处理机702和GPS模块704。此外,信号通道706可实现为RS232接口、经由软件数据结构的内存共享的逻辑接口或其他电气和/或逻辑接口。呼叫处理机702包括空中接口CP模块708、RRLP消息到PI2数据转换器710、GPS模块PI2数据结构712、PI2接口消息汇编程序/反汇编程序714、CP/GPS模块系统消息协议汇编程序/反汇编程序716、和GPS模块接口模块718。GPS模块704包括CP接口模块720、PI2接口模块722、PI2数据结构724、CP系统接口FSM726、和GPS内核728。GPS内核728经由信号通道732从GPS卫星星群226接收GPS信号,并且空中接口CP模块708经由信号通道730与基站(未示出)进行信号通信。
移动装置700的方框图是将在基于RRLP的听筒(即基于GSM的蜂窝电话)内部实现的PI2的高级架构。呼叫处理机702可经由信号通道706和图7所示的硬件线路(用于时间和频率变换)与GPS模块704进行通信。F 736和G 734接口是用于RS232接口706的两个单独逻辑信道。G接口734可设计为将PI2辅助数据传递到GPS模块704。辅助数据的剩余部分将经由F接口736传递到GPS模块704。在GPS模块704上,F接口738可为标准GPS客户接口(例如SiRF科技有限公司拥有的SiRFLoc),并且G接口740对于任何标准空中接口协议是透明的。呼叫处理机702可产生PI2数据,经由空中接口协议而传递到RRLP消息到PI2数据转换器710。PI2数据在经由信号通道706传递到GPS模块704之前,可经由PI2接口消息汇编程序/反汇编程序712(例如PI2接口消息处理程序)而封装为G消息格式。呼叫处理机702可从合适的RRLP空中接口消息获得时间和基准地点数据,并通过CP/GPS模块系统消息协议汇编程序/反汇编程序716经由合适的F接口736消息而将它们传递到GPS模块704。
PI2接口可由呼叫处理机702利用并由F接口736的会话打开消息中的特定“空中接口”代码通知到GPS模块704。此后,所有隐含帮助(例如时间变换、频率变换)可通过F接口736发送。如果可用的话,移动装置700的近似位置也可从基站519通过呼叫处理机702而发送到F接口736上的GPS模块704。GPS模块704然后可响应F接口738上的移动装置700位置报告。
应注意PI2接口通常由可实现为存储部分(未示出)的大数据结构定义。一般来说,接口中存在的所有信息在该大数据结构中具有预定位置。为了表示每条信息的有效性,也可将有效性标志分配到该结构中的每一字段。信息的发送将然后为预定顺序(首先MSB等等)的全结构的“逐个字节的读取和发送”。客户端可具有类似数据结构,并在信息来到时,逐个字节地填充。可对全结构进行单一校验和测试以使其有效。
应注意在一些情况下,并非所有星历都是有效的,并在理论上,可通过仅发送实际具有有效信息的星历时隙而缩短该消息。然而,最好避免这样,使得内存镜像机制不依赖于该消息的含义。避免这样的一种方式是选择将所有未用字段(包括有效性字段)置为值“0”的协定。然后可为了相同目的而使用简单压缩机制,其中发送设置为0的连续比特数目而不是比特自己。在该方案中,机制可利用固定字段之前的明确特定元字符,所述固定字段表示设置为“0”的连续比特的重复次数,而不是比特本身。在该情况下,内存镜像结构的内容可严格包括星历信息和可能的电离层参数。
本领域技术人员应注意F 736和G 734接口可通过呼叫处理机702和GPS模块704之间的任何串行链路而发送。RS232已仅表示为示例实现,并应注意任何其他串行链路同样可运行良好。另外,在呼叫处理机702和GPS模块704两者集成在同一半导体芯片上的情况下,可使用用于在呼叫处理机702和GPS模块704之间传递数据的许多其他技术,包括但不限于共享公共存储模块或系统(或子系统)总线。
作为F和G接口736和734的示例实现,该串行链路可为用于在呼叫处理机702和GPS模块704之间交换消息的双向TTL电平通信接口。两个硬件线路可用于时间和频率变换。作为示例,PI2接口可利用一般分组格式,其中TYPE_FIELD可为对应于“空中接口消息”或“PI2消息”的“0×01”。为了在会话打开请求消息中切换到PI2接口,呼叫处理机702可通知GPS模块704它将通过利用“SESSION_OPEN_REQ_INFO”格式的合适值而在“PI2”中发送辅助数据。应注意除了“PI2”以外,呼叫处理机702和GPS模块704可支持可利用“SESSION_OPEN_REQ_INFO”字段的合适值而在运行时间被激活的其他空中接口。
PI2分组结构利用可在PAYLOAD字段中定义和发送的PI2段,如下表所示

表格1-示例PI2分组结构其中MSG_ID是消息标识符,而SEGMENT是消息段。
作为示例,PI2段格式可包括表2所示的三个字段。第一字节表示用于传输PI2消息的段的总数。第二字节表示以1开始的段索引。而最后一个字段是具有1016字节最大尺寸的压缩PI2数据。

表格2-PI2段格式其中NUM_OF_SEGMENTS是段的数目,而PI2数据可分几段发送。该字段可表示PI2数据全集的段的总数。在该情况下,0是无效数字。
SEGMENT_INDEX是段索引,而该字段的值可为由该消息传输的PI2数据段的序列号。其范围可为从1到255。PI2数据集的最后消息具有等于NUM_OF_SEGMENTS的SEGMENT_INDEX,0也是该字段的无效数字。
COMPRESSED_PI2_DATA是压缩PI2数据,并且该字段可为压缩PI2数据的一部分。
PI2分组中的每一PAYLOAD字段可具有最大总尺寸1019字节,并因此仅传输在SEGMENT字段中的最大1018字节。在该例中,因为每一段具有2字节报头,所以如果压缩PI2数据的尺寸大于1016字节,则其需要被分割;每一段应在单独分组中顺序发送。
应注意在该例中,一些消息的尺寸可非常大。作为示例,在9600波特率下,需花费大约2.14秒来发送PI2数据消息,其具有8个可见星历而没有年历数据。
另外,并非消息中的所有数据都有效,这意味着很多字段被设置为0。简单数据压缩算法应显著降低要发送的数据尺寸。该数据压缩算法可为无损类型压缩,并可操纵字节流而不管该字节的含义。
应用到所有PI2消息的数据压缩算法可为“packbits”方法,这是简单通用的可变游程(run)长度编码方法。游程是一组相同连续字符。每一游程被编码为描述这是哪类游程及其长度的两字节报头、以及包含该数据的一个或更多字节。在所有情况下,报头可分开为两个部分其MSB描述它是直接量(literal)游程(未压缩)还是填充游程(被压缩的),并且接下来的15比特指明游程长度,如表3所示。

表格3-RLL压缩-报头格式在该例中,直接量游程是直接量字节(即被存储而不是被压缩的字节)的游程。在该情况下,RUN_INDICATOR_BIT是0,而低15比特指明该直接量字节的游程长度。然后可在该报头之后直接编码该直接量字节。
填充游程是所有字节都相同的字节序列。在该情况下,RUN_INDICATOR_BIT是1,而低15比特指明该游程长度。报头后面跟随应被复制给定次数的字节。下面给出一个例子示出数据压缩算法如何工作。
原始字节流0×01 0×FF 0×00 0×89 0×00 0×00 0×00 0×00 0×00 0×00 0×000×12。
压缩后0×00 0×04 0×01 0×FF 0×00 0×89 0×80 0×07 0×00 0×00 0×01 0×12。
示例数据解压算法也应该简单。GPS模块704将得到RUN_INDICATOR_BIT和长度。如果RUN_INDICATOR_BIT为0,则仅复制下一LENGTH字节。如果RUN_INDICATOR_BIT为1,则下一要来的字节应被复制“LENGTH”次数。例如压缩数据0×80 0×08 0×00 0×00 0×05 0×44 0×00 0×01 0×66 0×45。
解压后0×00 0×00 0×00 0×00 0×00 0×00 0×00 0×00 0×44 0×00 0×01 0×660×45。
除了ACK/NACK/ERROR消息以外,PI2消息可在大结构中具有预定位置。为了表示每条信息的有效性,有效性标志也可分配到该结构中的每组信息。可选择该特定配置作为同一处理器上的任务之间的共享存储器来促进该协议转换。目前,该PI2协议可具体设计为在两个单独处理器之间的串行链路上使用。
作为示例,PI2请求可严格包括位置请求信息、电离层参数、获取帮助数据、卫星星历和年历。在该空中接口协议上接收的其他辅助数据可通过F接口736而输送到GPS模块704(例如合适的用户地点、时间和频率变换)。
在该情况下,该PI2请求中出现的所有信息可在大结构中具有预定位置。为了表示每条信息的有效性,有效性标志也可分配到该结构中的每组信息。
PI2请求和响应可被定义为大数据结构。这些消息可利用内存镜像机制来实现。对于每一消息,在呼叫处理机702和GPS模块704侧上定义相同内存结构。可在每一方向上定义一组内存。
信息的发送可为在发送方的全结构的“逐字节读取、压缩、和发送”。在信息到来和被解压时,接收方的同一数据结构可被逐字节填充。
即使当还没有更新PI2数据结构时,呼叫处理机702也可在“PI2”会话的打开处发送PI3请求消息。GPS模块704可自己使用数据结构中的有效性标志以确定哪个信息是相关的。
通常,在F接口736、738上交换一对“RI2”类型会话打开请求/响应之前或在F接口736、738上交换一对会话关闭请求/响应之后,GPS模块704或呼叫处理机702都不发送任何PI2消息。当会话已被标识为“PI2”类型时,应交换PI2消息。
对于接收的每一消息,通常返回ACK/NACK/ERROR消息,以在如果不正确接收的情况下加速消息的重复。该机制将最好在本地串行链路上使用,并不具有强误差检测和纠正机制。
作为示例,GPS模块704接收过程可包括以下步骤。首先,一旦在打开PI2会话之后接收到PI2请求消息,GPS模块704可检查所接收的PI2消息。如果在几个分组中传输PI2消息,则GPS模块704重新装配(reassemble)该分段的数据。在正确接收到PI2消息的所有分组之后,GPS模块704对该重新装配的数据进行解压,并将其复制到GPS模块704侧的结构上。其次,一旦在打开PI2会话之前接收到PI2消息,则GPS模块704应悄悄丢弃该消息。第三,如果丢失了分段数据,则丢弃整个消息。
类似地,GPS模块704发送过程的例子可包括以下步骤。首先,一旦接收到POS_REQ_FLAG被设置为1的PI2请求消息,则GPS模块704检查是否支持所请求的定位方法。如果LOCATION_METHOD被设置为0×00或0×03,并且GPS模块704不支持所请求的(一种或多种)定位方法,则GPS模块704发送PI2响应消息,其中GPS_MEAS_FLAG被设置为“1”(有效GPS测量部分),而MEAS_ERROR_STATUS被设置为“不支持请求的定位方法”。如果LOCATION_METHOD被设置为0×01或0×02,并且GPS模块704不支持所请求的(一种或多种)定位方法,则GPS模块704发送PI2响应消息,其中POSITION_RESULTS_FLAG被设置为“1”(有效位置部分),而POSITION_ERROR_STATUS被设置为“不支持请求的定位方法”。
作为基于移动装置700的定位方法的示例,不管在PI2请求中得到的MAX_RESP_TIME所设置的时间如何,一旦完成了位置固定,则GPS模块704发送提供该位置固定的PI2响应,其中POSITION_RESULTS_FLAG被设置为“1”(有效位置部分),而POSITION_ERROR_STATUS被设置为“0”(有效位置)。
关于移动装置700辅助定位方法,不管在PI2请求消息中得到的MAX_RESP_TIME所设置的时间如何,一旦得到充足的有效GPS测量,则GPS模块704发送提供该GPS测量的PI2响应消息,其中GPS_MEAS_FLAG被设置为“1”(有效GPS测量部分),而MEAS_ERROR_STATUS被设置为“0”(有效GPS测量)。
另外,关于基于移动装置700的定位方法,一旦在PI2请求中发现MAX_RESP_TIME字段的超时,并且还没有位置固定,则GPS模块704应发送PI2响应消息,其中POSITION_RESULTS_FLAG被设置为“1”(有效位置部分),而POSITION_ERROR_STATUS被设置为“需要更多时间”。
类似地,关于移动装置700辅助定位方法,一旦在PI2请求消息中发现MAX_RESP_TIME字段的超时,并且还没有充足的有效GPS测量,则GPS模块704应发送PI2响应消息,其中GPS_MEAS_FLAG被设置为“1”(有效GPS测量部分),而MEAS_ERROR_STATUS被设置为“需要更多时间”。
关于基于移动装置700的定位方法,一旦到达GPS搜索域的末尾,并没有发现位置,则GPS模块704发送PI2响应消息,其中POSITION_RESULTS_FLAG被设置为“1”(有效位置部分),而POSITION_ERROR_STATUS被设置为“在全搜索后没有可用固定点”。
关于MS辅助定位方法,一旦到达GPS搜索域的末尾,并没有充足的有效GPS测量,则GPS模块704发送PI2响应消息,其中GPS_MEAS_FLAG被设置为“1”(有效GPS测量部分),而MEAS_ERROR_STATUS被设置为“没有所跟踪的充足的卫星”。
如果GPS模块704需要更多星历辅助数据,则GPS模块604可发送PI2响应消息,其中POSITION_RESULTS_FLAG被设置为“1”(有效位置部分),而POSITION_ERROR_STATUS被设置为“丢失GPS辅助数据”。
如果GPS模块704需要更多获取帮助数据,则GPS模块704发送PI2响应消息,其中GPS_MEAS_FLAG被设置为“1”(有效GPS测量部分),而MEAS_ERROR_STATUS被设置为“丢失GPS辅助数据”。
可选地,并根据在逐个情况中定义的标准,GPS模块704可在任何PI2响应消息中添加年历参考数据部分。该能力允许呼叫处理机702通过PI2请求消息来估计GPS模块704中的年历的老化,并可能用较新年历来取代它。
呼叫处理机702接收过程的例子包括一旦接收到空中接口协议消息(或其组),则呼叫处理机702利用所接收的空中接口消息信息来填充呼叫处理机702侧的“PI2数据结构”的相关字段(如果必要,则同时重定格式)。如果当前打开了PI2会话,则当在没有任何请求的情况下,在呼叫处理机702中更新了信息或一部分信息时,呼叫处理机702应发送PI2请求消息。
一旦接收到PI2响应消息,则呼叫处理机702检查所接收的PI2消息。如果在几个分组中传输该PI2消息,则呼叫处理机702重新装配该分段的数据。在正确接收到PI2消息的所有分组之后,呼叫处理机702对该重新装配的数据进行解压,并将其复制到呼叫处理机702侧的结构上。
一旦在打开PI2会话之前接收到PI2消息,则呼叫处理机702丢弃该消息。如果丢失了分段数据,则丢弃整个消息。
作为呼叫处理机702发送过程的例子,在接收到SESSION_OPEN_STATUS字段被设置为会话打开成功的会话打开通知消息之后的2秒内,呼叫处理机702开始发送PI2请求消息,而不管其是否具有有效辅助信息。该PI2请求被压缩,并且仅将压缩的数据流发送到GPS模块704。如果所压缩数据流的尺寸大于最大值,则它可被分段为几个数据分组。这些数据分组按照它们被分段的顺序而被顺序发送。
从呼叫处理机702到GPS模块704的PI2请求消息的示例接收过程包括在呼叫处理机702方,当呼叫处理机702发送PI2请求消息时,呼叫处理机702期望在消息发送后3秒内从GPS模块704返回ACK/NACK/ERROR消息。
如果呼叫处理机702在3秒内不接收任何东西,则其再次发送PI2请求消息。呼叫处理机702能重复该次序最多三次。在第三次重复之后,呼叫处理机702关闭该PI2信道。
如果呼叫处理机702接收到ACK/NACK/ERROR字段被设置为0×FE的ACK/NACK/ERROR消息,则呼叫处理机702关闭该PI2信道。
如果呼叫处理机702接收到ACK/NACK/ERROR字段被设置为0×FF的ACK/NACK/ERROR消息,则呼叫处理机702立即再次发送同一消息。在三次重复之后,呼叫处理机702关闭该PI2信道。类似地,在GPS模块604侧,一旦GPS模块704从呼叫处理机702接收到消息并正确解码该消息,则GPS模块704检查ICD_REV_NUM字段的值。然后GPS模块704可在接收的3秒之内发送ACK/NACK/ERROR字段被设置为0×00的ACK/NACK/ERROR消息。可替换地,GPS模块704可在接收的3秒之内发送ACK/NACK/ERROR字段被设置为0×FE的ACK/NACK/ERROR消息。如果不能正确解码该消息,则GPS模块704在3秒之内发送ACK/NACK/ERROR字段被设置为0×FF的ACK/NACK/ERROR消息。
如果不按顺序地接收同一消息的分段,则GPS模块704扔掉已接收的分段,忽略剩余的分段,并在3秒之内发送ACK/NACK/ERROR字段被设置为0×FF的ACK/NACK/ERROR消息。
另外,关于从GPS模块704发送到呼叫处理机702的PI2响应消息,GPS模块704期望在发送消息后3秒内从呼叫处理机702返回ACK/NACK/ERROR消息。如果GPS模块704在3秒内不接收任何东西,则GPS模块704再次发送PI2响应。它可重复该次序最多三次。在第三次重复之后,GPS模块704停止发送消息。如果GPS模块704接收到ACK/NACK/ERROR字段被设置为0×FF的ACK/NACK/ERROR消息,则GPS模块704立即再次发送同一消息。在三次重复之后,GPS模块704停止发送消息。
在呼叫处理机702侧,一旦呼叫处理机702从GPS模块704接收到消息并正确解码该消息,则呼叫处理机702在接收的3秒之内发送ACK/NACK/ERROR字段被设置为0×00的ACK/NACK/ERROR消息。如果不能正确解码该消息,则呼叫处理机702在3秒之内发送ACK/NACK/ERROR字段被设置为0×FF的ACK/NACK/ERROR消息。在三次重复之后,GPS模块704停止发送消息。如果不按顺序地接收同一消息的分段,则呼叫处理机702扔掉已接收的分段,忽略剩余的分段,并在3秒之内发送ACK/NACK/ERROR字段被设置为0×FF的ACK/NACK/ERROR消息。
系统也可包括例如更新来自网络的闪存中的年历的过程。当呼叫处理机702已从网络接收有效年历并想更新GPS模块704的闪存中的年历时,进行该示例过程1)呼叫处理机702发送ALM_REQ_FLAG被设置为“0”而ALM_DATA_FLAG被设置为“1”的“PI2请求消息”,和年历部分的有效年历信息;2)GPS模块704一旦得到该PI2请求消息就将该年历数据存储在RAM中;和3)当呼叫处理机702关闭来自F接口736的PI2会话时,GPS模块704从RAM向FLASH传输年历信息。
如果从RAM到FLASH的年历传输成功,则将F接口736中的“会话关闭通知消息”关闭会话的SESSION_CLOSE_STATUS设置为“会话关闭”。如果从RAM到FLASH的年历传输失败,则将F接口中的“会话关闭通知消息”关闭会话的SESSION_CLOSE_STATUS设置为“会话关闭失败”。
该系统也可包括例如在来自卫星(“SV”)的年历中更新年历的特殊过程。当呼叫处理机702想强迫GPS模块704收集新年历并用收集的年历信息更新GPS模块704的闪存中的年历时,将进行以下过程1)呼叫处理机702发送ALM_REQ_FLAG被设置为“2”(来自SV的请求年历收集)而ALM_DATA_FLAG被设置为“0”的PI2请求消息,而没有年历部分;2)一旦接收了,则GPS模块704尝试收集来自广播的年历数据;3)为了检查进展,呼叫处理机702周期性地发送ALM_REQ_FLAG被设置为“3”(报告年历更新状态)的PI2请求消息。一旦接收了更新状态请求消息,则GPS模块704应立即发送PI2响应消息如果SLC搜索卫星并没有收集任何NAV消息,则ALM_DATA_STATUS被设置为“1”;如果GPS模块704强烈跟踪至少一颗卫星足以收集数据并实际收集了数据,则ALM_DATA_STATUS被设置为“2”;如果GPS模块704已完成了全搜索序列并且还没有发现任何适于数据收集的卫星,则ALM_DATA_STATUS被设置为“3”;以及如果GPS模块704已收集了来自RAM存储的或FLASH存储的年历的全年历和ALM_WEEK_NUMBER和TOA,则ALM_DATA_STATUS被设置为“4”。
4)当呼叫处理机702关闭了来自F接口736的PI2会话,则GPS模块704从RAM向FLASH传输年历信息。如果从RAM到FLASH的年历传输成功,则将F接口736中的“会话关闭通知消息”关闭会话的SESSION_CLOSE_STATUS设置为“会话关闭”。如果从RAM到FLASH的年历传输失败,则将F接口中的“会话关闭通知消息”关闭会话的SESSION_CLOSE_STATUS设置为“会话关闭失败”。如果在会话期间没有收集到全年历(并且在步骤3期间ALM_DATA_STATUS从未被发现是“4”),则GPS模块704将不尝试从RAM向FLASH传输不完全的年历。“会话通知消息”中的SESSION_CLOSE_STATUS被设置为“会话关闭”。全年历收集周期将一般占用小于13分钟。在第一次发现ALM_DATA_STATUS被设置为“2”后过去了该时间之前,呼叫处理机702应不期望接收设置为“4”的ALM_DATA_STATUS。
当打开PI2会话时,呼叫处理机702能在任何时候检查闪存中的当前年历的年龄(age)。呼叫处理机702发送ALM_REQ_FLAG被设置为“1”而ALM_DATA_FLAG被设置为“0”的PI2请求消息,而没有年历部分。一旦接收了年历请求消息的年龄,GPS模块704应立即发送来自用FLASH存储的年历的ALM_DATA_STATUS被设置为“0”的PI2响应消息和ALM_WEEK_NUMBER和TOA。如果呼叫处理机702发送POS_REQ_FLAG和ALM_REQ_FLAG被设置为“1”的PI2请求消息,则将不定义该响应。
图8示出了地理定位服务器站802、呼叫处理机804和GPS模块806之间的RRLP到PI2消息流程图800的例子。图8用图表示出了前面描述的处理。
图9示出了呼叫处理机902、GPS模块904和基站(“BS”)906之间的PI2消息流程图900的例子。呼叫处理机902包括基站接口处理器908、PI2转换器910、F接口处理器912和G接口处理器914。图9用图表示出了前面描述的处理。
尽管已描述了本发明的各种实施例,但是本领域普通技术人员应明白在本发明的范围内的许多其他实施例和实现都是可能的。
权利要求
1.一种在移动装置中处理用全球定位系统(“GPS”)接口在呼叫处理机处接收的协议辅助数据的方法,其中该协议辅助数据是根据地理定位服务器站协议而产生的,所述方法包括在GPS接口接收在该呼叫处理机处接收的协议辅助数据;将所接收的协议辅助数据转换为对该地理定位服务器站协议透明的接口数据;和将该接口数据传递到GPS模块。
2.根据权利要求1的方法,还包括在将该接口数据传递到GPS模块之前,将该接口数据封装到消息格式中。
3.根据权利要求1的方法,其中该呼叫处理机从基站接收该协议辅助数据。
4.根据权利要求3的方法,其中该地理定位服务器站产生该辅助数据。
5.根据权利要求4的方法,其中该地理定位服务器站利用码分多址(“CDMA”)协议来产生该协议辅助数据。
6.根据权利要求5的方法,其中该协议是IS-801。
7.根据权利要求5的方法,其中该协议是通用移动电信系统(“UMTS”)。
8.根据权利要求5的方法,其中该协议是CDMA2000。
9.根据权利要求4的方法,其中该地理定位服务器站利用用于移动通信的全球系统(“GSM”)协议来产生协议辅助数据。
10.根据权利要求4的方法,其中该地理定位服务器站利用通用无线分组业务(“GPRS”)协议来产生协议辅助数据。
11.根据权利要求4的方法,其中该地理定位服务器站利用时分多址(“TDMA”)协议来产生协议辅助数据。
12.根据权利要求4的方法,其中该地理定位服务器站利用蓝牙协议来产生协议辅助数据。
13.根据权利要求4的方法,其中该地理定位服务器站利用IEEE 802.11协议来产生协议辅助数据。
14.根据权利要求1的方法,还包括利用该协议辅助数据用于GPS获取。
15.根据权利要求1的方法,还包括利用该协议辅助数据用于计算移动装置的地点。
16.根据权利要求1的方法,还包括利用该协议辅助数据用于改善GPS模块的灵敏度。
17.根据权利要求1的方法,其中将接口数据传递到GPS模块包括经由RS232链路而传递接口数据。
18.一种用于在移动装置中处理用全球定位系统(“GPS”)接口在呼叫处理机处接收的协议辅助数据的协议独立接口,其中该协议辅助数据是根据地理定位服务器站协议而产生的,所述协议独立接口包括用于在GPS接口接收在该呼叫处理机处接收的协议辅助数据的部件;用于将所接收的协议辅助数据转换为对该地理定位服务器站协议透明的接口数据的部件;和将该接口数据传递到GPS模块的部件。
19.根据权利要求18的方法,还包括在将该接口数据传递到GPS模块之前,将该接口数据封装到消息格式中。
20.根据权利要求19的方法,其中该呼叫处理机从基站接收该协议辅助数据。
21.根据权利要求20的方法,其中该地理定位服务器站产生该辅助数据。
22.根据权利要求21的方法,其中该地理定位服务器站利用码分多址(“CDMA”)协议来产生该协议辅助数据。
23.根据权利要求22的方法,其中该协议是IS-801。
24.一种用于在移动装置中处理在根据地理定位服务器站协议而产生协议辅助数据的呼叫处理机处接收的协议辅助数据的协议独立接口,所述协议独立接口包括空中接口协议到GPS模块接口转换器;呼叫处理机和全球定位系统(“GPS”)模块之间的信号通信的串行链路;和GPS模块数据结构。
25.一种在移动装置中处理用全球定位系统(“GPS”)接口在呼叫处理机处接收的协议辅助数据的方法,其中该协议辅助数据是根据地理定位服务器站协议而产生的,所述方法包括在GPS接口接收在该呼叫处理机处接收的协议辅助数据;将该接口数据传递到GPS模块;和将所接收的协议辅助数据转换为对该地理定位服务器站协议透明的接口数据。
26.一种在移动装置中处理用全球定位系统(“GPS”)接口在呼叫处理机处接收的协议辅助数据的协议独立接口,其中该协议辅助数据是根据地理定位服务器站协议而产生的,所述协议独立接口包括用于在GPS接口接收在该呼叫处理机处接收的协议辅助数据的部件;用于将该接口数据传递到GPS模块的部件;和用于将所接收的协议辅助数据转换为对该地理定位服务器站协议透明的接口数据的部件。
全文摘要
公开了一种用于在移动装置中处理用全球定位系统(“GPS”)接口在呼叫处理机处接收的协议辅助数据的协议独立接口,其中该协议辅助数据根据地理定位服务器站协议而产生。该协议独立接口可包括用于在GPS接口接收在该呼叫处理机处接收的协议辅助数据的部件;用于将所接收的协议辅助数据转换为对该地理定位服务器站协议透明的接口数据的部件;和将该接口数据传递到GPS模块的部件。
文档编号H04B1/707GK1675564SQ03819137
公开日2005年9月28日 申请日期2003年8月15日 优先权日2002年8月15日
发明者史蒂夫·C·恰伊, 莱昂内尔-雅克·加林, 阿舒托什·潘德, 张更生 申请人:SiRF技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1