电子水印嵌入方法、电子水印检测方法和装置以及程序的制作方法

文档序号:7633906阅读:157来源:国知局
专利名称:电子水印嵌入方法、电子水印检测方法和装置以及程序的制作方法
技术领域
本发明涉及能够从对已显示在显示器等的显示画面上的图像进行重新拍摄所得到的重拍图像中检测出电子水印的电子水印嵌入方法、电子水印检测方法和使用这些方法的装置及其程序。
背景技术
由于近年来的电视摄像机的性能提高和低成本化,越来越容易地将在显示器等的显示画面显示的图像或映像画面优质地进行重新拍摄。该技术的提高的反面也成为被重拍(recapture)的图像和映像等的著作物的不正当使用的主要原因。例如,直接用数字摄像机重拍在电影院等被上映的映像,并将复制成DVD(Digital Versatile Disk)等的物品进行违法销售的事情也有所发生。
作为以这样的重拍图像为对象的电子水印技术例如有在非专利文献1中所公开的技术。在该技术中,对嵌入电子水印的对象的活动图像,作为电子水印在时间方向(帧方向或半帧方向)上实施亮度变化。
这样,如果事先将著作权信息作为电子水印来嵌入,即便从被非法复制的重拍图像中也可以将上述著作权信息取出,以维护该著作权。这还关系到抑制利用重新拍摄等的不正当复制。
非专利文献1J.Haitsma and T.Kallker,“A Watermarkingscheme for digital cinema”,ICIP’01-IEEE,pp.487-489在非专利文献1中公开的重拍图像的电子水印技术中,通过对活动图像在时间方向(帧方向或半帧方向)上使其亮度进行变化来将可以与重拍图像相对应的电子水印嵌入。但是,存在这样的课题根据电子水印嵌入对象的活动图像,因在时间方向上的亮度变化而产生的帧图像之间的亮度差异等在重放中作为明暗部分可以看得出来。
另外,作为使电子水印的嵌入量增加的方法,考虑了将帧图像(或半帧图像)在空间上分割成多个区域按照每个分割区域逐个实施与嵌入位相对应的像素值变化。但是,存在由于电子水印嵌入对象的活动图像而使画面质量恶化的课题。
例如,在将帧图像等在空间上分割成多个区域按照每个分割区域逐个实施亮度调制的情况下,根据电子水印的嵌入对象的图像,由于亮度调制而产生在帧图像上的分割区域中的明暗差、分割区域的边界线在重放中可以看得出来。

发明内容
本发明就是为了解决如上述那样的课题而完成的,其目的是获得一种电子水印的嵌入方法及其检测方法,能够嵌入可对应重拍图像的电子水印而不会使图像质量劣化,并能够高精度地检测出电子水印。
另外,本发明以获得一种使用上述方法的电子水印嵌入装置、电子水印检测装置以及使计算机来实现它们的的程序为其目的。
涉及本发明的电子水印嵌入方法具备将电子水印嵌入对象的电子图像在空间上分割成多个图像区域的分割处理步骤;将具有像素值的变化难以辨认的特性的像素作为自适应像素对上述图像区域逐个进行抽取的自适应抽取步骤;以及依照电子水印的嵌入位值在上述图像区域间及时间方向上使上述自适应像素的像素值进行变化,同时使其阶段性地进行变化以使得在上述图像区域间的边界和/或时间方向上像素值变化的迁移变得缓慢由此生成电子水印嵌入图像的嵌入步骤。
据此,就具有能够一边维持针对重拍图像的电子水印的耐性(resistance),一边使因其嵌入而造成的视觉上的妨碍显著降低之类的效果。
涉及本发明的电子水印检测方法具备对检测对象图像的每个图像区域将与源于电子水印嵌入的时间方向上的像素值变化相对应的像素值差分作为间隙值来进行检测的间隙检测步骤;检测源于上述检测对象图像中待嵌入的电子水印的上述图像区域间及时间方向上的像素值变化图案与上述检测对象图像的时间方向上的像素值变化图案的相关值的相关性检测步骤;以及根据关于间隙值及相关值的上述每个图像分割区域的检测结果分别判定上述嵌入位,并对这些判定结果互补地进行判断以决定最终的嵌入位的嵌入位判定步骤。
据此,就具有能够使电子水印的检测结果的可靠性和检测精度提高的之类的效果。


图1是表示根据本发明实施方式1的电子水印嵌入装置之构成的框图。
图2是表示将输入电子图像在空间上进行了分割的图像分割区域的图。
图3是表示根据实施方式1的电子水印图案的一例及其时间变化的图。
图4是表示包含空间的保护带的电子水印图案和时间方向的保护带的具体例子的图。
图5是表示每个嵌入位的自适应处理及其时间变化的图。
图6是表示每个嵌入位的亮度级的自适应处理的图。
图7是说明利用实施方式2的电子水印嵌入装置的帧差分的计算方法的图。
图8是表示使用了每个嵌入位的帧差分的自适应处理的图。
图9是说明根据实施方式3的电子水印嵌入装置的边缘自适应处理的图。
图10是表示每个嵌入位的边缘自适应处理的图。
图11是表示根据本发明实施方式4的电子水印检测装置之构成的框图。
图12是表示电子水印的嵌入周期中的间隙检测位置的图。
图13是表示间隙值与嵌入位之关系的图。
图14是表示电子水印的嵌入相位的图。
图15是表示相关值与嵌入位之关系的图。
图16是表示基于间隙及相关性检测的判定值与嵌入位的最终判定值之关系的图。
图17是说明限幅处理的图。
图18是表示根据实施方式4的电子水印检测装置的应用例子的图。
具体实施例方式
下面,为了更为详细地说明本发明,按照附图就用于实施本发明的优选方式进行说明。
实施方式1.
图1是表示根据本发明实施方式1的电子水印嵌入装置之构成的框图。电子水印嵌入装置1,包括图像分割部2,自适应抽取部3,嵌入处理部4和水印信号生成部5。电子嵌入装置1例如,可以通过使用通用计算机等来执行根据本发明的电子水印嵌入程序而实现具体化。
也就是,通过使计算机执行电子水印嵌入程序而作为上述构成要素2~5起作用,可以执行基于电子水印嵌入装置1的特征的数据处理。此外,在以下的说明中,关于使电子水印嵌入装置1具体化的计算机自身的构成及其基本的功能本领域技术人员基于该领域的技术常识可以简单地认识,与本发明的本质不是直接相关,所以省略详细的记载。
图像分割部2,生成将被输入的电子图像(在图1中,表示为由多个帧形成的活动图像。以下称之为输入电子图像)6a在空间上分割成多个区域的信息的电子图像6b。以后,以如图2所示那样图像分割部2对将输入电子图像6a的帧图像进行4分割的情况为例来列举说明。此外,在图2中,为了区分已经分割了的各区域而分别在各个区域标记编号A、B、C、D。
另外,将在后叙述,在图像分割部2对输入电子图像6a的帧图像进行分割时,在各分割区域的边界设定保护带(Guard Band)。也就是,电子图像6b的帧图像经由保护带被进行分割。
自适应抽取部3,设定有用于确定即使以规定的振幅(变化量)使像素值变化也不使画面质量恶化的像素的自适应条件,对从图像分割部2输入的电子图像6b的每个分割区域将与自适应条件相应的像素,作为电子水印的嵌入对象像素(以后称之为自适应像素)来抽出。
嵌入处理部4,对于自适应抽取部3抽取的电子图像6b的自适应像素,依照来自水印信息生成部5的电子水印信息7在空间上和时间方向上使像素值变化来生成并输出完成电子水印嵌入的电子图像6c。
也就是,依照电子水印嵌入位的值,除了按电子图像6b的帧图像的每个分割区域使自适应像素的像素值变化的空间的像素值变化,还规定该空间上的变化图案的时间方向(帧方向)上的变化,由此来执行电子水印嵌入。
在以后的说明中,以嵌入处理部4,依照电子水印信息7在帧图像内使自适应像素的亮度值在空间上进行变化,且使其在时间方向(帧方向)进行变化的情况为例来列举,设在自适应抽取部3设定有关于亮度级的自适应条件。
水印信息生成部5,依照构成电子水印的嵌入位生成电子水印信息7并向嵌入处理部4输出。电子水印信息7是依照嵌入位来规定使电子图像6b的分割区域的像素值变化的空间的电子水印图案及其时间方向(帧方向)的变化图案的信息。
例如,如下设定电子水印信息7嵌入处理部4使用电子图像6b的4分割后的区域中的对角2区域在空间上将2位的信息嵌入,进而,在每个对角2区域逐个在时间方向上以不同的相位(例如,错开90°相位)赋予亮度变化并将2位的信息嵌入。通过这样做,就可以用空间上和时间方向的亮度变化对每一帧图像嵌入总计4位的电子水印。
另外,嵌入处理部4,执行嵌入处理以使空间上的亮度值变化在由图像分割部2设置的保护带中变得缓慢,进而,执行嵌入处理以使时间方向(帧方向)的亮度值变化在关于相同的分割区域的时间方向的保护带中变得缓慢。
图3是表示根据实施方式1的电子水印图案的一例及其时间变化的图。(a)表示包含空间上的保护带的电子水印图案,(b)表示包含时间方向的保护带(a)的图案的时间变化。在(a)的例子中,不使在图2中所示的区域B、C的亮度值变化(图中标记了0的部分)、使区域A、D的亮度值全部变化+1(图中,标记记号+的部分)。
另外,在(a)中,空间上的保护带GB的宽度例如设为32像素(pixel)。该宽度只要以不同的变化量使亮度变化了的区域之间的边界不能辨认的程度即可,并依照根据本发明的嵌入电子水印的对象图像的图像特征来适当地决定。进而,将区域B、D之间的保护带GB的区域B侧的边界线称为Ba,将区域D侧的边界线称为Bb。
在区域B侧的边界线Ba,例如将使亮度值变化+1的几率设为1/33,在保护带GB中随着接近区域D侧使该几率值慢慢上升。而且,在区域D侧的边界线Bb,将使亮度值变化+1的几率设为32/33。通过这样做,作为电子水印就从在一方的区域应该设定的亮度的变化量到在另一方的区域应该设定的亮度的变化量慢慢地变化。
进而,依照构成电子水印的位值在时间方向上使亮度值变化时,如(b)所示,例如,设定为,关于区域A、D从成为亮度调制的起点的帧到第10个帧使亮度值变化+1、从第10个帧到第15个帧之间慢慢地使亮度值的变化量变成0。
在这里,在图中的期间Bc中,在从使亮度值变化+1的状态到变化量变成0的期间,按照每1个帧逐个使亮度值变化+1的像素减少,以几率1/6的比例使亮度的变化量为0的像素增加以使与该程度相应不变化的像素增加。
这样,在本发明的电子水印嵌入装置1中,在时间方向上也使亮度值的变化缓慢(时间方向的保护带)。以此,可以防止由于嵌入与重拍图像相对的电子水印而引起的图像质量的恶化。
图4是表示包含以图3所示的方法嵌入的空间的保护带的电子水印嵌入基底和时间方向的保护带的具体例子的图。此外,为了使亮度值的变化容易理解,将亮度值+1变化的像素用黑色表示,将使亮度值不变的像素用白色表示。
如图4(a)所示,在空间上的亮度变化中,变成由于保护带GB而使区域A、D和区域B、C之间的边界线模糊的状态。另外,在时间方向上的亮度值变化也如图4(b)所示,由于时间方向的保护带,作为电子水印,在时间上,不存在从先设定的亮度值到后设定的亮度值的急剧的变化,设定了其中间状态。
图5是表示每个嵌入位的自适应处理及其时间变化的图。在图示的例子中,自适应抽取部3,按照电子图像6b的每个分割区域逐个地将满足自适应条件的自适应像素A、B抽取。另外,嵌入处理部4,对由自适应抽取部3按电子图像6b的每个分割区域被抽取出的自适应像素A、B,依照来自水印信息生成部5的电子水印信息7,以图中的嵌入周期(30帧周期)使亮度值变化。
例如,在电子水印的嵌入位是
的情况下,按照电子水印信息7使从成为处理的起点的帧到第15个帧的之间的自适应像素A的亮度值变化+1,使从第16个到第30个的帧之间的自适应像素B的亮度值变化-1。在嵌入位是
的情况下,执行其反相位的处理。
另外,在关于在图2所示的分割区域中的对角2区域使亮度变化成为相反相位的情况下,执行以下的处理。
首先,在图2中的区域A、D应该设定的嵌入位是
的情况下,对于从图2中的区域A抽取的自适应像素A、B,以与图5中的嵌入位00相对应的周期使亮度值变化。另外,对于从图2中的区域D抽取的自适应像素A、B,以与图5中的嵌入位01相对应的周期使亮度值变化。
另外,如果在图2中的区域A、D应该设定的嵌入位为
,则相反地,对于区域A,以与图5中的嵌入位01相对应的周期使亮度值变化,对于区域D,以与图5中的嵌入位00相对应的周期使亮度值变化。
进而,如果在图2中的区域A、D应该设定的嵌入位为[10],对于区域A,以与图5中的嵌入位10相对应的周期使亮度值变化,对于区域D,以与图5中的嵌入位11相对应的周期使亮度值变化。
如果在图2中的区域A、D应该设定的嵌入位为[11],对于区域A,以与图5中的嵌入位11相对应的周期使亮度值变化,对于区域D,以与图5中的嵌入位10相对应的周期使亮度值变化。这些处理,对于图2中的区域B、C也同样如此。
另外,在关于图2所示的分割区域中的对角2区域亮度变化变成同相位的情况下,如果在图2中的区域A、D应该设定的嵌入位为
,对于图2中的区域A、D,以与图5中的嵌入位00相对应的周期分别执行亮度变化处理。在嵌入位是
、[10]、[11]的情况下也以同样的要领来执行亮度变化处理。
接着就动作进行说明。
作为电子水印嵌入对象的输入电子图像6a,被输入到电子水印嵌入装置1的内部的图像分割部2。图像分割部2,生成将输入电子图像6a按照每个帧图像在空间上分割成多个区域的电子图像6b。此外,如上述,将在图3和图4中所示的保护带GB作为边界来分割电子图像6b的每个帧图像的分割区域。
自适应抽取部3,从图像分割部2输入电子图像6b,并在其每个帧图像的分割区域逐个地,例如,基于关于图6所示的像素亮度级的自适应条件将自适应像素A、B抽取。
图6是表示每个嵌入位的亮度级的自适应处理的图,与各嵌入位相对应的嵌入周期设定成与图5中所示的相同。如图中所示,亮度值大于等于180的像素作为自适应像素B被抽出。另外,作为自适应像素A,亮度值大于等于129的像素和与亮度值小于128的Next50%对应的像素就符合条件。所谓亮度值小于128的Next50%就是意味着在亮度值小于128的像素之中亮度值较大的上半部分的像素。
此外,与亮度值小于128的Next50%对应的像素,在亮度值大于等于129的像素数较少的图像且不能确保对于检测电子水印来说充分的嵌入量的情况下,也可以作为自适应像素A来抽出。
在人类的视觉特性上,越是亮度值较低、较暗的图像,若使其亮度值变化则该变化就越容易辨认。因而,抽取上述自适应像素的基准亮度值128,作为在使图像中的亮度发生变化时不能辨认出该变化的下限的亮度值,通过考虑了韦伯非赫那尔(Weber-Fechner)定律等的研究实验来决定。
自适应抽取部3,将满足关于上述的亮度级的自适应条件的自适应像素A、B在电子图像6b的每个分割区域逐个进行抽取,将确定这些像素的信息(图像上的位置坐标等)输出到嵌入处理部4。
嵌入处理部4,对于按照来自自适应抽取部3的信息按电子图像6b的每个分割区域逐个被抽取的自适应像素A、B,依照来自水印信息生成部5的电子水印信息7,以图5中的嵌入周期来执行亮度变化处理。
例如,在由水印信息生成部5得到的嵌入位为
的情况下,使用图5如上述那样,嵌入处理部4,使从成为处理的起点的帧到第15个的帧的自适应像素A的亮度值变化+1,使从第16个到第30个的帧的自适应像素B的亮度值变化-1。
此外,在图5中为了说明简单没有设置在图3(b)所示的期间Bc(时间方向的保护带),但是在由于时间方向的像素值调制而产生视觉上的影响的情况下,也可以设置时间方向的保护带。
另外,若考虑由于电子水印嵌入的视觉的影响,希望亮度值的变化量是±1的范围。但是,如果是亮度值很高、因亮度调制而造成的影响难以辨认的自适应像素(例如,亮度值大于等于190)的话,也可以使涉及电子水印嵌入的亮度值的变化量设为2倍(±2)以增加电子水印的嵌入强度。
进而,在对于检测作为亮度值大于等于129的像素数量较少的图像的电子水印来说不能确保充分的嵌入量的情况下,自适应抽取部3,也可以将具有比亮度值小于128的像素的亮度平均值还大的亮度的像素进行抽取。
此外,嵌入处理部4,如上述那样在由图像分割部2设置的保护带执行嵌入处理以使区域间的亮度值变化变得缓慢。另外,在设定时间方向的保护带的情况下,执行嵌入处理以使在该保护带上时间方向的亮度值变化变得缓慢。
另外,映像中的场景变化(scene change)是帧或半帧的图像相关性在时间方向上显著地变化而能够成为嵌入处理的同步基准的有意义的景象。因而,基于本实施方式的嵌入处理部4,同步于对象图像的场景变化来执行电子水印嵌入处理。
在此情况下,嵌入处理部4,例如将电子水印嵌入对象的图像中的帧图像相关性在时间方向上的变化超过规定的阀值的变化作为场景变化来进行检测。而且,嵌入处理部4,将检测出了场景变化以后的帧作为起点执行上述的时间方向上的亮度变化处理。
据此,电子水印嵌入处理中的时间方向上的亮度变化处理,即使存在从依照电子水印信息7的嵌入周期错开的事情,也能够以对象图像中的场景变化为基准使与上述周期的同步得以恢复。另外,在检测基于本发明的电子水印时,也可以使电子水印的嵌入图案中的相位准确地复原。
嵌入处理部4,若完成如上述那样依照从水印信息生成部5输入的电子水印信息7的亮度变化处理,就将由此得到的图像作为电子水印嵌入完毕的图像6c输出。
如上述那样,在该实施方式1中,由于将即使从对象图像以规定的振幅(变化量)使像素值(亮度等)变化也不会使画面质量恶化的像素作为自适应像素来进行抽取,同时对于空间上和时间方向上的像素值变化设置了使该变化缓慢的保护带,所以能够一边维持针对重拍图像的电子水印的耐性,一边明显地降低由于该嵌入而引起的视觉上的妨碍。
此外,虽然在上述实施方式1中,示出了在电子水印嵌入中执行空间上和时间方向上的亮度变化处理的例子。但是并不限于亮度,只要是在重拍图像中也可以检测出的像素值即可。
实施方式2.
在上述的实施方式1中,示出了作为即使实施亮度变化画面质量也不恶化的亮度级抽取亮度值大于等于128的自适应像素的例子,但是仅利用该自适应像素有时就会嵌入量不充分而不能检测出电子水印。
这里,在嵌入对象的图像中,一般而言原本帧图像(或半帧图像)间的像素值变化较大的像素,大多构成活动激烈的映像,可以预想由于像素值变化而引起的视觉上的映像较少。
因此,在实施方式2中,根据帧差分值(或半帧差分值)来检测帧图像(或半帧图像)之间的像素值变化较大的像素,作为应该嵌入电子水印的自适应像素来进行选择。
此外,基于实施方式2的电子水印嵌入装置的构成,与上述实施方式1中所示的基本相同,但是,在自适应抽取部3和嵌入处理部4对于对象图像执行使用了帧差分的上述自适应处理这点不同。
下面,对使用了帧差分的自适应处理进行详细的说明。
图7是说明基于本发明的实施方式2的电子水印嵌入装置的帧差分的计算方法的图。在图中,帧1、2表示电子图像6b的时间上的前后的帧图像。另外,将构成帧1、2的像素的像素值(例如,亮度值)分别设为x1、x2、...、xn和y1、y2、...、yn,帧差分ΔF(n)可以作为绝对值使用下述公式(1)来求解。
ΔF(n)=|xn-yn|…(1)图8是表示使用了基于实施方式2的每个嵌入位的帧差分的自适应处理的图。与各嵌入位(图示的例子中

)对应的嵌入周期设为与图5中所示的相同。自适应抽取部3,在将亮度值大于等于180的像素作为自适应像素B来进行抽取这点上与上述实施方式1不同,除了亮度值大于等于128的像素,还将亮度值小于128的像素也作为自适应像素A来进行抽取。
此处,所谓亮度值小于128的Next50%意味着在亮度值小于128的像素中亮度值较大的上半部分的像素。另外,所谓亮度值小于128剩余则意味着比亮度值小于128的Next50%的像素亮度值还低的像素。
自适应抽取部3,通过与上述实施方式1同样的处理,对电子图像6b的每个分割区域将图8所示的亮度级的自适应图像A、B抽出。进而,自适应抽取部3按上述公式(1)在电子图像6b的时间上前后的帧之间计算每个像素的帧差分,并将每个像素的计算结果与确定自适应像素的信息(图像中的位置坐标等)一起输出到嵌入处理部4。
在嵌入处理部4中,基于帧差分值的大小和亮度级决定在自适应像素的亮度值中应该加入的变化量并执行嵌入处理。如果以图8的例子进行说明,嵌入处理部4将由自适应抽取部3计算出的帧差分值是2以下的像素作为帧之间的像素值变化较小(活动较小)的像素进行辨识。关于与该帧差分值相当的自适应像素,只使即便实施亮度变化处理也不能辨认变化的亮度值大于等于128的像素的亮度值进行变化。
另外,如果帧差分值是大于等于3小于等于7,则嵌入处理部4辨识为帧之间的像素值变化是中等程度的像素,除了亮度值大于等于128的自适应像素外,对于与亮度值小于128的Next50%相当的自适应像素也执行亮度变化处理。
另一方面,如果帧差分值是大于等于8,则嵌入处理部4辨识为帧之间的像素值变化较大(活动激烈)的像素。关于与该帧差分值相当的自适应像素,判断为即便实施亮度变化处理也难于辨认变化的像素,对于亮度值小于128的自适应像素也执行亮度变化处理。
此外,也可以构成为将上述的帧差分值的阀值能够依照电子水印嵌入完毕的图像6c的画面质量在嵌入处理部4设定适当的值。
如上所述,根据该实施方式2,由于依照帧差分执行电子水印的嵌入,所以可以将帧之间的像素值变化较大、像素值的变化难以辨认的像素作为自适应像素进行抽取,并可以使电子水印的嵌入量增加。因此,可以提高根据本发明的电子水印的耐性。
虽然在上述实施方式2中示出了使用帧差分的例子,但是也可以使用半帧差分。作为该方式也能够以基本上相同的构成而获得同样的效果。
实施方式3.
该实施方式3是为了增加电子水印的嵌入量,将对象图像中的边缘部分的像素作为潜入对象的自适应像素的实施方式。
根据本实施方式3的电子水印嵌入装置的构成,基本与在上述的实施方式1所示的构成相同,但是在自适应抽取部3和嵌入处理部4对对象图像执行边缘自适应处理这一点上不同。
下面,对基于边缘自适应处理的自适应像素的选定进行说明。
首先,自适应抽取部3,通过在实施方式1或实施方式2中所示的处理对于嵌入了电子水印的图像6b,按顺序实施垂直方向边缘滤波处理、孤立点除去处理和3点NAM处理,以求出强调了边缘部分的像素。
图9是说明根据实施方式3的电子水印嵌入装置的边缘自适应处理的图。(a)表示垂直方向边缘滤波处理、(b)表示孤立点除去处理、(c)表示3点NAM处理。使用该图对各处理进行说明。此外,在图9中,以处理对象的图像(电子图像6b)的图像尺寸为720×486像素的情况作为例子。
在垂直方向边缘滤波处理中,从处理对象的图像中的关注像素和与其邻接的像素来强调垂直方向的边缘。具体而言,依据下述公式(2)来求解强调了关注像素(坐标(x、y))的垂直方向的边缘的像素值Ya(x,y)。
Ya(x,y)=|-Y(xp,y)/2+Y(x,y)-Y(xn,y)/2|…(2)0≤x<719,0≤y<485时、xp=x-1、xn=x+1x=0时、xp=x+1、xn=x+1x=719时、xp=x-1、xn=x-1自适应抽取部3,对于实施上述的处理并强调了垂直方向的边缘的图像,执行孤立点除去处理以使突发的像素值变化不被识别为边缘。在图示的例子中,取得关注像素(像素值Ya(x,y))8个附近像素值,依据下述公式(3),将在附近8个之中第3大的像素值maxYa和关注像素的像素值Ya(x,y)中赋予最小值的像素作为孤立点(像素值Yb(x,y))除去。
Yb(x,y)=min(Ya(x,y),maxYa)…(3)xp=x-1、xn=x+1、yp=y-1、yn=y+1x=0时、xp=x+1、xn=x+1x=719时、xp=x-1、xn=x-1y=0时、yp=y+1、yn=y+1y=485时、yp=y-1、yn=y-1其中,maxYa表示在不包含自身像素的周围的像素(8个附近像素)中第3大的像素值,以下述公式(4)表示。
maxYa=Mth(Ya(xp,yp),Ya(x,yp),Ya(xn,yp),Ya(xp,y),Ya(xn,y),Ya(xp,yn),Ya(x,yn),Ya(xn,yn))…(4)Mth函数返回第3大的值。
接下来,自适应抽取部3对于强调了垂直方向的边缘并实施了孤立点除去处理的图像执行3点NAM处理。具体而言,依据下述公式(5)从边缘部分的关注像素(坐标(x,y))和与其邻接的2像素求解若关注像素与边缘部分相当就变成较大值的边缘度Yc(x,y)。这也是边缘强调处理,若将Yc(x,y)作为图像来看就成为边缘强调图像,另一方面,Yc(x,y)较大的事实就成为表示位于坐标(x,y)的关注像素作为边缘部分的性质较强的指标。
Yc(x,y)=max(Yb(xp,y),Yb(x,y),Yb(xn,y))…(5)xp=x-1、xn=x+1x=0时、xp=x+1x=719时、xp=x-1自适应抽取部3,将构成如上述那样实施了边缘自适应处理的图像中的边缘的像素之中大于等于规定的边缘度(Yc)(例如Yc≥10)的像素抽取出来,并求解确定它们的信息(图像中的位置坐标等)。
其次,自适应抽取部3从没有实施边缘处理的原图像(电子图像6b)将满足关于规定的边缘度级的自适应条件的自适应像素A、B抽取出来,并将确定这些像素的信息(图像上的位置坐标等)输出到嵌入处理部4。
嵌入处理部4,依据在来自自适应抽取部3的边缘部分中确定大于等于规定的边缘度的像素或自适应像素的信息,对于作为原图像的电子图像6b的自适应像素,以图5中的嵌入周期执行亮度变化处理。
图10是表示每个嵌入位的边缘自适应处理的图。当以图示的例子来说明上述处理,自适应抽取部3从进行了边缘自适应处理的图像抽取构成边缘的像素之中边缘度大于等于10的像素,并求解确定它们的信息(位置坐标)。另外,从作为原图像的电子图像6b抽取亮度值大于等于128的和亮度值大于等于180的像素作为自适应像素,并求解确定它们的信息(位置坐标)。这些信息被输出到嵌入处理部4。
其次,嵌入处理部4,如图10所示,将自适应A或自适应B的自适应处理的变化量增加。亦即,在自适应A中,使从自适应处理图像中选定的边缘部分的边缘度大于等于10的像素、亮度值大于等于128的自适应像素的亮度值的变化增加1。在自适应B中,除了自适应A的处理外,还特别地使亮度值大于等于180的自适应像素的亮度值的变化增加1。通过自适应A的处理就可以大致充分地赋予变化,但是,如果追加自适应B的处理就可以不增加视觉上的妨碍地进一步实现强固的变化,检测结果稳定。
如上所述,根据本实施方式3,由于对于通过实施方式1或实施方式2中所示的处理进行了电子水印嵌入的电子图像6c在边缘部分将大于等于规定的边缘度的像素进一步作为自适应像素进行抽取并嵌入电子水印,所以可以增加水印嵌入量,可以将电子水印的耐性提高。
此外,虽然在上述的实施方式1~3中,分别说明了不同的自适应处理,但是也可以执行将它们组合起来的自适应处理。
实施方式4.
图11是表示根据本发明实施方式4的电子水印检测装置之构成的框图。电子水印检测装置8,包括间隙检测部9、相关性检测部10和嵌入位判定部11。电子水印检测装置8,使用广泛使用的计算机等,可以通过执行基于本发明的电子水印检测程序来进行具体化。
也就是,通过将电子水印检测程序在计算机中执行并作为上述构成要素9~11使其起作用,可以执行利用电子水印检测装置8的特征的数据处理。此外,在以下的说明中,关于将电子水印检测装置8具体化的计算机自身的构成及其基本的功能,根据与上述实施方式1相同的理由而省略详细的记载。
在通过上述实施方式1~3中说明过的电子水印嵌入装置1嵌入了电子水印的电子图像6c中,在电子水印图案的时间方向上的变化图案相位反转的时刻,帧差分值(或半帧差分值)急剧地变化。
因而,如果对嵌入在电子图像6c中的电子水印进行辨识,就依照上述相位反转时刻周期性地从电子图像6c检测出帧差分(或半帧差分),由此基于该帧差分值(或半帧差分值)就可以复原根据本发明的电子水印图案。
在间隙检测部9,通过如上述那样的周期性的帧差分检测,对每个分割区域从电子图像6c检测出电子水印图案的时间方向上的变化中的像素值的变化量(以下称为间隙Gap)。另外,相关性检测部10,通过在上述实施方式1~3中说明过的电子水印嵌入装置1,就被嵌入的电子水印图案和电子图像6c在时间方向上的像素值变化对每个分割区域逐个检测相关性。
嵌入位判定部11,基于间隙检测部9和相关性检测部10分别检测出的间隙值和相关值分别判定嵌入在电子图像6c中的位值(bitvalue),并输出对两判定结果综合性地进行判断而最终决定的位值作为嵌入位(embedded bit set)。
接着就动作进行说明。
在以后的说明中,通过在上述实施方式中所示的电子水印嵌入装置1,从在输入电子图像6a中嵌入了电子水印的电子图像6c检测出上述电子水印的嵌入位。
另外,作为电子图像6c,使用依照电子水印信息7使对输入电子图像6a的帧图像4分割后的区域的对角2区域(图2中区域A、D和区域B、C)的自适应像素的亮度值以反相位变化后的水印图案在时间方向(帧方向)上进行变化的电子图像。
进而,在对角区域A、D中,以图5所示的嵌入周期嵌入了位00。也就是,对于区域A以与图5中的嵌入位00对应的周期使其进行亮度变化,对于区域D以与图5中的嵌入位01对应的周期使其进行亮度变化。
将作为电子水印检测对象的活动图像的电子图像6c在显示装置(监视器)重放,并将用摄影机将其重拍的图像输入到电子水印检测装置8。电子图像6c被分别输入到电子水印检测装置8中的间隙检测部9和相关性检测部10。
在间隙检测部9中,基于电子图像6c中的电子水印嵌入周期来设定间隙检测时期,在该检测周期中对电子图像6c的每个分割区域逐个计算帧亮度差分(间隙检测)。
图12是表示电子水印的嵌入周期(30帧周期)中的间隙检测位置的图。以上述实施方式1中所示的按图5中的嵌入周期嵌入了电子水印的情况作为例子。在图示的例子中,在表示第7帧结束第8帧开始时刻的时刻a、表示第15帧结束第16帧开始时刻的时刻b、表示第22帧结束第23帧开始时刻的时刻c、和表示第30帧开始时刻的时刻d对间隙进行检测。
时刻a、c,与关于图5中的嵌入位10、11的嵌入周期的相位变化位置相对应;时刻b、d,与关于图5中的嵌入位00、01的嵌入周期的相位变化位置相对应。
间隙检测部9,与上述实施方式1同样,在与帧方向的图像相关性显著变化的电子图像6c的场景变化同步嵌入了电子水印的情况下,用该场景变化来把握嵌入周期的起始点,执行间隙检测处理。
在这种情况下,间隙检测部9,例如,将电子水印的检测对象的活动图像中的帧方向的图像相关性的时间变化超过规定的阀值的变化作为场景变化进行检测。然后,间隙检测部9,将检测出的场景变化以后的帧作为起点执行间隙检测。
此外,场景变化后的数秒时间(2~3秒),作为电子图像6c应该取入的重拍数据的画面质量混乱。这是由于摄影机的自动光圈功能等而在场景变化后的开始的大概30帧左右亮度值变化很大的缘故。
因而,在间隙检测部9中,当与电子图像6c中的场景变化同步执行间隙检测时,例如,不使用场景变化后的开始的30帧而使用亮度值稳定的30帧以后的重拍数据。
据此,电子水印检测处理中的间隙检测处理,即便有时从最初的检测周期错开,也能够以对象图像中的场景变化为基准使与上述周期的同步恢复。
其次,对间隙检测处理进行详细说明。
间隙检测部9,根据下述公式(6),对输入的电子图像6c的水印嵌入时的每个分割区域,逐个将间隙检测时刻前后(电子水印图案的嵌入相位的变化前后)的帧的亮度平均值的差分作为间隙值来计算。
Gap(i)=Y(15×i+16)-Y(15×i+15)-α…(6)α=(Y(15×i+15)-Y(15×i+14)+Y(15×i+17)-Y(15×i+16))/2此处,Y(n)表示第n半帧的亮度平均。由于忽视重拍开始起初的30帧,所以i成为4、5、6,出现的Y(n)成为Y(44)、Y(45)、Y(46)、Y(47)、Y(59)、Y(60)、Y(61)、Y(62)、Y(74)、Y(75)、Y(76)、Y(77)、...。
如上所述,间隙检测部9,对于电子图像6c的水印嵌入时的各分割区域,按与电子水印的每个嵌入位相对应的上述嵌入周期,逐个在各间隙检测时刻计算间隙值。当这些间隙值的计算结束时,间隙检测部9就在各分割区域A~D中计算在各间隙检测时刻a~d得到的间隙值的平均。例如,在区域A中,在间隙检测时刻a得到的间隙值的平均根据下述公式(7)求解。
AGapa=1nΣi=1na(i)---(7)]]>其中,n是自然数,a(1)、a(2)、a(3)、...、a(n)表示分别在各嵌入周期中的间隙检测时刻a计算出的间隙值。关于在分割区域B~D中在各间隙检测时刻a~d得到的间隙值的平均也根据同样的关系式计算。此外,AGapa中的A表示电子图像6c的水印嵌入时的4分割区域中区域A,下标字符a表示间隙检测时刻a。
间隙检测部9,当关于电子图像6c的水印嵌入时的4分割区域求解上述各间隙检测时刻的间隙值的平均时,就根据向对角区域的亮度变化是反相位这一事实,依据下述公式(8)来计算对角2区域(区域A、D及区域B、C)的间隙值(AADGapac、AADGapbd、ABCGapac、ABCGaPbd)。其中,AAD表示区域A、D,ABC表示区域B、C。
AADGapac=(AGapa+AGapc-DGapa-DGapc)/4AADGapbd=(AGapb+AGapd-DGapb-DGapd)/4ABCGapac=(BGapa+BGapc-CGapa-CGapc)/4ABCGapbd=(BGapb+BGapd-CGapb-CGapd)/4…(8)此外,如果将涉及电子水印的亮度变化在对角区域按同相位变化,就能够辨认出由于画面全体的亮度变动而周期性地变得忽明忽暗,通过如上述那样地使亮度变化在对角区域设成反相位,可以消除画面全体的亮度的变动。
这样求解出的Gapac、Gapbd被从间隙检测部9输出到嵌入位判定部11。在嵌入位判定部11中,使用从间隙检测部9输入的间隙值(Gapac、Gapbd),执行与间隙检测结果对应的嵌入位判定。
图13是表示间隙值与嵌入位之关系的图。依据该图的关系嵌入位判定部11判定嵌入位。使用间隙检测部9计算出的间隙值(Gapac、Gapbd),嵌入位判定部11将图中的参数x、z求解出。
此处,x是x=max(|Gapac|、|Gapbd|),表示Gapac和Gapbd之中值较大且可成为有意义值的候补的一方的绝对值。另外,z相当于Gapac和Gapbd之中值接近0的、也就是不是有意义值的候补的一方。
嵌入位判定部11,根据Gapac、Gapbd作为参数x、z属于图13中的哪一个的关系来判定嵌入位。
其次,对基于相关性检测的嵌入位判定进行说明。
图14是表示电子水印的嵌入相位的图,对应于图5所示的嵌入周期下的相位。在相关性检测部10中,设定有规定上述嵌入相位的函数fI(i)、fQ(i)。据此,来把握检测对象的图像中的电子水印图案的时间方向(帧方向)的变化图案。
函数fI(i)设为规定与图5中的嵌入位00、01相对应的嵌入周期的相位,称之为I-phase;另外,函数fQ(i)规定与图5中的嵌入位10、11相对应的嵌入周期的相位。将其称之为Q-phase。
相关性检测部10求解在用输入的电子图像6c利用下述公式(9)计算相关性上将使用的参考图像数据a。该参考图像数据α表示从电子图像6c的相关性检测开始半帧开始到检测对象的图像的最终半帧(N半帧)的关注半帧(检测相关性的半帧)的前60半帧部分的亮度的平均值。另外,Yj是电子图像6c的各半帧每个的亮度平均值。
α=160Σj=i-60iYj---(9)]]>i=61,62,63,...,N(N半帧构成的情况)这样,在本发明中,在求解参考图像时,使用检测相关性的帧(或半帧)的附近的帧(或半帧)的亮度平均值。这样的理由是由于关注帧附近的帧一般地相互类似,通过取帧图像的亮度平均值,因图像内容的不同而带来的影响就被减少,从而可以得到比较接近关注帧的参考图像。
另外,除了与上述的前60半帧部分的亮度的平均值外,也可以采用下述公式(10)、(11)中的任一个来求解参考图像数据α。下述公式(10)是在电子图像6c由N半帧构成的情况下求解的直到N半帧的亮度平均,下述公式(11)是关注半帧的前28后30半帧的亮度平均。

α=1NΣj=1NYj---(10)]]>N半帧构成的情况α=158Σj=i-28i+30Yj---(11)]]>i=29,30,31,...,N-30(N半帧构成的情况)接下来,相关性检测部10,使用规定图5中所示的嵌入周期下的相位的函数fI(i)、fQ(i)和参考图像数据α,对电子图像6c的水印嵌入时的每个分割区域,根据下述公式(12)、(13)计算出与嵌入相位相对应的相关值。其中,i=a是可以计算参考图像数据α的半帧号码的初始值。另外,Yi是电子图像6c的各半帧每个的亮度平均值。
I-phase的相关性1nΣi=anfI(i)(Yi-α)---(12)]]>Q-phase的相关性1nΣi=anfQ(i)(Yi-α)---(13)]]>如上述那样,当对于电子图像6c的水印嵌入时的分割区域A、B、C、D求解相关值时,根据位00以向对角区域的亮度变化成为反相位的方式被嵌入这一事实,相关性检测部10按照下述公式(14)来计算关于对角2区域(区域A、D和区域B、C)的相关值C(I,AAD)、C(Q,AAD)、C(I,ABC)、C(Q,ABC)。其中,AAD表示区域A、D,ABC表示区域B、C。
C(I,AAD)={C(I,A)-C(I,D)}/2C(Q,AAD)={C(Q,A)-C(Q,D)}/2C(I,ABC)={C(I,B)-C(I,C)}/2C(Q,ABC)={C(Q,B)-C(Q,C)}/2…(14)
此外,如果将涉及电子水印的亮度变化在对角区域设成同相位,就能够辨认出由于画面全体的亮度变动而周期性地变得忽明忽暗,但是,通过如上述那样地使亮度变化在对角区域设成反相位,就可以消除画面全体的亮度的变动。
这样求得的相关值C(I,AAD)、C(Q,AAD)、C(I,ABC)、C(Q,ABC)从相关性检测部10被输出到嵌入位判定部11。在嵌入位判定部11中,使用相关值C(I,AAD)、C(Q,AAD)、C(I,ABC)、C(Q,ABC),执行与相关性检测结果相对应的嵌入位判定。
图15是表示相关值与嵌入位之关系的图。依据这个图的关系嵌入位判定部11判定嵌入位。嵌入位判定部11使用相关性检测部10计算出的相关值C(I,AAD)、C(Q,AAD)、C(I,ABC)、C(Q,ABC)将图中的参数x、z、C(I)和C(Q)求解。
此外,C(I)是C(I)=C(I,AAD)+C(I,ABC);C(Q)是C(Q)=C(Q,AAD)+C(Q,ABC)。另外,x是x=max(|C(I)|,|C(Q)|)表示C(I)和C(Q)之中值较大且可成为有意义值的候补的一方的绝对值。z相当于C(I)和C(Q)之中值接近0的、也就是不是有意义值的候补的一方。
嵌入位判定部11,根据C(I)和C(Q)作为参数x、z属于图15中的哪一个的关系来判定嵌入位。
其次,嵌入位判定部11,将通过间隙检测所判定的嵌入位值和通过相关性检测所判定的嵌入位值综合性地进行判断来判定最终的嵌入位值并进行输出。
图16是表示基于间隙及相关性检测的判定值与嵌入位的最终判定值之关系的图。如图所示,在本发明中,根据间隙及相关性检测互补地进行嵌入位判定。例如,即使作为一方的检测结果被判定为嵌入位未检出,如果根据另一方的检测结果被判定为有意义的嵌入位值的话,就可以判断为在未检出的判定结果中有错误。
因而,在本发明中,以补充一方的判定处理的形式将有意义的值被判定的结果作为最终的判定结果来采用。通过这样做,就可以提高电子水印的检测结果的可靠性和检测精度。
此外,为了在上述的间隙和相关性检测中抑制检测值的偏差,还可以使间隙检测部9和相关性检测部10对检测结果实施限幅处理。例如,如图17所示那样,间隙检测部9和相关性检测部10,在亮度变化的间隙和相关性的检测值偏向下方而变成比-1还小的值的情况下,将预先设定好的限幅值-1作为检测值来采用。另外,在间隙和相关性的检测值偏向上方而变成比+1还大的值的情况下,将预先设定好的限幅值+1作为检测值来采用。
通过这样对检测值设置上下限值以使其限制在所规定的范围内,即使由于间隙和相关性检测对象的图像内容而在检测结果中产生了偏差也可以减小其影响,可以稳定地执行嵌入位的判定处理。
图18是表示根据实施方式4的电子水印检测装置的应用例子的图。在图示的例子中,将电子水印检测装置8构成为笔式检测器12。在笔式检测器12的笔端部,安装有读取在CRT和LCD等的监视器画面14显示的图像的摄影机,并通过上述的处理将电子水印检测出。检测结果的嵌入位被显示在显示窗13中,能够确认在检测对象的图像中嵌入有根据本发明的电子水印。
在该应用例子中,将本发明的电子水印嵌入在嵌入对象图像的一部分区域中。然后,在电子水印的检测处理中,将笔端部压接在监视器画面的上述嵌入区域的显示部分来读入检测对象图像。通过这样进行构成,就能够一边拍摄在监视器画面14中重放的图像,一边简单地执行电子水印检测。
如上所述,根据本实施方式4,由于基于间隙和相关性检测来互补地进行嵌入位判定,所以可以提高电子水印的检测结果的可靠性和检测精度。
此外,虽然在上述的实施方式4中示出了将基于间隙检测的嵌入位判定结果和基于相关性检测的嵌入位判定结果互补地进行判断来进行最终的嵌入位的决定的例子。但是,本发明并不限定于该构成。
例如,也可以构成为嵌入位判定部11只根据基于间隙检测部9的间隙检测结果来判定嵌入位,而不设置相关性检测部10。为了采用该结构来维持检测精度,就需要严格地取得检测对象图像中的电子水印的嵌入周期与该间隙检测周期的同步。但是,由于相关性检测需要的时间被省略,所以可以构成为在重拍图像的放映中实时地检测电子水印。
另外,也可以构成为嵌入位判定部11只根据基于相关性检测部10的相关性检测结果来判定嵌入位,而不设置间隙检测部9。在这样的结构中,在相关性检测部10求解如上述那样在相关值的计算中所用的参考图像数据α时,使用检测相关性的帧(或半帧)的附近的帧(或半帧)的亮度平均值。
据此,因检测对象图像的图像内容的不同而带来的影响就得以减小,能够用更接近关注帧的参考图像来计算相关值,并能够使检测精度提高。
产业上的可利用性如上所述,涉及本发明的电子水印嵌入方法,一边维持针对将显示在显示器等的显示画面中的图像进行重拍而得到的重拍图像的电子水印的耐性,一边使由于该嵌入而产生的视觉上的妨碍明显地降低,可以正好利用于活动图像的电子水印嵌入技术。
权利要求
1.一种电子水印嵌入方法,其特征在于,具备分割处理步骤,将电子水印嵌入对象的电子图像在空间上分割成多个图像区域;自适应抽取步骤,将具有像素值的变化难以辨认的特性的像素作为自适应像素对上述图像区域逐个进行抽取;以及嵌入步骤,依照电子水印的嵌入位值在上述图像区域间及时间方向上使上述自适应像素的像素值进行变化,同时使其阶段性地进行变化以使得在上述图像区域间的边界和/或时间方向上像素值变化的迁移变得缓慢由此生成电子水印嵌入图像。
2.按照权利要求1所述的电子水印嵌入方法,其特征在于在嵌入步骤中,通过在图像区域间和/或时间方向上以相互不同的相位极性使像素值进行变化来表现嵌入位。
3.按照权利要求1所述的电子水印嵌入方法,其特征在于在自适应抽取步骤中,将即便增加与电子水印嵌入有关的亮度变化该变化也难以辨认的亮度级的像素作为自适应像素来进行抽取。
4.按照权利要求1所述的电子水印嵌入方法,其特征在于在自适应抽取步骤中,基于电子水印嵌入对象的电子图像的时间方向上的像素值差分将在时间方向上像素值变化较大的像素作为自适应像素来进行抽取。
5.按照权利要求1所述的电子水印嵌入方法,其特征在于在自适应抽取步骤中,从电子水印嵌入对象的电子图像中的边缘部分抽取出自适应像素。
6.按照权利要求1所述的电子水印嵌入方法,其特征在于在嵌入步骤中,同步于电子水印嵌入对象的电子图像中的场景变化来执行嵌入处理。
7.一种电子水印检测方法,从通过将电子水印嵌入对象的电子图像在空间上分割成多个图像区域,并依照电子水印的嵌入位值在上述图像区域间及时间方向上使像素值进行变化而嵌入了电子水印的检测对象图像中检测出上述嵌入位,其特征在于,具备间隙检测步骤,对上述检测对象图像的每个图像区域将与源于电子水印嵌入的时间方向上的像素值变化相对应的像素值差分作为间隙值来进行检测;相关性检测步骤,检测源于上述检测对象图像中待嵌入的电子水印的上述图像区域间及时间方向上的像素值变化图案与上述检测对象图像的时间方向上的像素值变化图案的相关值;以及嵌入位判定步骤,根据关于上述间隙值及上述相关值的上述每个图像分割区域的检测结果分别判定上述嵌入位,并对这些判定结果互补地进行判断以决定最终的嵌入位。
8.按照权利要求7所述的电子水印检测方法,其特征在于在间隙检测步骤中,将构成检测对象图像的时间方向的图像数据之中、相对于关注图像数据在时间上位于附近的图像数据的像素值平均之差分作为间隙值计算出。
9.按照权利要求7所述的电子水印检测方法,其特征在于在相关性检测步骤中,将构成检测对象图像的时间方向的图像数据之中、相对于关注图像数据在时间上位于附近的图像数据的像素值平均作为参考图像逐次计算出,并计算出这些参考图像中的像素值变化图案与上述检测对象图像中待嵌入的电子水印的像素值变化图案的相关值。
10.按照权利要求7所述的电子水印检测方法,其特征在于在间隙检测步骤及相关性检测步骤中,执行限制检测值的上下限值的限幅处理。
11.按照权利要求7所述的电子水印检测方法,其特征在于在间隙检测步骤及相关性检测步骤中,同步于检测对象图像中的场景变化来执行检测处理。
12.按照权利要求11所述的电子水印检测方法,其特征在于在间隙检测步骤及相关性检测步骤中,在检测处理中不使用构成检测对象图像的图像数据之中包含起因于场景变化的图像混乱的图像数据。
13.一种电子水印嵌入装置,其特征在于,具备分割处理部,将电子水印嵌入对象的电子图像在空间上分割成多个图像区域;自适应抽取部,将具有像素值的变化难以辨认的特性的像素作为自适应像素对上述图像区域逐个进行抽取;水印信息生成部,生成依照电子水印的嵌入位值在上述图像区域间及时间方向上使上述自适应像素的像素值进行变化的电子水印信息;以及嵌入处理部,基于上述电子水印信息使上述电子图像的像素值进行变化,同时使其阶段性地进行变化以使得在上述图像区域间的边界和/或时间方向上像素值变化的迁移变得缓慢由此生成电子水印嵌入图像。
14.一种电子水印检测装置,从通过将电子水印嵌入对象的电子图像在空间上分割成多个图像区域,并依照电子水印的嵌入位值在上述图像区域间及时间方向上使像素值进行变化而嵌入了电子水印的检测对象图像中检测出上述嵌入位,其特征在于,具备间隙检测部,对上述检测对象图像的每个图像区域将与源于电子水印嵌入的时间方向上的像素值变化相对应的像素值差分作为间隙值来进行检测;相关性检测部,检测源于上述检测对象图像中待嵌入的电子水印的上述图像区域间及时间方向上的像素值变化图案与上述检测对象图像的时间方向上的像素值变化图案的相关值;以及嵌入位判定部,根据关于上述间隙值及上述相关值的上述每个图像分割区域的检测结果分别判定上述嵌入位,并对这些判定结果互补地进行判断以决定最终的嵌入位。
15.按照权利要求14所述的电子水印检测装置,其特征在于间隙检测部,将构成检测对象图像的时间方向的图像数据之中、相对于关注图像数据在时间上位于附近的图像数据的像素值平均之差分作为间隙值计算出。
16.按照权利要求14所述的电子水印检测装置,其特征在于相关性检测部,将构成检测对象图像的时间方向的图像数据之中、相对于关注图像数据在时间上位于附近的图像数据的像素值平均作为参考图像逐次计算出,并计算出这些参考图像中的像素值变化图案与上述检测对象图像中待嵌入的电子水印的像素值变化图案的相关值。
17.一种使计算机作为以下部件发挥功能的程序分割处理部,将电子水印嵌入对象的电子图像在空间上分割成多个图像区域;自适应抽取部,将具有像素值的变化难以辨认的特性的像素作为自适应像素对上述图像区域逐个进行抽取;水印信息生成部,生成依照电子水印的嵌入位值在上述图像区域间及时间方向上使上述自适应像素的像素值进行变化的电子水印信息;以及嵌入处理部,基于上述电子水印信息使上述电子图像的像素值进行变化,同时使其阶段性地进行变化以使得在上述图像区域间的边界和/或时间方向上像素值变化的迁移变得缓慢由此生成电子水印嵌入图像。
18.一种使计算机作为电子水印检测装置发挥功能的程序,该电子水印检测装置从通过将电子水印嵌入对象的电子图像在空间上分割成多个图像区域,并依照电子水印的嵌入位值在上述图像区域间及时间方向上使像素值进行变化而嵌入了电子水印的检测对象图像中检测出上述嵌入位,其特征在于,使计算机作为以下部件发挥功能间隙检测部,对上述检测对象图像的每个图像区域将与源于电子水印嵌入的时间方向上的像素值变化相对应的像素值差分作为间隙值来进行检测;相关性检测部,检测源于上述检测对象图像中待嵌入的电子水印的上述图像区域间及时间方向上的像素值变化图案与上述检测对象图像的时间方向上的像素值变化图案的相关值;以及嵌入位判定部,根据关于上述间隙值及上述相关值的上述每个图像分割区域的检测结果分别判定上述嵌入位,并对这些判定结果互补地进行判断以决定最终的嵌入位。
19.按照权利要求18所述的程序,其特征在于间隙检测部,将构成检测对象图像的时间方向的图像数据之中、相对于关注图像数据在时间上位于附近的图像数据的像素值平均之差分作为间隙值计算出。
20.按照权利要求18所述的程序,其特征在于相关性检测部,将构成检测对象图像的时间方向的图像数据之中、相对于关注图像数据在时间上位于附近的图像数据的像素值平均作为参考图像逐次计算出,并计算出这些参考图像中的像素值变化图案与上述检测对象图像中应该嵌入的电子水印的像素值变化图案的相关值。
全文摘要
一种电子水印嵌入方法、电子水印检测方法和装置以及程序,将电子水印嵌入对象的电子图像在空间上分割成多个图像区域;将具有像素值的变化难以辨认的特性的像素作为自适应像素对上述图像区域逐个进行抽取;依照电子水印的嵌入位值在上述图像区域间及时间方向上使上述自适应像素的像素值进行变化,同时使其阶段性地进行变化以使得在上述图像区域间的边界和/或时间方向上像素值变化的迁移变得缓慢由此生成电子水印嵌入图像。
文档编号H04N1/387GK1922883SQ200580005248
公开日2007年2月28日 申请日期2005年2月14日 优先权日2004年2月17日
发明者藤井亮介, 伊藤浩, 马养浩一, 铃木光义, 和田稔, 大竹刚, 合志清一 申请人:三菱电机株式会社, 日本放送协会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1