摄影装置、便携终端装置、摄影方法及程序的制作方法

文档序号:7638944阅读:113来源:国知局
专利名称:摄影装置、便携终端装置、摄影方法及程序的制作方法
技术领域
本发明涉及进行变焦(Zooming)来对被摄体进行摄像的摄影装置、便携终端装置、摄影方法及程序。

背景技术
近年来,通过各种设备的数字化和集成化技术的高度化,能够数字记录静止图像及运动图像的照相机、即数字静像照相机和数字摄像机已广泛地普及。数字记录与其他媒体的亲和性较高,通过打印机的印刷及网络中的分发等各种使用形态在民生用途中得到发展。
照相机如图1(a)所示,从场景1001中切取一部分作为图像数据保存。切取的位置由摄影者根据摄影意图决定,根据在场景之中设定切取框1002的含义而被称作取景。决定取景的因素有照相机的位置1003、照相机的方向1004、照相机的角度1005(沿横向构成、或沿纵向构成、或仰俯地构成)、照相机的视角1006这4个。其中,照相机的位置如图1(b)的表1007、以及图1(c)所示,利用跟踪1008(左右地水平移动)、升降1009(铅直移动)、推拉1010(前后地水平移动)进行调节。此外,照相机的方向如图1(d)所示,利用摇镜头1011(以照相机为中心沿水平方向旋转)、仰俯1012(以照相机为中心沿铅直方向旋转)来调节。此外,照相机的旋转如图1(d)所示,利用旋转1013(以光轴为中心旋转)来调节。照相机的视角通过推拉1010、变焦1014来调节。在变焦中,使用变更光学系统的焦点距离的光学变焦、和通过图像处理的电子变焦。以上,取景是通过从跟踪1008到变焦1014这7种摄影技巧由摄影者决定的。
变焦以外的6个摄影技巧(从跟踪1008到旋转1013)是通过摄影者移动照相机来执行的。另一方面,调节视角的变焦1014需要摄影者对照相机指示是将视角扩大还是缩小、其比例是怎样的,一般使用拨盘操作(例如参照非特许文献1)。即,当前市售的静像照相机1101及电影摄影机1102搭载多焦点透镜1103,能够通过如图2(a)所示那样使透镜壳体1103旋转、或如图2(b)所示那样使透镜壳体1103滑动、或者如图2(c)所示那样使按钮1106滑动、或者如图2(d)所示那样使拨盘1107旋转等来进行视角变更。此外,在取景的确认中,如图2(e)及图2(f)所示那样利用取景器1108,摄影者能够通过目视来确认摄影图像。
非特许文献1ペンタックス株式会社,*istDs使用说明书(48页),[平成17年11月7日检索],因特网<URL:http://www.pentax.cojp/japan/support/man-pdf/istds.pdf>

发明内容
但是,以往的取景在操作性的方面具有如下的问题。
第1问题是,在图1所示的7种摄影技巧之中,只有变焦1014从其他摄影技巧中脱离,为了按照摄影意图调节取景而需要某种程度的训练。图3是表示摄影者1201一边从被摄体1202的侧面向正面环绕、一边连续地提高摄像机1102的摄影倍率(放大)的摄影例的图。这里,图像IC1、图像IC2、图像IC3表示在摄像机1102的取景框1108中映出的摄影图像,分别对应于摄影倍率1倍、2倍、4倍。在该摄影例中,摄影者需要一边通过身体的移动和旋转进行跟踪和摇镜头一边同时通过拨盘操作进行变焦。同时执行摄影者身体的移动和旋转这样的身体控制、和拨盘操作这样的对设备的指令输入并不容易,特别在希望有直觉的操作性的民生用途中成为较大的课题。
第2问题是,拨盘操作本身并不是直觉的操作。即,摄影者使透镜壳体旋转或滑动的方式是与多焦点透镜的机构匹配的操作方法,摄影者需要配合照相机的机构来学会操作方法。此外,在按钮及拨盘操作中,需要使滑动或旋转的方向与放大·缩小的方向对应,不能说是直接反映想要将场景整体取入、或者将特定的对象的细节部分取入的摄影意图的操作方法。
所以,本发明是鉴于上述情况而做出的,目的是提供一种变焦不与其他摄影技巧脱离、并能够直接反映摄影意图而进行摄影的摄影装置、便携终端装置、摄影方法及程序。
为了达到上述目的,有关本发明的摄影装置,根据与被摄体的位置关系调节摄像图像,其特征在于,具备摄影部,利用多焦点透镜对被摄体进行摄影;距离计算部,提取包含在由上述摄影部摄像的图像中的基准图形,基于规定时间的上述基准图形与当前时刻的上述基准图形之间的差异,计算从该摄影装置到被摄体的距离;焦点距离计算部,基于到上述被摄体的距离,计算上述多焦点透镜的焦点距离;以及焦点距离控制部,进行控制,使上述多焦点透镜的焦点距离与由上述焦点距离计算部计算出的焦点距离一致。
即,本发明通过摄影装置的移动来控制变焦。计测从摄影装置到被摄体的距离(摄影距离),根据摄影距离的变化变更视角。例如,如果使摄影装置接近于被摄体则使视角变窄(放大),取入被摄体的细节部分。反之,如果将摄影装置远离被摄体,则使视角变宽(缩小),取入场景整体。在摄影距离的计测中,通过利用超声波或红外光等的距离传感器、或者摄影图像的光流等进行。
发明效果 根据有关本发明的摄影装置及摄影方法,由于摄影者通过移动摄影装置来控制变焦,所以能够仅通过摄影装置的运动决定摄影装置的视角。由此,以往操作方法与通过摄影装置(照相机)的运动来进行控制的6个摄影技巧(即跟踪、升降、推拉、摇镜头、仰俯、旋转)脱离的变焦,被组合到照相机的运动之中,所以在操作方法中产生一贯性,取景的操作性提高。此外,以往的变焦操作是透镜壳体的旋转或滑动、或者按钮、拨盘的滑动、旋转等,根据设备而各种各样,摄影者必须应对每个设备不同的操作方法,但在本发明中,由于变焦操作与照相机和被摄体的距离调节相统一,所以直觉且容易理解。



图1是表示本发明的背景技术的图。
图2是表示本发明的背景技术的图。
图3是表示本发明的背景技术的图。
图4是表示使用有关本发明的实施方式1的摄影装置对被摄体进行摄影的状况的概况图。
图5是表示有关实施方式1的摄影装置的结构的框图。
图6是表示有关实施方式1的摄影装置中的焦点距离的变更动作的流程的流程图。
图7是表示焦点距离、视角、摄影距离、摄像传感器的大小的关系的图。
图8是表示摄影装置的位置与焦点距离的关系的一例的图。
图9是表示摄影装置的位置与焦点距离的时间性变化的一例的图。
图10是基于(式4)说明摄影距离的变化与视角的变化的关系的图。
图11是基于(式5)说明摄影距离的变化与视角的变化的关系的图。
图12是说明变焦极性切换按钮的图。
图13是表示有关实施方式2的摄影装置的结构的框图。
图14是说明摄影距离的变化带来的对象的大小的差异的图。
图15是说明通过光流求出摄影装置的移动方向的原理的图。
图16是表示有关实施方式2的摄影装置的焦点距离的变更动作的流程的流程图。
图17是表示有关实施方式3的摄影装置的结构的框图。
图18是基于(式10)说明摄影距离的变化与切取范围的变化的关系的图。
图19是基于(式11)说明摄影距离的变化与切取范围的变化的关系的图。
图20是表示有关实施方式4的摄影装置的结构的框图。
图21是说明视角感度输入按钮的图。
图22是表示变更了视角感度α时的焦点距离的变化的一例的图。
图23是表示变更了视角感度α时的焦点距离的变化的一例的图。
标号说明 100、400、800、900摄影装置 101多焦点透镜 102摄像传感器 103取景器 104距离传感器 105摄影距离缓存部 106、403焦点距离计算部 107焦点控制部 108存储器部 109图像记录部 110变焦极性受理部 111变焦极性切换部 200摄影者 300被摄体 401摄影距离变化量推测部 402摄影图像缓存部 404显示图像缓存部 801切取范围计算部 802切取部 901视角感度受理部 902视角感度变更部
具体实施例方式 有关本发明的技术方案的摄影装置,根据与被摄体的位置关系调节摄像图像,其特征在于,具备摄影部,利用多焦点透镜对被摄体进行摄影;距离计算部,提取包含在由上述摄影部摄像的图像中的基准图形,基于规定时间的上述基准图形与当前时刻的上述基准图形之间的差异,计算从该摄影装置到被摄体的距离;焦点距离计算部,基于到上述被摄体的距离,计算上述多焦点透镜的焦点距离;以及焦点距离控制部,进行控制,使上述多焦点透镜的焦点距离与由上述焦点距离计算部计算出的焦点距离一致。
由此,能够基于到被摄体的距离将摄像的图像变焦,所以将变焦调节组合到移动摄影装置的取景动作之中,能够进行比例如通过按钮或拨盘操作的变焦调节更直接的操作。
此外,有关本发明的另一技术方案的摄影装置也可以是,根据与被摄体的位置关系调节摄像图像,具备摄影部,利用多焦点透镜对被摄体进行摄影;距离计算部,提取包含在由上述摄影部摄像的图像中的基准图形,基于规定时间的上述基准图形与当前时刻的上述基准图形之间的差异,计算从该摄影装置到被摄体的距离;切取范围计算部,基于到上述被摄体的距离,计算从上述摄像图像切取的图像范围;以及图像切取部,按照上述切取范围计算部的计算结果,从上述摄像图像切取一部分。
由此,能够基于到被摄体的距离控制从摄像图像切取的图像范围,所以将切取图像范围的控制组合到移动摄影装置的取景动作之中,能够进行比例如通过按钮或拨盘操作的切取图像范围的控制更直接的操作。
此外,上述焦点距离计算部也可以基于规定时间的到上述被摄体的距离与当前时刻的到上述被摄体的距离之差,计算上述多焦点透镜的焦点距离。
此外,也可以是,上述焦点距离计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较长地计算上述多焦点透镜的焦点距离,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较短地计算上述多焦点透镜的焦点距离。
此外,上述切取范围计算部也可以基于规定时间的到上述被摄体的距离与当前时刻的到上述被摄体的距离之差来计算从上述摄像图像切取的图像范围。
此外,也可以是,上述切取范围计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较小地计算上述摄像图像的切取图像范围,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较大地计算上述摄像图像的切取图像范围。
由此,在到被摄体的距离变短的情况下(使摄影装置接近于被摄体的情况下),能够控制焦点距离或切取图像范围而缩窄摄影视角,将被摄体的细节部分取入。反之,在到被摄体的距离变长的情况下(使摄影装置远离被摄体的情况下),能够控制焦点距离或切取图像范围而增大摄影视角,将场景整体取入。
此外,也可以是,上述焦点距离计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较短地计算上述多焦点透镜的焦点距离,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较长地计算上述多焦点透镜的焦点距离。
此外,也可以是,上述切取范围计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较大地计算上述摄像图像的切取图像范围,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较小地计算上述摄像图像的切取图像范围。
由此,在从摄像装置到被摄体的距离变长的情况下(使摄影装置远离被摄体的情况下),能够控制焦点距离或切取图像范围而缩窄摄影视角,将被摄体的细节部分取入。反之,在到被摄体的距离变短的情况下(使摄影装置接近于被摄体的情况下),能够控制焦点距离或切取图像范围而增大摄影视角,将场景整体取入。
此外,也可以是,上述焦点距离计算部对规定时间的到上述被摄体的距离与当前时刻的到上述被摄体的距离之差施加权重,使到上述被摄体的距离的差对于上述多焦点透镜的焦点距离的变更量的贡献率成为可变。
此外,也可以是,上述切取范围计算部对规定时间的到上述被摄体的距离与当前时刻的到上述被摄体的距离之差施加权重,使到上述被摄体的距离的差对于从上述摄像图像切取的图像范围的变更量的贡献率成为可变。
由此,能够根据使用状况改变到被摄体的距离的变化量与焦点距离或切取图像范围的变化量之间的关系,能够进行对应于使用状况的摄影。
此外,也可以是,上述距离计算部提取包含在由上述摄像部摄像的图像中的基准图形,基于规定时间的上述基准图像与当前时刻的上述基准图形的差异,计算到上述被摄体的距离。
此外,也可以是,上述距离计算部基于上述基准图形的位置、大小、形状、明亮度、以及颜色中的至少1个进行与上述基准图形之间的差异的计测。
另外,本发明不仅能够作为这样的摄影装置实现,也可以作为以这样的摄影装置所具备的特征性结构要素为步骤的摄影方法来实现、或者作为使计算机执行这些步骤的程序来实现。并且,这样的程序当然可以经由CD-ROM等记录媒体或因特网等传送媒体分发。
以下,参照附图详细地说明本发明的实施方式。
(实施方式1) 在本实施方式中,说明通过距离传感器计测到被摄体的距离、根据该距离控制摄影视角的摄影装置。
图4是表示摄影者使用有关本发明的实施方式1的摄影装置对被摄体进行摄影的状况的概况图,图5是表示有关实施方式1的摄影装置的结构的框图。
摄影装置100是用来对被摄体300进行摄影的装置,其特征在于,在根据与被摄体的位置关系(到被摄体的距离)调节(变焦)摄影图像,如图5所示,具备多焦点透镜101、摄像传感器102、取景器103、距离传感器104、摄影距离缓存部105、焦点距离计算部106、焦点控制部107、存储器部108、图像记录部109、变焦极性受理部110及变焦极性切换部111。
多焦点透镜101通过变更焦点距离,变更由摄像传感器102摄像的被摄体300的摄影范围(即视角)。摄像传感器102是用来对被摄体300进行摄影的例如CCD传感器或CMOS传感器等摄像传感器。取景器103显示经由多焦点透镜101由摄像传感器102摄像的被摄体300的图像。距离传感器104使用例如超声波传感器或红外光传感器等计测到被摄体300的距离(摄影距离D)。摄影距离缓存部105临时保存在过去的时间Ti-1计测的摄影距离Di-1。焦点距离计算部106基于由距离传感器104计测的当前的时间Ti的摄影距离Di、和从摄影距离缓存部105供给的摄影距离Di-1,计算多焦点透镜101的焦点距离F。焦点控制部107控制多焦点透镜101的焦点距离,以使其成为由焦点距离计算部106计算出的焦点距离F。存储器部108对焦点距离计算部106赋予在启动摄影装置100时读入的初始设定值。图像记录部109记录在录像时通过摄像传感器102摄像的被摄体300的摄影图像。变焦极性受理部110从摄影者受理放大(缩小视角来将图像放大)和缩小(扩大视角来将图像缩小)的切换。变焦极性切换部111按照由变焦极性受理部110受理的极性(放大或缩小)切换变焦极性,对焦点距离计算部106赋予变焦极性。
接着,说明摄影者200利用如上述那样构成的摄影装置100对被摄体300进行摄影的情况下的动作。
图6是表示摄影装置100中的焦点距离的变更动作的流程的流程图。
摄影装置100在时间Ti通过多焦点透镜101将由摄像传感器102摄像的被摄体300的图像显示到取景器103(步骤S101)。同时,距离传感器104计测到被摄体300的距离(摄影距离D),将计测出的摄影距离Di向摄影距离缓存部105和焦点距离计算部106输出(步骤S102)。摄影距离缓存部105判断是否设定有在比时间Ti更以前的时间Ti-1记录的摄影距离Di-1(步骤S103)。在该判断的结果是没有设定摄影距离Di-1的情况下,摄影距离缓存部105将从距离传感器104输入的摄影距离Di作为摄影距离Di-1进行记录(步骤S104)。
另一方面,在设定有摄影距离Di-1的情况下,焦点距离计算部106通过下面的(式1)计算作为摄影距离Di-1与摄影距离Di的差的移动量Ui(步骤S105)。
[数学公式1] Ui=Di-Di-1…(式1) 如果移动量Ui为负,则可知摄影装置100与被摄体300接近了,如果为正,则可知摄影装置100与被摄体300远离了。
接着,焦点距离计算部106基于移动量Ui,计算焦点距离F(步骤S106)。如图7所示,如果设焦点距离为F、被摄像的被摄体300的长度(相当于视角)为L、被摄体300与多焦点透镜101的距离为D、摄像传感器102的大小为S,则它们的关系变为 [数学公式2] …(式2) 焦点距离F与视角L处于反比例的关系。例如,在焦点距离F从24mm向192mm变长为8倍的情况下,视角L变窄为1/8,能够摄影倍率为8倍的放大图像。
图8是表示摄影装置100的位置与焦点距离F的关系的一例的图。在该例中,摄像者200能够识别取景器103的图像,并且在摄像者200的手臂的弯曲伸展的移动范围内在使摄影装置100最接近于被摄体300的位置A(摄影距离DA)处焦点距离为192mm,如摄影图像IA那样摄影放大为最大的图像。此外,在使摄影装置100最远离被摄体300的位置B(摄影距离DB)处焦点距离为24mm,如摄影图像IB那样摄影缩小为最小的图像。因而,在移动量DB-DA的范围内,将焦点距离从24mm变更到192mm。由于摄影距离D所取的值的范围是各种各样的,所以如下面的(式3)所示那样将移动量Ui用移动量DB-DA除而标准化为0~1。
[数学公式3] …(式3) 图9是表示摄影装置100的位置与焦点距离F的时间性变化的一例的图,使用在图8中说明的1维坐标系。位置P0表示启动摄影装置100的时间T0时的位置,这里假设是点A(最接近于被摄体300的位置)与点B(最远离被摄体300的位置)的中点。由于摄影装置的位置与焦点距离以线性关联,所以在位置P0处将焦点距离设定为中间的108mm(=(24+192)/2)。例如,在时间T1时检测到相对移动量V1=-0.25,如果摄影装置的位置向P1移动,则焦点距离被变更为150mm(=108-(192-24)×(-0.25))。此外,在时间T2处检测到相对移动量V2=0.5,如果摄影装置的位置向P2移动,则焦点距离被变更为66mm(=150-(192-24)×0.5)。
按照以上的例子,时间Ti时的焦点距离Fi可以用以下表现。
[数学公式4] Fi=Fi-1-Vi(Fmax-Fmin)…(式4) 这里,Fi-1是时间Ti-1时的焦点距离,Fmax是焦点距离的最大值,Fmin是焦点距离的最小值。按照(式4),如果如图10(a)所示那样使摄影装置100接近于被摄体300,则如图10(b)所示那样发挥功能以使图像放大。即,从时间Ti-1向时间Ti推移而摄影距离D变短(摄影距离Di-1>摄影距离Di),根据(式3),相对移动量Vi变为负。在(式4)中相对移动量Vi为负的情况下,焦点距离F变长,摄影图像被放大。此外,按照(式4),如果如图10(c)所示那样使摄影装置100从被摄体300远离,则如图10(d)所示那样发挥功能以使图像缩小。从时间Ti-1向时间Ti推移而摄影距离D变长(摄影距离Di-1<摄影距离Di),根据(式3),相对移动量Vi变为正。在(式4)中相对移动量Vi为正的情况下,焦点距离F变短,摄影图像被缩小。
另一方面,如果相反地设定移动量Vi的正负与图像的放大缩小的关系,则成为(式5)。
[数学公式5] Fi=Fi-1+Vi(Fmax-Fmin)…(式5) 按照(式5),如果如图11(a)所示那样使摄影装置100接近于被摄体300,则如图11(b)所示那样发挥功能以使图像缩小。即,从时间Ti-1向时间Ti推移而摄影距离D变短(摄影距离Di-1>摄影距离Di),根据(式3),相对移动量Vi变为负。在(式5)中相对移动量Vi为负的情况下,焦点距离F变短,摄影图像被缩小。此外,按照(式5),如果如图11(c)所示那样使摄影装置100从被摄体300远离,则如图11(d)所示那样发挥功能以使图像放大。从时间Ti-1向时间Ti推移而摄影距离D变长(摄影距离Di-1<摄影距离Di),根据(式3),相对移动量Vi变为正。在(式5)中相对移动量Vi为正的情况下,焦点距离F变长,摄影图像被放大。
以上,将由(式4)或(式5)给出的焦点距离Fi作为焦点距离F向焦点控制部107输出。其中,在(式4)和(式5)的焦点距离Fi超过多焦点透镜101的焦点距离的范围的情况下,进行剪切以使其收纳在范围内。
这里,焦点距离计算部106在摄影装置100的启动时从保存有初始设定的存储器部108中读入(式4)和(式5)的选择。例如,在工厂出厂时,将(式4)记录在存储器部108中,在最初的启动时设定(式4)。在启动后,在摄影者想要切换为作为相反的极性的(式5)的情况下,通过按下图12所示的变焦极性切换按钮112,由变焦极性受理部110受理使变焦极性成为相反的极性的(式5)。变焦极性切换部111将由变焦极性受理部110受理的作为相反的极性的(式5)传送给焦点距离计算部106。此外,变焦极性受理部110将表示受理了的变焦极性的图标113显示在取景器103上。此外,每按下1次变焦极性切换按钮112,就切换(式4)和(式5),摄影者能够观察显示在取景器103上的图标113来确认变焦极性。此外,当然也可以使摄影装置100实际地移动,目视确认显示在取景器103上的图像的变化来知道变焦极性。将摄影装置100的电源切断、进入到结束处理后,焦点距离计算部106将变焦极性((式4)或(式5))记录到存储器部108中,通过在下次启动时从存储器部108读入变焦极性,在下次启动时能够以相同的设定开始使用。
此外,为了计算(式3),需要移动量DA-DB。所以,在摄影装置100的启动时,将移动量DA-DB从存储器部108输入到焦点距离计算部106中。移动量DA-DB如图8所示,相当于从将手臂伸展的状态的位置A到将手臂缩回的状态的位置B的距离。作为决定实际的值的方法的例子,可以考虑经验方法、用户输入方法、推测方法等。在经验方法中,设想摄影装置的使用方法及使用场合,对照目前为止的经验来决定适当的值。或者,也可以利用多个监视器计测移动量DA-DB,采用其平均值。在用户输入方法中,摄影者200将摄影装置100移动到图8的位置A和位置B,将摄影距离DA和摄影距离DB朝向某个对象进行初始化。在推测方法中,暂时通过经验方法设定移动量DA-DB,在一定期间中监视焦点距离F的运动,焦点距离计算部106推测更适当的移动量DA-DB。即,如果利用图9的例子进行说明,则尽管位置A与位置B之间的焦点距离的可动范围是24mm到192mm,但例如焦点距离F仅在从80mm到130mm的范围内运动的情况下,推测移动量DA-DB过大。所以将移动量DA-DB设定为50mm(=130mm-80mm)。
在摄影装置100的启动时,如果根据摄影装置100的位置来设定焦点距离F,则如图8那样从将手臂伸展的状态到收缩的状态全部能够使用。即,如图9所示,如果摄影装置100的位置是位置A与位置B的中间,则如果焦点距离F也设定为中间的长度(即108mm),在手臂的整个伸缩范围中能够将焦点距离从最长(即192mm)到最短(即24mm)全部地控制。或者,在位置A处启动摄影装置100的情况下,将焦点距离设定为最长(192mm)。为了实现这些,需要对摄影者明示地给出指令,例如,以摄影装置的电源投入在位置A和位置B的中间位置、或者位置A、或者位置B这样的形式规定电源投入时的位置。或者,在取景器103上通过文本或图例、图像等表示向导,对摄影者200指示以使其将手臂伸长而使摄影装置100向位置A移动,在规定时间内(例如3秒)将焦点距离设定为最长。规定时间经过后,通过取景器103中的向导将伸展手臂的指示的解除传递给摄影者200。对于位置B及位置A与位置B的中间也同样。另一方面,在没有对摄影者给出指令而设定焦点距离的情况下,对存储器部108赋予初始设定值,在摄影装置启动时由焦点距离计算部106自动地设定。作为初始设定值,摄影者在摄影装置的电源投入时自然地设想取姿势的位置,将相当于此的焦点距离赋予给存储器部108。
接着,焦点控制部107变更多焦点透镜101的焦点距离F,以使其成为由焦点距离计算部106输入的焦点距离F(步骤S107)。
由于如以上那样动作,所以如果摄影者200用手拿着摄影装置100并移动,则摄影距离D被变更,能够变更多焦点透镜101的焦点距离F。所以,在图3中说明那样的多个摄影技巧(在该例中是跟踪和摇镜头)中组合变焦动作,取景的操作性提高。在图3中,被摄体1202静止,但在被摄体1202移动的情况下,取景的难易度进一步增加。特别是,如果被摄体1202与摄影装置1102的距离变化,则变焦倍率的极性(放大或缩小)变化的可能性提高,但本发明可以通过变焦极性切换按钮110执行变焦倍率的极性切换。
另外,在上述说明中,作为变更焦点距离F的装置,使用多焦点透镜,但并不限于此,也可以是通过图像处理进行的数字变焦、或光学变焦与数字变焦的组合。
通过以上,由于在移动摄影装置的取景动作中组合了变焦,所以能够进行比按钮及拨盘操作的视角调节更直接的操作。由此,能够提供在将例如运动、观光、纪念摄像等眼前的场景作为影像记录的影像娱乐休闲领域中操作性更高的摄影装置。
(实施方式2) 在本实施方式中,说明代替实施方式1的距离传感器而通过单体的摄像传感器推测到被摄体的距离的变化量(摄影距离的变化量)、并根据该摄影距离的变化量来控制视角的摄影装置。
图13是表示有关本发明实施方式2的摄影装置的结构的框图。另外,对于与图5所示的摄影装置同样的部分赋予相同的标号,省略详细的说明。
摄影装置400是用来对被摄体300进行摄像的装置,其特征在于,根据与被摄体的位置关系(摄影距离的变化量)调节(变焦)摄影图像,具备多焦点透镜101、摄像传感器102、取景器103、摄影距离变化量推测部401、摄影图像缓存部402、焦点距离计算部403、显示图像缓存部404、焦点控制部107、存储器部108、图像记录部109、变焦极性受理部110及变焦极性切换部111。
摄影距离变化量推测部401基于在时间Tk由摄像传感器102摄影的摄影图像Ik、和在临时保存在摄影图像缓存部402中的在过去的时间Tk-1由摄像传感器102摄影的摄影图像Ik-1,推测摄影装置400与被摄体300的距离的变化量(摄影距离的变化量Uk)。
利用图14说明摄影距离的变化量Uk的求法。图14(a)表示在从时间T0到时间TE之间使摄影装置400接近于被摄体300的情况下的摄影图像。将被摄体300放置于桌子500上,在时间T0,如摄影图像I0那样将被摄体300较小地摄影。在时间TE,由于摄影装置400接近于被摄体300,所以如摄影图像IE那样将被摄体300较大地摄影。即,通过图1所示的推拉1010使视角变窄,将图像放大。考虑在该时间T0和时间TE之间连续的时间Tk-1和时间Tk,将摄影图像分别设为摄影图像Ik-1、摄影图像Ik。时间Tk-1与时间Tk的间隔依存于帧速率,通常是1/30秒。图14(b)所示的图像600是将摄影图像Ik-1与摄影图像Ik叠合的图像,由虚线表示的对象Ok-1相当于摄影图像Ik-1的被摄体300,由实线表示的对象Ok相当于摄影图像Ik的被摄体300。在时间上在后的对象Ok变得比对象Ok-1大。所以,只要判断对象的大小的差异,就能够检测推拉1010的方向,知道摄影装置400是接近于被摄体300还是相反地远离。
对象的大小的差异能够通过解析属于对象的多个着眼点在图像上怎样移动来获得,一般求出光流。例如,将相邻像素与像素值较大地不同的边缘部的像素作为着眼点,在对象Ok-1和对象Ok中分别求出着眼点,如图像600所示那样,以从时间Tk-1到时间Tk的方向在着眼点之间划出箭头。这样,基于像素值跟踪在时间上移动的着眼点,将图15(a)所示的图像601那样得到的着眼点的移动(即箭头)称作光流。如图14的例子那样,在图像被放大的情况下,光流成为向图像的外侧发散的朝向。另一方面,与图14的例子相反,在图像被缩小的情况下,如图15(b)的图像602所示那样,光流成为向图像的内侧收敛的朝向。在该扩散与收敛的判断的具体例中,例如只要求出时间Tk-1的所有的着眼点的重心700,并将从重心700到时间Tk-1的着眼点(在图15中是701)的距离dk-1与从重心700到时间Tk的光流的对应点(在图15中是702)的距离dk进行比较即可。即为, [数学公式6]

......(式6) 因噪音的影响而着眼点的检测精度降低、或不能将所有的光流判断为相同的方向等、因各种原因,理想的判断通常是很困难的。所以,只要采取在所有的着眼点进行(式6)的判断、在扩散、稳定、收敛的各状态下进行投票、将得到最大得票数的状态设为判断结果等的对策,就能够稳定地实现摄影装置400是接近还是远离被摄体300的两值判断。接着,仅提取与判断结果一致的光流,求出距离dk-1与距离dk的差分,将它们的平均值作为观察距离的变化量Uk。
由于光流以检测推拉1010为目的,所以在从时间k-1向时间k移动的期间需要将多焦点透镜的焦点距离固定。所以,图13所示的摄影装置400按照图16所示的流程图动作。即,摄像传感器102在时间k-1时对摄影图像Ik-1进行摄影(步骤S201),将摄影图像Ik-1保存在摄影图像缓存部402中(步骤S202)。接着,摄像传感器102在时间k时对摄影图像Ik进行摄影(步骤S203),将摄影图像Ik输出到摄影距离变化推测部401中(步骤S204)。摄影距离变化推测部401通过利用图15说明的方法计算光流,计算出移动量Uk(步骤S205)。然后,焦点距离Fk的计算(步骤S206)和焦点距离的变更(步骤S207)分别与实施方式1的步骤S106和步骤S107相同,所以省略说明。最后,焦点控制部107在结束了多焦点透镜101的焦点距离的变更后,将图像写入许可信号WES输出到显示图像缓存部404。显示图像缓存部404保存摄像传感器102的输出,输出保存到取景器103和图像记录部109中的图像。但是,将来自摄像传感器102的输出写入到显示图像缓存部404中需要使图像写入许可信号WES成为有效,在图像写入许可信号WES为无效的情况下,不能将来自摄像传感器102的输出保存到显示图像缓存部404中。通过该结构,不将在图14中说明的推拉1010带来的视角变更的图像输出给取景器103和图像记录部109,仅将多焦点透镜101进行视角变更的图像、即通过变焦1014而形成的视角变更的图像输出给取景器103和图像记录部109。此外,焦点距离控制部107只要移动量Uk没有被变更,就不移动多焦点透镜101的焦点距离,所以在通过摄影距离变化量推测部401进行光流处理的时间k-1到时间k之间,变焦1014不动作,移动量Uk仅由推拉1010的动作决定。
另外,本发明并没有限制对象的大小的差异的判断方法,可以使用任意的方法。例如,也可以确定亮度及颜色与相邻像素的差异较大的基准图形,根据基准图形的位置、大小、形状、明亮度、颜色等的变化来计算变焦极性和观察距离的变化量Uk。此外,着眼点检测及光流的方向判断、根据检测到的光流求出观察距离的变化量Uk的方法也是一例,并不给本发明带来制约。
此外,将时间Tk-1设为时间Tk的1/30秒前,但这是一例,本发明对于时间Tk-1的设定方法并没有施加制约。此外,在摄影图像缓存部402中仅保存了一张时间Tk-1的图像,但也可以保存多张过去的图像。
以上,摄影距离变化量推测部401、摄影图像缓存部402、焦点距离计算部403、显示图像缓存部404以外的结构与实施方式1相同,实现的功能也相同。在摄影距离计测中使用摄像传感器的效果在于传感器的多样性。即,超声波传感器或红外光传感器是距离计测专用的,难以与其他用途并用。另一方面,摄像传感器能够在图像摄像与距离计测这两个用途中使用。由此,在要求轻量性及紧凑性的带照相机的便携电话等中能够有效地利用。此外,由于能够原样使用在市场上流通的数字静像照相机及数字摄像机的结构,所以能够不追加新的距离计测用的传感器而带来能够通过照相机的动作进行变焦的附加价值。
(实施方式3) 在本实施方式中,说明通过距离传感器计测到被摄体的距离、根据该距离控制摄像视角、并且切取摄像图像的一部分的摄影装置。摄影视角调节是以光轴为中心而摄影范围变化,但通过附加切取图像上的任意位置的功能,能够进行更高自由度的取景。
图17是表示有关本发明的实施方式3的摄影装置的结构的框图。另外,对于与图5所示的摄影装置同样的部分赋予相同的标号,省略详细的说明。
摄影装置800是用来对被摄体300进行摄像的装置,除了实施方式1的特征以外,还在根据与被摄体的位置关系(到被摄体的距离)调节摄像图像(调节切取的范围)的方面具有特征,如图17所示,具备多焦点透镜101、摄像传感器102、取景器103、距离传感器104、切取范围计算部801、图像切取部802、焦点控制部107、存储器部108、图像记录部109、变焦极性受理部110、以及变焦极性切换部111。
切取范围计算部801基于由(式1)给出的移动量Ui计算切取范围。这里,切取范围计算部801如以下的(式7)那样通过比率γ指定并计算对于像素数为宽度w、高度h的图像的切取范围。
[数学公式7] …(式7) 这里,(x,y)left,top表示表示切取范围的矩形的左上顶点的图像坐标,(x,y)right,bottom表示表示切取范围的矩形的右下顶点的图像坐标。其中,比率γ是0~1。将该比率γ例如如下述那样与相对移动量Vi建立关联。
[数学公式8] γi=γi-1-Vi…(式8) γi=γi-1+Vi…(式9) 按照(式8),如果如图18(a)所示那样使摄影装置100接近于被摄体300,则发挥功能以使得如图18(b)所示那样切取范围变大。即,从时间Ti-1向时间Ti推移,摄影距离D变短(摄影距离Di-1>摄影距离Di),根据(式3),相对移动量Vi变为负。在(式8)中相对移动量Vi为负的情况下,比率γ变大,切取范围变大。此外,按照(式8),如果如图18(c)所示那样使摄影装置100远离被摄体300,则发挥功能以使得如图18(d)所示那样切取范围变小。即,从时间Ti-1向时间Ti推移,摄影距离D变长(摄影距离Di-1<摄影距离Di),根据(式3),相对移动量Vi变为正。在(式8)中相对移动量Vi为正的情况下,比率γ变小,切取范围变小。
另一方面,按照(式9),如果如图19(a)所示那样使摄影装置100接近于被摄体300,则发挥功能以使得如图19(b)所示那样切取范围变小。即,从时间Ti-1向时间Ti推移,摄影距离D变短(摄影距离Di-1>摄影距离Di),根据(式3),相对移动量Vi变为负。在(式9)中相对移动量Vi为负的情况下,比率γ变小,切取范围变小。此外,按照(式9),如果如图19(c)所示那样使摄影装置100远离被摄体300,则发挥功能以使得如图19(d)所示那样切取范围变大。即,从时间Ti-1向时间Ti推移,摄影距离D变长(摄影距离Di-1<摄影距离Di),根据(式3),相对移动量Vi变为正。在(式9)中相对移动量Vi为正的情况下,比率γ变大,切取范围变大。
图像切取部802将通过多焦点透镜101由被摄体摄像传感器102摄像的被摄体300的图像在由切取范围计算部801算出的切取范围内进行切取,并向取景器103及图像记录部108输出。
根据以上的结构,如果摄像者200用手拿着摄像装置800移动,则摄影距离D被变更,能够变更多焦点透镜101的焦点距离,具有与实施方式1相同的结构和功能。进而,在本实施方式中,由于具备根据摄影距离D的移动量计算由摄像传感器102摄像的图像的切取范围的切取范围计算部801,所以能够与摄影距离D的移动量联动地控制切取范围。
另外,关于切取范围计算部801计算的切取范围的位置,只要将例如(式7)所示的左上顶点及右下顶点的图像坐标移动规定量即可。这样,摄影者200能够利用取景器103进行包括摄像视角及切取范围的取景的目视确认。
以上,除了摄影范围以光轴为中心变化的变焦以外,还在摄影装置的移动动作之中组合在任意的位置切取影像的取景。另外,本发明并不限于图像切取部802的功能,所以被切取图像是任意的,例如也可以在将记录在图像记录部109中的摄影图像再现并显示在显示器上时执行切取。
此外,在本实施方式中,根据到被摄体的距离来调节焦点距离并且调节摄像图像的切取范围,但本发明并不一定需要控制焦点距离与切取范围两者。即,有关本发明的摄影装置可以仅具备根据到被摄体的距离调节切取摄像图像的范围的功能。如果只是该功能,摄影者也能够仅通过摄影装置的移动来决定摄影装置的视角,所以摄影操作是直觉且容易的。进而,关于切取范围的调节方法的详细情况,通过将实施方式1及2的“焦点距离的调节”替换为“切取范围的调节”,能够实现各种调节方法。
(实施方式4) 在本实施方式中,说明除了实施方式1以外摄影者还能够调节视角变更的感度的摄影装置。
图20是表示有关本发明的实施方式4的摄影装置的结构的框图。另外,对于与图5所示的摄影装置同样的部分赋予相同的标号,省略详细的说明。
摄影装置900是用来对被摄体300进行摄像的装置,其特征在于,能够根据与被摄体的位置关系(到被摄体的距离)调节(变焦)摄像图像时的感度,具备多焦点透镜101、摄像传感器102、取景器103、距离传感器104、摄影距离缓存部105、焦点距离计算部106、焦点控制部107、存储器部108、图像记录部109、变焦极性受理部110、变焦极性切换部111、视角感度受理部901、以及视角感度变更部902。
视角感度受理部901从摄影者受理视角相对于相对移动量Vi的变更量(视角感度α)。视角感度变更部902变更为由视角感度受理部901受理的视角感度α,并赋予给焦点距离计算部106。在图8中,使多焦点透镜具有的焦点距离的全部可动范围对应于移动量DA-DB,但根据摄影者想要的取景,也考虑使焦点距离的可动范围的一部分(例如从66mm到150mm)对应于移动量DA-DB的情况。所以,在显示在取景器103上的图像的视角变更的比例过大的情况下,降低视角感度α,降低视角变更相对于移动量DA-DB的比例。具体而言,如以下的(式10)和(式11)所示,将像素感度α乘以相对移动量Vi。
[数学公式9] Fi=Fi-t-αiVi(Fmax-Fmin)…(式10) Fi=Fi-t+αiVi(Fmax-Fmin)…(式11) 在将移动量Vi固定的情况下,如果减小视角感度α,则从焦点距离Fi-1向焦点距离Fi的变化量变小,抑制了视角变更量。也考虑在将视角感度α降低后、摄影者的取景意图改变、想要将视角变更的比例再次增大的情况。所以,在显示在取景器103上的图像的视角变更的比例不足的情况下,提高视角感度α,提高视角变更相对于移动量DA-DB的比例。但是,由于不能超过多焦点透镜101的可动范围设定焦点距离,所以在超过可动范围的情况下,利用可动范围的最小值或最大值剪切焦点距离。在使用图像处理中的电子式数字变焦的情况下也同样。
图21是表示设在摄影装置900中的视角感度输入按钮903的一例的图。摄影者200通过按下视角感度输入按钮903,能够将视角感度α按照1、1.5、2的顺序依次增大、或按照1、0.5、0.25、0.125的顺序依次减小。增大或减小的增减的方向例如由变焦极性切换按钮112兼用,在按下视角感度输入按钮902的紧后面,变焦极性切换按钮112用于视角感度α的增减方向的切换而发挥功能。
接着,利用图22和图23,通过具体例说明视角感度变更部902的详细情况。
图22是变更了视角感度α时的焦点距离的变化的一例,在启动时T0,与图9同样,在位置A设定为焦点距离192mm,在位置B设定为焦点距离24mm。在时间T0,使视角感度α为1,使变焦极性为(式10)来启动摄影装置900。在该时刻,与图9的情况同样,手臂的伸缩范围(位置A与位置B之间)与焦点距离的可动范围(从24mm到192mm)一致。然后,视角感度α被设定为1,直到时间Ti-1,在时间Ti-1,摄影装置900处于相当于在位置A与位置B的中间的位置Pi-1。这里,视角感度α被设定为1/2,焦点距离的变更感度降低到一半。相对移动量Vi-1是0.5,在时间Ti,摄影装置900移动到位置Pi,焦点距离Fi根据(式10)而为66mm。接着,在时间Ti+1,摄影装置900移动到位置Pi+1,相对移动量Vi被变更为-0.5,焦点距离根据(式10)而回到108mm。接着,在时间Ti+2,摄影装置900移动到位置Pi+2,相对移动量Vi+1被设定为-0.5,焦点距离根据(式10)而被设定为150mm。以上,在将视角感度α设定为1/2的情况下,在手臂的伸缩的可动范围内,焦点距离被控制在从66mm到150mm之间这84mm的范围内,与视角感度α为1的情况(168mm的范围=192mm-24mm)相比变为一半的范围。因而,在使视角感度α比1小的情况下,间距变窄,能够进行更细致的焦点距离控制。
图23是变更了视角感度α时的焦点距离的变化的一例,在启动时T0,与图9同样,在位置A设定为焦点距离192mm,在位置B设定为焦点距离24mm。在时间T0,使视角感度α为1,使变焦极性为(式10)而启动摄影装置900。在该时刻,与图9的情况同样,手臂的伸缩范围(位置A与位置B之间)与焦点距离的可动范围(从24mm到192mm)一致。然后,在达到时间Ti-j之前,视角感度α被设定为1/2,通过与图22同样的要领,在时间Ti-j,位置A的焦点距离被设定为150mm,位置B的焦点距离被设定为66mm。接着,视角感度α被设定为1/2,在时间Ti-1,视角感度α被设定为1,焦点距离的变更感度回到与启动时相同的状态。在时间Ti-1,摄影装置900处于抵接在位置A与位置B的中间的位置Pi-1,在时间Ti移动到位置Pi,相对移动量Vi-1为0.5。视角感度α是1,时间Ti的焦点距离Fi根据(式10)而为24mm,回到与启动时相同的焦点距离。以上,如果将视角感度α设定为不到1,然后将视角感度α设定为1,则摄影装置900的位置与焦点距离的关系回到启动时的状态。
接着,在将视角感度αi设定为2后,在时间Ti+1,摄影装置900移动到位置Pi+1,相对移动量Vi为-0.5。因此,焦点距离根据(式10)而成为192mm。以上,在使视角感度α比1大的情况下,与视角感度为1的情况相比间距变大,能够以较小的移动量较大地变更焦点距离。
接着,在视角感度αi+1为2的状态下,在时间Ti+2,摄影装置900移动到位置Pi+2,相对移动量Vi+1为-0.5,焦点距离根据(式10)而为360mm。由于多焦点透镜101的最长焦点距离是192mm,所以焦点距离计算部160将360mm剪切为192mm,多焦点透镜101被设定为192mm。因而,即使从时间Ti+1向时间Ti+2推移,焦点距离也不移动,显示在取景器103上的摄像图像的视角不变化。
接着,在将视角感度αi+2设定为1后,在时间Ti+3,摄影装置900移动到位置Pi+3,相对移动量Vi为0.5,所以,焦点距离根据(式10)而为108mm。以上,如果将视角感度α设定为超过1的值,然后将摄影装置900移动到手臂的伸缩的可动范围端部(即位置A或位置B),将视角感度设定为1,则摄影装置900的位置与焦点距离的关系回到启动时的状态。
以上,通过将视角感度α乘以摄影装置的移动量,能够变更摄影装置的移动量与焦点距离的变化量的关系,摄影者通过降低视角感度α,能够通过细微的视角变更详细地确认对象的细节部分,在例如电子商务交易中的商品设计的确认、艺术品或动植物等的鉴赏等中能够有效地利用。另一方面,通过提高视角感度α,能够迅速地切换视野整体与对象的细节部分。视野整体与对象的细节部分的切换在例如运动摄影中利用的情况较多。即,在棒球的例子中,在击球手击球的瞬间捕捉投手与击球手的窄角摄影被切换为包括观众席的广角摄影的情况较多。此外,还有为了提高影像效果而改变视角的情况,例如如由几十人构成的乐团的演奏那样,在从能够拍摄演奏者全体的广角摄影切换为拍摄特定的部分(例如钢琴演奏者)的窄角摄影时像素感度α的调节是有效的。以上,视角感度α的切换为了确保能够目视确认想要观察的细节部分的放大率、或如运动摄影那样在帧内持续捕捉运动剧烈的被摄体而能够有效地应用。
在上述各实施方式中,摄像传感器102相当于权利要求书中的摄像部,距离传感器104相当于权利要求书中的距离计算部,焦点距离计算部106相当于权利要求书中的焦点距离计算部,焦点控制部107相当于权利要求书中的焦点距离控制部。此外,摄影距离变化量推测部401及摄影图像缓存部402相当于权利要求书中的距离计算部。进而,切取范围计算部801相当于权利要求书中的切取范围计算部,图像切取部802相当于权利要求书中的图像切取部。此外,视角感度变更部902相当于权利要求书中的焦点距离控制部。
工业实用性 由于摄影者通过移动摄影装置来控制焦点距离,所以有关本发明的摄影装置、摄影方法及程序能够仅根据摄影装置的运动来决定摄影视角,对于用在例如数字照相机、静像照相机、摄像机、带照相机的便携电话等中是具有实用性的。
权利要求
1.一种摄影装置,根据与被摄体的位置关系调节摄像图像,其特征在于,具备
摄影部,利用多焦点透镜对被摄体进行摄影;
距离计算部,提取包含在由上述摄影部摄像的图像中的基准图形,基于规定时间的上述基准图形与当前时刻的上述基准图形之间的差异,计算从该摄影装置到被摄体的距离;
焦点距离计算部,基于到上述被摄体的距离,计算上述多焦点透镜的焦点距离;以及
焦点距离控制部,进行控制,使上述多焦点透镜的焦点距离与由上述焦点距离计算部计算出的焦点距离一致。
2.如权利要求1所述的摄影装置,其特征在于,
上述焦点距离计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较长地计算上述多焦点透镜的焦点距离,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较短地计算上述多焦点透镜的焦点距离。
3.如权利要求1所述的摄影装置,其特征在于,
上述焦点距离计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较短地计算上述多焦点透镜的焦点距离,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较长地计算上述多焦点透镜的焦点距离。
4.如权利要求1所述的摄影装置,其特征在于,
上述焦点距离计算部对规定时间的到上述被摄体的距离与当前时刻的到上述被摄体的距离之差施加权重,使到上述被摄体的距离的差对于上述多焦点透镜的焦点距离的变更量的贡献率成为可变。
5.一种摄影装置,根据与被摄体的位置关系调节摄像图像,其特征在于,具备
摄影部,利用多焦点透镜对被摄体进行摄影;
距离计算部,提取包含在由上述摄影部摄像的图像中的基准图形,基于规定时间的上述基准图形与当前时刻的上述基准图形之间的差异,计算从该摄影装置到被摄体的距离;
切取范围计算部,基于到上述被摄体的距离,计算从上述摄像图像切取的图像范围;以及
图像切取部,按照上述切取范围计算部的计算结果,从上述摄像图像切取一部分。
6.如权利要求5所述的摄影装置,其特征在于,
上述切取范围计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较小地计算上述摄像图像的切取图像范围,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较大计算上述摄像图像的切取图像范围。
7.如权利要求5所述的摄影装置,其特征在于,
上述切取范围计算部在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离短的情况下,较大地计算上述摄像图像的切取图像范围,在当前时刻的到上述被摄体的距离比规定时间的到上述被摄体的距离长的情况下,较小地计算上述摄像图像的切取图像范围。
8.如权利要求5所述的摄影装置,其特征在于,
上述切取范围计算部对规定时间的到上述被摄体的距离与当前时刻的到上述被摄体的距离之差施加权重,使到上述被摄体的距离的差对于从上述摄像图像切取的图像范围的变更量的贡献率成为可变。
9.如权利要求1或5所述的摄影装置,其特征在于,
上述距离计算部基于上述基准图形的位置、大小、形状、明亮度、以及颜色中的至少1个,进行与上述基准图形之间的差异的计测。
10.一种便携终端装置,具备对被摄体进行摄像的摄影装置,其特征在于,具备权利要求1或5所述的摄影装置。
11.一种摄影方法,根据与被摄体的位置关系调节摄像图像,其特征在于,包括
摄像步骤,利用多焦点透镜对被摄体进行摄像;
距离计算步骤,提取包含在由上述摄影部摄像的图像中的基准图形,基于规定时间的上述基准图形与当前时刻的上述基准图形之间的差异,计算从该摄影装置到被摄体的距离;
焦点距离计算步骤,基于到上述被摄体的距离,计算上述多焦点透镜的焦点距离;以及
焦点距离控制步骤,进行控制,使上述多焦点透镜的焦点距离与由上述焦点距离计算部计算出的焦点距离一致。
12.一种程序,用来对被摄体进行摄像,其特征在于,
使计算机执行包含在权利要求11所述的摄影方法中的步骤。
全文摘要
变焦不会与其他摄影技巧脱离、能够直接反映摄影意图地进行摄影的摄影装置(100)具备通过变更焦点距离来变更由摄像传感器(102)摄像的被摄体(300)的摄像范围的多焦点透镜(101)、计测到被摄体(300)的距离(摄影距离D)的距离传感器(104)、临时保存在过去的时间Ti-1计测的摄影距离Di-1的摄影距离缓存部(105)、基于由距离传感器(104)计测的当前的时间Ti的摄影距离Di和从摄影距离缓存部(105)供给的摄影距离Di-1计算多焦点透镜(101)的焦点距离F的焦点距离计算部(106)、和将多焦点透镜(101)的焦点距离控制成为由焦点距离计算部(106)计算出的焦点距离F的焦点控制部(107)。
文档编号H04N5/232GK101233745SQ20068002818
公开日2008年7月30日 申请日期2006年10月13日 优先权日2005年11月22日
发明者本村秀人, 金森克洋 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1