调制方法、调制装置、解调装置以及无线通信系统的制作方法

文档序号:7606687阅读:238来源:国知局
专利名称:调制方法、调制装置、解调装置以及无线通信系统的制作方法
技术领域
本发明涉及一种提高频率利用效率的调制方法,调制装置、解调装置以及无线通信系统。
背景技术
最近几年,由于信息处理技术的普及以及被称之为IT(Information Technology,信息技术)化社会的快速发展,引起人们对信息通信的要求和扩大的重视。在社会和社会之间当然不必多说,就连个人和社会之间的通信设施也渴望实现高速化和无线化。面对如此的移动通信的日益扩大的需求,也会引起丰富的频率资源的枯竭。
现在,为了解决这个课题,正在研制开发一种被称之为MIMO(Multi Input Multi Output,多输入多输出)的在自然空间中的空间多层通信。但是,在利用瞬息万变的传输环境的通信发展中,不仅是基站,而且在个人持有的终端装置中也要进行大量的信号处理,这会招致消耗功率的增大,装置变得更加重厚长大以及成本的增加。因此,作为根本的解决方法,是迫切需要提高基本频带中的调制效率。
现今的移动通信的调制方式是将被称之为数字通信的正交相位调制作为基调,是现今能够获得最高的频率利用效率的调制方式。其中处于顶峰的是正交相位振幅调制(QAM)。采用这种调制方式在移动环境下进行通信时,如果处于伴随着高速变动的多路径衰落(Multi Pass Fading),则最大为16QAM,顶点为4bit(比特)/sec(秒)/2Hz(赫兹),即顶点为2bit/sec/Hz。
通过采用多个天线使用多个传搬路径,以便确保最大限度的独立性,获得进一步的频率利用效率,这种开发研究正在进行之中。例如如果使用垂直极化波和水平极化波,则可在同一频率上传送各种不同的信息,如果分别使用16QAM,则理论上可达到最大的频率利用效率为4bit/sec/Hz。但是,在反射波和移动环境中,为在接收方进行使垂直极化波和水平极化波的正交性(独立性)完全有效地信号处理,必须负担现在2倍以上的装置。
同样,使用N根天线,追求N倍的传输速度的研究也在进行之中。但是,要完全确保N根天线的传搬路的独立性是很困难的,这勿需多言。
因此,不是利用瞬息万变的传搬环境,而先决条件是提高基本频带中的调制效率。
时至今日,提高了频率利用效率的技术基础是奈奎斯特理论,即所谓与邻接信号波正交性高的(即与邻接信号码元(symbol)的干扰性低的)独立信号波的利用技术和被称之为部分应答或小波的邻接信号波之间的码间码元干扰的降低技术。作为这种技术的一例,在公开号为1988-92143的日本专利中有所记载。
奈奎斯特理论的最具有代表性的例子是用sin(x)/x表示的,将表示这种信号的函数称之为sinc函数。sinc函数是孤立波,同时在邻接信号波的信号点上构成零交,因而互不干扰。
在以往的通信中,将sin(x)的x作为时间轴变量的是相位调制(PSK)和正交振幅调制(QAM),作为频率轴变量的是正交频分复用通信(OFDM)。时间轴和频率轴物理性的正交,因而可将它们的一方进行一次调制,而将另一方进行二次调制,例如将它们作为16QAM-OFDM。这种调制方法,可以保持很高的频率利用效率和确保移动通信能力等,获得高度的通信效果。
这里,详细说明一下以往的数字调制技术。数字调制的主要目的之一是实现高的频率利用效率。这种技术被称之为频带限制技术即在所给予的频带宽内可以实现尽可能高的信息传输的技术。在模拟传输中是用其信息量自身进行调制的,因而不仅冗长,而且进行压缩和高效化调制的余地很小。
数字调制的频带限制技术以利用奈奎斯特滤波器的方法最具有代表性。使用奈奎斯特滤波器的方法是通过对码元给予奈奎斯特特性,以便减少时间轴上的信号(码元)间的干扰,并插入高密度码元的技术。
为了防止信号间的相互干扰,必须在每一个码元区间周期实现零交。将此称之为奈奎斯特第1基准。将满足了这种要求的滤波器称之为奈奎斯特滤波器。实现此种奈奎斯特滤波器的具有代表性的例子是sinc函数。将码元周期作为T时的sinc函数h(t)用下列算术表示之。
h(t)=sin(πt/T)/(πt/T)……(1)用数字滤波器建立这种奈奎斯特滤波器时,要通过4倍的过采样输入基带输入信号(码元)。
此处,通过奈奎斯特滤波器限制频带时,每一次都要用滚降(RollOff)率来决定其程度。滚降率的取值范围是从0至1。例如,滚降率为0.5时,所需频带宽则为传输速度的1.5倍。因此,为了提高频率利用效率,最好将滚降率作为O。
图1是以往的数字正交调制(QPSK)的原理图。I轴信号是搭载在余旋(cosine)载波上的,因而将信号点即奈奎斯特波的顶点配置在相位零上。Q轴信号是搭载在正旋(sine)载波上的,因而将信号点即奎斯特波的顶点配置在相位π/2上。关于I轴信号,在信息信号为“1”时,如果采用凸形极性,则配置在作为图1中的I轴信号(+1)显示的波形的位置上。信息信号为“0”或“-1”时,在下方形成凸形配置,因而配置在作为图1中I轴信号(-1)而显示的波形位置上。
同样,关于Q轴信号,当信息信号为“1”时,在上方如采用凸形极性,则配置在图1中的作为Q轴信号(+1)显示的波形位置上。当信息信号为“O”或“-1”时,在下方构成凸形配置,因而配置在图1中的作为Q轴信号(-1)显示的波形位置上。
在以往的方法中,奈奎斯特波形在码元周期T的范围内完全形成1个波形,这是由于进行了NRZ(non-return-to-zero,不复零)信号的奈奎斯特信号化的原因。在奈奎斯特波的边缘部位即如图1所示,I轴信号(+1)时相位π的位置变为NULL(空白),尽管如此,作为电位不应变为空白(Null),即零电位。因此,不能如同OFDM那样,不能将邻接码元配置在π位置上。
这种状态如图2所示。图2中只着眼于正交调制的I轴信号。从奈奎斯特理论来说,每一个相位间隔π上应可配置码元。但是,奈奎斯特波的空白点并非零,而是变为“-1”。因此,就与后续的邻接码元的奈奎斯特波发生了完全的干扰,合成值变为零,即不可能向奈奎斯理论上所见的对π相位进行码元配置。
上述内容就是以往的数字调制方式的现状,也是阻碍提高频率利用效率的原因。
如上所述,以往提出的调制方式大体是共通地构建在I-Q平面上的。这个平面是二维的。因此,基本上只要不进行多值化,在1码元周期内的可传送的信息是2比特。现今,在高速移动的环境下,16QAM实际上是频率利用效率的最良好的调制方式。但是,在有限的频率资源的条件下,为了传送更多的信息,必须实现频率利用效率更好的调制方式。

发明内容
本发明的目的在于提供一种比以往的调制方式更能够提高频率利用效率的调制方法、调制装置、解调装置以及无线通信系统。
通过下述方法达成此目的。对于第1输入码元的奈奎斯特信号和对此奈奎斯特信号给予上述输入码元的码元周期的1/4周期的整数倍的迟延差的第2输入码元的奈奎斯特信号,将具有上述奈奎斯特信号基本频率的奇数倍的频率的余弦波作为载波使用,来进行正交调制。


图1是以往的数字正交调制(QPSK)的原理说明图;图2是表示以往的正交调制的码元配置和根据奈奎斯特理论重新考虑的码元的合理位置;
图3是根据本发明加入了新的码元时的星座图的例子的图;图4是表示奈奎斯特波的复用和码元周期的图;图5是表示根据本发明的QPSK环的配置方法图;图6是表示本发明的基础的调制波的信号配置和方法的图;图7是用于通过载波进行奈奎斯特波的调制的说明的波形图;图8是表示如将载波的频率设定为码元周期的奇数倍,则在T/2点上不产生干扰的波形图;图9是表示如用奈奎斯特波形,在I轴和Q轴上能够在码元区间内传送2比特的图;图10是表示将奈奎斯特信号按π间隔分别插入I轴和Q轴上的图;图11是表示向本发明中的I轴和Q轴插入各种新的码元的插入位置图;图12是表示有关本发明的实施方式1的调制装置的结构方框图;图13是表示通过实施方式1的调制装置所获得的调制信号的波形图;图14是表示有关本发明的实施方式1的解调装置的结构方框图;图15(a)是表示奈奎斯特成形后的输入码元的波形的图;图15(b)是表示用于一次调制的载波的波形图;图15(c)是表示通过实施方式1的调制装置使用图15(a)的输入码元调制图15(b)用于一次调制的载波时的一次调制波形的波形图;图16(a)是表示通过实施方式1的调制装置所获得的二次调制波的包络线的图;图16(b)是表示通过实施方式1的调制装置所获得的二次调制波的频谱的图;图17是表示通过实施方式1的调制装置所获得的调制信号和以往的QPSK,16QAM的通信质量进行比较后的模拟结果的图;
图18是表示实施方式2的调制装置的构成图;图19是表示实施方式2的解调装置的构成图;图20是表示实施方式3的调制装置的构成图;图21是表示实施方式3的解调装置的构成图;以及图22是表示实施方式4的解调装置的构成图。
具体实施例方式
以下,参照附属图面详细说明本发明的实施方式。
(实施方式1)首先说明一下本发明的发明过程和本发明的原理。
本发明的发明人认为,如果能够在I-Q的平面上构建一个4维空间,则在1码元周期内可传输的信息就变为4比特(QPSK时),频率效率就提高了2倍。
但是,不可能将多个QPSK环放置在I-Q平面上,因此如同图3所示那样,至少要增设第3轴使之在I-Q平面上进行正交。这种必要性是不言自明的。但是,用什么样的物理量制作新的轴呢?在本发明中是将第3轴(z轴)作为相位次元来考虑的。
此处,将2座QPSK环收容在1码元周期内,即意味着在I轴上配置2个奈奎斯特波,正如图4所示那样。奈奎斯特波是在2码元周期内,构成其主要部分,在每一个码元周期T(时间)可获得其正交性。因此,为了在1码元周期确立2个部位的正交性,就必须如图4(b)所示那样,将码元周期缩短1/2。如果采用以往的方法来实现,则要将频带宽扩大2倍。为了能够提高频率利用效率,就只能想出SSB(Single Side Band单边带)化的方法。
本发明就是基于这种考虑,采用了将2个奈奎斯特波收容在1码元周期内的方法(以下将此方法称之为双QPSK双QPSK方式)。
首先说明一下本发明中的双QPSK方式中的QPSK环的配置方法,双QPSK方式是为了实现相位多重的方式,如果将Z轴定义成相位调制的相位差成分,则变为如图5所示的那样的配置(但是图5表示π/2-双偏量(offset dual)偏置QPSK)。
本发明的双QPSK方式的基本思路如图6所示,为了便于观看理解此图,实施方式具有4个独立的包络线。恰如在由载波构成的用解析信号表示的圆筒上贴上独立的4座奈奎斯特波包络线的一个模型。为了将4座奈奎斯特波包络线收容在1码元周期内,各个码元点按每1个分别配置了90度的角度差。
再回到图4来说明,如果在1码元周期内配置2个奈奎斯特波,则正如图4(a)所示的那样,会产生码间干扰,因而以往在点T/2上是不配置奈奎斯特波的。本发明的发明人就考虑到如果在特定的载波频率中对奈奎斯特波进行调制,就可避免码间干扰,以致才有了本发明。
现使用图7来表示将本发明的双QPSK方式具体化的基本思路。图7(a)、(b)都是重复表示对码元周期T的奈奎斯特波乘以(调制)周期2T的余弦波的,从此图可以清晰地看出调制后的波形也是奈奎斯特波,但是周期变为原先的奈奎斯特波的1/2。如用数学公式来表示,奈奎斯特波可用sinc函数来表示。因此,码元周期T的奈奎特波和周期2T的载波(余弦波)的积则如下列算式所示。
sinπtTπtT×cosπtT=sinπtT×πtTπtT=sin2πtT2πtT=(sinc(2πtT))········(2)]]>从(2)算式中可知,积(调制输出)也是sinc函数,周期变为T/2。因此,即使加入调制后的信号也不会产生相互干扰现象。图7(c)是表示合成时的波形图。
如上所述,对2个奈奎斯特号乘以余弦波(载波),而这2个奈奎斯特波是相互给予了码元周期的1/4的整数倍的迟延差的奈奎斯特波,这是本发明的第一项必要条件。据此,乘以余弦波后的(即调制后的)2个奈奎斯特信号则变为互不干扰。
但是,周期2T的载波在调制后含有DC(直流)领域,因而需要提高载波频率。但是,如果单纯地提高载波频率,则奈奎斯特波的码元点会产生互相干扰现象。
本发明的第2项必要条件是将上述余弦波(载波)的频率设定为奈奎斯特信号的基本频率的奇数倍,即,将被乘的余弦波(载波)的周期作为2T/(2n+1)。图8是表示奈奎斯特波形乘以周期为2T/(2n+1)的载波时的波形图(n=0,1,2的例)。从图8可以看出,正如本发明那样,如果使用将2T作为基本周期的奇次谐波,则可不干扰按每T/2配置的奈奎斯特波的码元点。另外,图8是表示了将载波的周期作为2T、2T/3、2T/5的波形状态。
即本发明的要点是设置正交调制器,将具有奈奎斯特信号的基本频率的奇数倍的频率的余弦作为载波使用,对第1输入码元的奈奎斯特信号和对此奈奎斯特信号具有输入码元的码元周期的1/4的整数倍的迟延差的第2输入码元的奈奎斯特信号进行正交调制。如果设置了此种正交调制器,即使在进行双重的正交调制时也可将4个奈奎斯特信号配置在1码元周期内,并使奈奎斯特信号之间不产生干扰,从而在同一频带宽内收容以往的2倍码元。
再从另一个角度进一步说明本发明的原理。图9是表示如果使用奈奎斯特波形,在I轴和Q轴可在1码元周期内传送2比特。在I轴和Q轴在正交调制会具有π/2的相位差,此点是众所周知的。
图10是表示在以往的I轴和Q轴的2维的信号对应(星座图),增加本发明的新的2轴后构成4维空间的图。因此,图10中的I轴(负)、Q轴(负)、S轴(负)、T轴(负)的4根轴都是相互独立的,由它们所构成的星座图变为4维。另外,图10中的虚线是表示能够进行一次调制来逐个配置码元。如图所示,在I轴和Q轴分别以π间隔插入奈奎斯特信号,此时,在以往的相位点和新的相位之间无奈奎斯特信号的正交性,即不能对对方的信号点保证会成为Null。
因此,在本发明中正如图7所示那样,为了可向新的相位点配置码元,不是单纯的在以往的码元加上新的码元,而是采用乘以余弦波(载波),使之具有正交性。并且,如上述那样,通过将余弦波(载波)作为具有奈奎斯特信号的基本频率的奇数倍的频率,就可抑制频带宽的扩大。
图11是表示向本发明中的I轴和Q轴的各个新的码元的插入位置的图。从此图可知,在本发明中对处于π的相位差关系的2信号进行正交调制,换而言之,在本发明中进行了双重的正交调制。
图12是表示本发明的实施方式1的有关调制装置的构成图。调制装置100是设置无线通信系统的发送方。调制装置100对4系统的信息进行2级结构的正交调制和双重的QPSK处理,包括对4系统的数据信号(输入码元)Bit1、Bit2、Bit3、Bit4附加码元区间T的四分之一迟延差的迟延器群102、103、104;将具有码元区间T的1/2的迟延差的信号作为输入的2群的第1和第2正交调制器109、110;将正交调制器109、110的输出作为输入的第3正交调制器113。
调制装置100将发送数据(TXData)通过串/并变换电路(S/P)101并列成4系列,接着对并列后的比特Bit1、Bit2、Bit3、Bit4,通过迟延器102、103、104附加码元周期T的1/4的T/4的迟延差。通过此种处理,信号就被配置在码元区间内的4等分的相位点上,即配置在相位零、相位π/2、相位3π/2的位置上。
调制装置100通过各个奈奎斯特滤波器105、106、107、108形成迟延处理后的4个信号,并分为处于T/2的迟延差关系(即相位差π的关系)的各2信号的2组,输入第1正交调制器109和第2正交调制器110。
第1正交调制109器通过周期2T/(2n+1)(n整数)的载波对奈奎斯特信号进行一次调制,并合成输入的2信号。同样,第2正交调制器110通过周期2T/(2n+1)(n整数)的载波对奈奎斯特信号进行一次调制,并合成输入的2信号。
经过上述处理后所获得的2系统的调制信号被输入带通滤波器(BPF)111、112,通过带通滤波器111、112除去一次调制所产生图象信号和寄生成分并将滤波后的信号送出至第3正交调制器113。
第3正交调制器113通过高频(ωc)对被输入的2系统的调制信号进行正交调制(二次调制)。从第3正交调制器113输出的二次调制后的信号通过带通滤波器114除去图像信号和寄生成分后送出至无线传搬路。
于是,通过调制装置100就可获得将4根输入信号信息作为在1码元周期内各具有90°差的奈奎斯特波而被收容的调制信号。图13是其概念图。在I轴信号中存在着按T/2差收容的2信号的奈奎斯特合成波。在Q轴信号中存在着与I轴相比成T/4之差而起动的奈奎斯特合成波。在按码元周期T的1/4的时间差而并列的时刻t1、t2、t3、t4的包络线上,4信号点就表露出来。
图14是表示对调制装置100形成的调制信号进行解调的解调装置200的构成图。解调装置200设置在无线通信系统的接收方。解调装置200将调制信号输入至第1正交解调器201,第1正交解调器200通过高频(ωc)对输入的调制信号进行正交调解后获得第1和第2解调信号。
此种2系统的解调信号,通过带通滤波器202、203被输入至第2、第3正交解调器204、205。第2和第3正交解调器204、205各自用周期2T/(2n+1),(n整数)的载波进行输入信号的正交解调。
接着,从第2和第3正交解调器204、205输出的4系统解调信号通过奈奎斯特滤波器206、207、208、209和迟延器群210、211、212成为解调比特Bit1、Bit2、Bit3、Bit4,这种迟延器群用于附加码元区间T的四分之一的迟延差。解调比特Bit1、Bit2、Bit3、Bit4通过并/串变换电路(P/S)213使之直列化,这样就获得了接收数据(RXoutRX输出)。
如上所述,如果使用解调装置200,对通过调制装置100调制后的信号进行良好的解调后,可使原先的调制前的比特复元。
其次,对将图12所示的调制装置100设置在发送方和图14所示的解调装置200设置在接收方的这种无线通信系统进行了调制动作的确认和在AWGN环境下进行了BER的仿真并加以描述。
本发明中的重要的内容在于是否能将奈奎斯特波配置在码元周期的1/2上,这是一次调制中需要确认的内容。图15是为了确认此项内容的试验的结果图。图15(a)是表示码元输入(奈奎斯特成形后),图15(b)是表示一次调制用的载波,图15(c)是表示一次调制输出信号。另外,它们都相当于I轴或Q轴的一方。如果看一下图15(a)的奈奎斯特输入和15(c)的一次调制输出的话,就可知道奈奎斯特波的信号点确实被表示出来了。
图16是表示显示出二次调制输出波及其频带宽的频谱。在二次调制中,通过正交调制,I轴分量和Q轴分量被合成,合成了4种包络线(图16(a))。另外,从频谱(图16(b))中可知频带宽是I赫兹(Hz)。将输入的码元周期作为1秒(sec)(奈奎斯特波周期0.5Hz)进行了模拟,通过调制产生了两侧波,变为了1Hz/-3dB,这表示理论上的正确性。
其次,本发明的调制方式的通信品质要比16QAM优良,这是提高频率利用效率的大前提。图17是表示在AWGN环境下的BER对S/N的模拟结果图。从此模拟结果可以看出,本发明的调制方式的BER大体与QPSK相等,与具有同等的传输送度16QAM相比,具有即使在10-2点上也能保持4dB以上的S/N特性的优点。
这样,根据本实施方式,如设置如下的3个正交调制器就可实现在不扩大频带宽的条件下,形成收容以往的2倍信号的调制信号的调制装置100。第1、第2个正交调制器109、110输入各自具有码元周期的1/2(2/4)的迟延差的奈奎斯特信号,对输入的奈奎斯特信号,将具有奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波进行正交调制,以及第3个正交调制器113用所定频率的载波对通过第1正交调制器109所获得的调制信号和通过第2正交调制器110所获得的调制信号进行正交调制。
(实施方式2)在上述的实施方式1中,在1码元周期内可传送的信息量是4比特,这与以往的16QAM相当。另一方面,在以往的调制方式中,有为了现实如64QAM等多值化的方式。在此实施方式中,通过调制方式进一步提高了效率,并提出了对应以往的多值化的方法。
图18是本发明的实施方式2的调制装置的构成图。在图18中,在与图12的对应部分使用了同一符号,省略有关此部分的说明。调制装置300将发送数据(TXData)输入映射处理部301,映射处理部301的映射处理主要是对发送数据(TXData)进行并列化处理和纠错编码。映射处理部301将处理后的第1个比特和第2个比特发送至加法器302,将第3个比特和第4个比特发送至加法器304,将第5个比特和第6个特发送至加法器303,将第7个比特和第8个比特发送至加法器305。
各加法器302~305通过对输入的2比特的信号进行加法运算来整理2比特的信号。加法器302的输出被送至奈奎斯特滤波器105,其他加法器303~305的输出通过迟延器102~104被送至奈奎斯特滤器106~108。通过这些处理,从各奈奎斯特滤波器105~108输出的奈奎斯特信号在1波就具有2比特的信息,后续处理与图12相同。
图19是解调通过调制装置300形成的调制信号的解调装置400的构成图。解调装置400设置在无线通信系统接收方。另外,在图19中,与图14的对应部分使用了同一符号,省略了此部分的说明。解调装置400装有将奈奎斯特信号进行模拟一数字转换的模拟一数字转换器(A/D)401~404以及除了装有解映射处理部405之外,与图14的解调装置200的构成相同。
各模拟一数字转换回路401~404通过对从奈奎斯特滤波器206~209输出的奈奎斯特信号的阈值判定获得2比特单位的信息。解映射处理部405通过对输入的8系统的比特进行以直列化处理和纠错解码为主的解映射处理,获得接收数据(RXout)。
这样如果根据本实施方式,加上实施方式1的构成,通过对奈奎斯特信号自身的多值化的处理,就可在与实施方式1的相同频带宽度内传送实施方式1的2倍的数据,进一步提高了频率利用效率。
(实施方式3)在图12所示的实施方式1和图18所示的实施方式2中,对作为并列信号的发送数据进行配置在码元区间内的4等分的相位点上的码元配置后,即配置在相位零、相位π/2、相位π、相位3π/2的位置上后,再通过一次调制进行相位零和相位π的码元的正交调制,同时进行了相位π/2和相位3π/2的码元的正交调制,即进行了具有相位差π(即码元周期的1/2的迟延差)的码元信号的一次调制。
结果,接收方在第1阶段进行相位差π/2的正交解调,但动态变化激烈的环境下的正交解调与相位差π的解调相比,相位间的误差可能加大,产生码间干扰和传送上的失真衰弱。因此,在此实施方式中,通过第1、第2正交调制处理来处理关系为相位差π/2的码元(即码元周期的1/4的迟延差)。
对与图18的对应部位使用同一符号表示的图20是本发明的实施方式3的调制装置500的构成图。正如前述那样,通过第1和第2正交调制器501、502输入具有码元周期的1/4的迟延差的奈奎斯特信号,进行相位差π/2的通常的正交调制,因而将所用的载波频率作为ωc。另一方面,通过第3正交调制器503进行相位差π的合成,因而将所用的载波频率作为(2n+1)ωo。此时,为了确实减轻(2n+1)ωo的码元半周期点上的干扰,应将ωc作为ωo的偶数倍的频率。
对与图19的对应部位使用同一码元表示的图21是本发明的实施方式3的解调装置600的构成图。解调装置600设置在接收方,对通过设置在发送方的调制装置500进行调制后所发送的调制信号进行解调。
解调装置600将在第1正交调解器601中所用的载波频率作为(2n+1)ωo。另一方面,通过第2和第3正交解调器602、603进行相位差π/2的通常的正交解调,因此,将所用载波频率作为ωc。
如上所述,如果采用本实施方式,加上实施方式1和形态2的效果,就可实现进一步减少码间干扰以及传送中的失真的调制方式。
另外,虽然在此实施方式中描述,对具有码元周期1/4周期的迟延差的奈奎斯特信号用预定的载波频率ωc进行一次调制,再对通过一次调制所获得的2系统的信号使用具有奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波来进行二次调制时的情况。但是迟延差不仅限于1/4周期,即使是3/4周期也可以。总之,对具有码元周期的1/4周期的奇数倍的迟延差的信号进行一次调制即可。
(实施方式4)在此实施方式中,将具有奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波使用来进行正交调制正交调制器以其它构成实现时的情况进行说明。其基本原理与实施方式1~3相同。
对与图12的对应部分使用同一符号表示的图22中,本实施方式的调制装置700中具有移位寄存器701、702作为进行一次调制的第1和第2调制器。调制装置700在输入各移位寄存器701、702的2系统的奈奎斯特信号中通过反相器703、704对奈奎斯特信号的一方的极性进行反转。在此实施方式中对比特3和比特4实施极性反转。
经过这些处理,调制装置700就获得了I轴的正信号比特1和I轴的负信号比特3,同时也获得了Q轴的正信号比特2和Q轴的负信号比特4。
如此获得了的I轴的正信号比特1和I轴的负信号比特3被输入至移位寄存器701,同时,Q轴的正信号比特2和Q轴的负信号比特4被输入至移位寄存器702。
移位寄存器701一边在I轴的正信号比特1和I轴的负信号比特3之间插入零,一边用周期的奇数倍的时钟输出。同样,移位寄存器702一边在Q轴的正信号比特2和Q轴的负信号比特4之间插入零一边用码元周期的奇数倍的时钟输出。
换言之,移位寄存器701、702各自输入具有码元周期的1/4周期的整数倍的迟延差的奈奎斯特信号(此实施方式中,码元周期的1/2),并使用具有奈奎斯特信号的基本频率的奇数倍的频率交互输出所输入的奈奎斯特信号。
此种处理相当于用将具有奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波使用,对第1输入码元的奈奎斯特信号和对此奈奎斯特信号具有输入码元的码元周期的1/4周期的整数倍的迟延差的第2输入码元的奈奎斯特信号进行正交调制。
另外,串/并转换器(S/P)101,移位寄存器701、702,正交调制器113分别根据来自生成独立时钟的时钟生成部705的时钟信号而动作的。
其结果是从带通滤波器114获得如图6所示的I轴和Q轴分别具有2比特的码元的调制输出。
本发明不仅限于上述的实施方式,可以进行各种变更后实施之。
本发明的调制方法的形态之一是对第1输入码元和第2输入码元进行正交调制的调制方法,将第1输入码元的奈奎斯特信号和对此奈奎斯特信号给予了上述输入码元的码元周期的1/4周期的整数倍的迟延差的第2输入码元的奈奎斯特信号使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波进行正交调制。
如果使用这种方法,可用余弦波(载波)对具有输入码元周期T的1/4周期的整数倍的迟延差的第1和第2奈奎斯特信号进行正交调制,因而可使第1和第2奈奎斯特信号互不产生干扰,全部收容在输入码元的1码元周期T内。但是如果仅用此方法,则具有直流分量。因此,如果进行二次调制,其频带宽结果就扩大2倍。为此,将上述的余弦波选定为具有奈奎斯特信号的基本频率的奇数倍,结果,将奈奎斯特波的码元点配置在每1个T/2点上,信号间互不干扰。即形成在每一个T/2点上可形成当一方的奈奎斯特波变成最大时,而另一方的奈奎斯特波则变为空白的关系的2个奈奎斯特波。经过这样处理,频带宽并不扩大,可形成可收容以往的2倍信号的调制信号。
另外,本发明的调制方法的另一个形态如下对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差,使奈奎斯特成形,从而获得具有码元周期的1/4周期的迟延差的第1~第4奈奎斯特信号的步骤;将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波,分别对具有码元周期的2/4周期的迟延差的第1和第2奈奎斯特信号和具有码元周期的2/4周期的迟延差的第3、第4奈奎斯特信号进行正交调制的一次调制步骤;以及使用预定的频率的载波,对经过一次调制步骤所获得的上述第1和第2奈奎斯特信号的正交调制信号和上述第3、第4奈奎斯特信号的正交调制信号进行正交调制的二次调制步骤。
另外,本发明的调制方法的另一形态如下对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差,使奈奎斯特成形,从而获得具有码元周期的1/4周期的延迟差的第1~4的奈奎斯特信号的步骤;用预定频率的载波对具有码元周期的1/4周期的迟延差的第1和第2奈奎斯特信号以及具有码元周期的1/4周期的迟延差的第3和第4奈奎斯特信号进行正交调制的一次调制步骤;以及将具有上述奈奎斯特的基本频率的奇数倍的频率的余弦波作为载波使用,分别对从上述一次调制步骤中所获得的上述第1和第2奈奎斯特信号的正交调制信号以及上述第3和第4奈奎斯特信号的正交调制信号进行正交调制的二次调制步骤。
如果采取这些方法通过二次调制步骤所获得的调制信号与单纯地对2个奈奎斯特信号进行正交调制时相比较,频带宽不会扩大,并且与第1~第4输入码元相关的第1~第4奈奎斯特信号之间不会相互干扰而被配置。因此,可获得在与以往相同的频带宽内配置以往2倍的相互间不干扰的码元的调制信号。
本发明的调制装置的另一形态所采取的结构是具备输入与第1输入码元有关的第1奈奎斯特信号和对此奈奎斯特信号具有输入码元周期的1/4周期的整数倍的迟延差的与第2输入码元有关的第2奈奎斯特信号,使用具有这些奈奎斯特信号的基本频率的奇数倍的频率的余弦波对此第1和第2奈奎斯特信号进行正交调制的正交调制器。
如果采用这种结构,则因使用余弦波(载波)对具有输入码元周期T的1/4周期的整数倍的迟延差的第1和第2奈奎斯特信号进行正交调制,所以第1和第2奈奎斯特信号之间不会相互干扰,可全部收容在输入码元的1码元周期T内。加之,将上述余弦波的频率选定在具有奈奎斯特信号的基本频率的奇数倍上,因而就可控制直流分量,即使进行二次调制,实质上频带也不会扩大。因而可形成收容以往的2倍的码元的调制信号,而不扩大频带宽。
另外,本发明的调制装置的另一形态所采取的结构是具备迟延器群,对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差;奈奎斯特滤波器,从上述4系统的码元分别形成奈奎斯特信号;第1和第2正交调制器,输入分别具有码元周期的2/4周期的迟延差的奈奎斯特信号,对所输入的奈奎斯特信号使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波进行正交调制;以及将通过第1正交调制器所获得的调制信号和通过第2正交调制器所获得的调制信号使用预定频率的载波进行正交调制的第3正交调器。
另外,本发明的调制装置另一形态所采取的结构是具备迟延器群,对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差;奈奎斯特滤波器,从上述4系统的码元分别形成奈奎斯特信号;第1和第2正交调制器,输入分别具有码元周期的1/4周期的奇数倍的迟延差的奈奎斯特信号,并使用预定频率的载波进行正交调制;以及将通过第1正交调制器所获得的调制信号和通过第2正交调制器所获得的调制信号使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波进行正交调制的第3正交调器。
如果采用这些构成,通过第1正交调制器在1码元周期T内获得2个奈奎斯特信号被配置在互不干扰的状态下的调制信号。同时通过第2正交调制器就可在1码元周期T内获得2个奈奎斯特信号被配置在互不干扰的状态下的调制信号。通过第3正交调制器就可在1码元周期T内获得4个奈奎斯特信号被配置在互不干扰状态下的调制信号,其结果是形成频带宽并不扩大,可收容以往的2倍码元的调制信号。
另外,本发明的调制装置另一形态采所采取的结构是具备迟延器群,对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差;奈奎斯特滤波器,从上述4系统的码元分别形成奈奎斯特信号;第1和第2正交调制器,输入分别具有码元周期的1/4周期的整数倍的迟延差的奈奎斯特信号,对所输入的奈奎斯特信号使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率进行交互输出;以及将通过第1正交调制器所获得的调制信号和通过第2正交调制器所获得的调制信号使用预定频率的载波进行正交调制的第3正交调器。
如果采用这种构成,就可实现不扩大频带宽,收容以往的2倍的信号的调制信号。同时,可用开关元器件以及移位寄存器等构成第1和第2正交调制器。
本发明的解调装置的一个形态所采取的结构是具备对第1和第2奈奎斯特信号进行正交调制形成的调制信号,使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波进行正交解调的正交解调器。
另外,本发明的解调装置的另一形态所采取的结构是具备,输入调制信号,使用预定的载波频率对此调制信号进行正交解调,从而获得第1和第2解调信号的第1正交解调器;使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波,对第1解调信号进行正交解调,从而获得第3和第4解调信号的第2正交解调器;以及使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波,对第2解调信号进行正交解调,从而获得第5和第6解调信号的第3正交解调器。
另外,本发明的另一解调装置所采取的结构是具备输入调制信号,使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波对此调制信号进行正交解调,从而获得第1和第2解调信号的第1正交解调器;使用预定的载波频率对上述第1解调信号进行正交解调,从而获得第3和第4解调信号的第2正交解调器;以及使用预定的载波频率对上述第2解调信号进行正交解调,从而获得第5和第6调解信号的第3正交解调器。
通过上述构成,能够良好地解调使用本发明的调制装置解调形成的调制信号,来获得解调信号。
本发明的无线通信系统采用具有上述调制装置和上述解调装置的构成。
如果采用这些构成就可实现在与以往同一的频率上按以往的2倍传输速度进行通信的无线通信系统。
如上所述,如果采用本发明,就可实现以往2倍以上的频率利用效率的调制方式。
本说明书是基于2003年2月13日提出的申请号为2003-35750、2003年5月14日提出的申请号为2003-136610、以及2003年11月12日提出的申请号为2003-382985的日本专利申请的。其全部内容包含于此。
产业上利用的可能性。
本发明广泛适用于无线通信、例如,适合于移动通信电话机及其基站等。
权利要求
1.一种对第1输入码元和第2输入码元进行正交调制的调制方法,包括将上述第1输入码元的奈奎斯特信号和对此奈奎斯特信号给予了上述输入码元的码元周期的1/4周期的整数倍的迟延差的上述第2输入码元的奈奎斯特信号,使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波进行正交调制。
2.如权利要求1所述的调制方法,包括对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差,使奈奎斯特成形,从而获得具有码元周期的1/4周期的迟延差的第1~第4奈奎斯特信号的步骤;将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波,分别对具有码元周期的2/4周期的迟延差的第1和第2奈奎斯特信号和具有码元周期的2/4周期的迟延差的第3、第4奈奎斯特信号进行正交调制的一次调制步骤;以及使用预定的频率的载波,对经过一次调制步骤所获得的上述第1和第2奈奎斯特信号的正交调制信号和上述第3、第4奈奎斯特信号的正交调制信号进行正交调制的二次调制步骤。
3.如权利要求1所述的调制方法,包括对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差,使奈奎斯特成形,从而获得具有码元周期的1/4周期的延迟差的第1~4的奈奎斯特信号的步骤;用预定频率的载波对具有码元周期的1/4周期的迟延差的第1和第2奈奎斯特信号以及具有码元周期的1/4周期的迟延差的第3和第4奈奎斯特信号进行正交调制的一次调制步骤;以及将具有上述奈奎斯特的基本频率的奇数倍的频率的余弦波作为载波使用,分别对从上述一次调制步骤中所获得的上述第1和第2奈奎斯特信号的正交调制信号以及上述第3和第4奈奎斯特信号的正交调制信号进行正交调制的二次调制步骤。
4.一种调制装置,包括输入与第1输入码元有关的第1奈奎斯特信号和对此奈奎斯特信号具有输入码元周期的1/4周期的整数倍的迟延差的与第2输入码元有关的第2奈奎斯特信号,使用具有这些奈奎斯特信号的基本频率的奇数倍的频率的余弦波对此第1和第2奈奎斯特信号进行正交调制的正交调制器。
5.如权利要求4所述的调制装置,包括对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差的迟延器群;从上述4系统的码元分别形成奈奎斯特信号的奈奎斯特滤波器;输入分别具有码元周期的2/4周期的迟延差的奈奎斯特信号,对所输入的奈奎斯特信号使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波进行正交调制的第1和第2正交调制器;以及将通过上述第1正交调制器所获得的调制信号和通过上述第2正交调制器所获得的调制信号使用预定频率的载波进行正交调制的第3正交调器。
6.如权利要求4所述的调制装置,包括对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差的迟延器群;从上述4系统的码元分别形成奈奎斯特信号的奈奎斯特滤波器;输入分别具有码元周期的1/4周期的奇数倍的迟延差的奈奎斯特信号,并使用预定频率的载波进行正交调制的第1和第2正交调制器;以及将通过上述第1正交调制器所获得的调制信号和通过上述第2正交调制器所获得的调制信号使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波作为载波进行正交调制的第3正交调器。
7.一种调制装置,包括对4系统的输入码元的每一个给予码元周期的1/4周期的迟延差的迟延器群;从上述4系统的码元分别形成奈奎斯特信号的奈奎斯特滤波器;输入分别具有码元周期的1/4周期的整数倍的迟延差的奈奎斯特信号,对所输入的奈奎斯特信号使用将具有上述奈奎斯特信号的基本频率的奇数倍的频率进行交互输出的第1和第2正交调制器;以及将通过上述第1正交调制器所获得的调制信号和通过上述第2正交调制器所获得的调制信号使用预定频率的载波进行正交调制的第3正交调器。
8.一种解调装置,包括对第1和第2奈奎斯特信号被正交调制形成的调制信号,使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波进行正交解调的正交解调器。
9.如权利要求8所述的解调装置,包括输入调制信号,使用预定的载波频率对此调制信号进行正交解调,从而获得第1和第2解调信号的第1正交解调器;使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波,对上述第1解调信号进行正交解调,从而获得第3和第4解调信号的第2正交解调器;以及使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波,对上述第2解调信号进行正交解调,从而获得第5和第6解调信号的第3正交解调器。
10.如权利要求8所述的解调装置,包括输入调制信号,使用具有上述奈奎斯特信号的基本频率的奇数倍的频率的余弦波对此调制信号进行正交解调,从而获得第1和第2解调信号的第1正交解调器;使用预定的载波频率对上述第1解调信号进行正交解调,从而获得第3和第4解调信号的第2正交解调器;以及使用预定的载波频率对上述第2解调信号进行正交解调,从而获得第5和第6调解信号的第3正交解调器。
11.一种无线通信系统,具备如权利要求4所述的调制装置和如权利要求8所述的解调装置。
12.一种无线通信系统,具备如权利要求5所述的调制装置和如权利要求9所述的解调装置。
13.一种无线通信系统,具备如权利要求6所述的调制装置和如权利要求10所述的解调装置。
全文摘要
第1和第2正交调制器(109、110)将具有奈奎斯特信号的基本频率的奇数倍频率的余弦波作为载波使用,对给予各个码元周期的2/4周期的迟延差的奈奎斯特信号进行正交调制。第3正交调制器(113)使用预定载波对通过第1正交调制器(109)所获得调制信号和通过第2正交调制器(110)所获得的调制信号进行正交调制。因而可获得在1码元周期T内在互不干扰的状态下配置4个奈奎斯特信号的调制信号。
文档编号H04B14/02GK1810003SQ200480017378
公开日2006年7月26日 申请日期2004年5月14日 优先权日2003年5月14日
发明者太田现一郎, 猪饲和则 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1