用于获得无线设备的旋转的技术的制作方法

文档序号:11636932阅读:124来源:国知局
用于获得无线设备的旋转的技术的制造方法与工艺

基于35u.s.c.§119要求优先权

本专利申请要求享受于2014年11月25日提交的美国临时专利申请第62/084,104号和于2015年10月21日提交的美国申请第14/919,389号的利益,故以引用方式将这两份申请的全部内容明确地并入本文。

概括地说,本发明涉及毫米波射频(rf)系统,具体地说,本发明涉及对在这样的无线电模块中的相控阵天线的操作,以允许高效的信号传播。



背景技术:

60ghz频带是免许可的频带,其具有大量的带宽和全球范围内的重叠。大带宽意味着可以无线地发送非常大量的信息。结果,可能开发需要传输很大量的数据的很多应用,以允许在60ghz频带周围的无线通信。针对这样的应用的示例包括但不限于:游戏控制器、移动交互式设备、无线高清电视(hdtv)、无线对接站、无线吉比特以太网等等。

为了有助于实现这样的应用,需要开发在60ghz频率范围操作的诸如放大器、混频器、射频(rf)模拟电路和有源天线之类的集成电路(ic)。rf系统通常包括有源模块和无源模块。有源模块(例如,相控阵天线)需要针对它们的操作的控制和功率信号,而这些是无源模块(例如,滤波器)所不需要的。可以将各种模块制造和封装成能够在印制电路板(pcb)上进行组装的射频集成电路(rfic)。rfic封装的大小可以从几个到几百平方毫米。

在消费电子市场中,电子设备的设计以及因此其中所集成的rf模块的设计,应当满足最低成本、大小、功耗和重量的约束。rf模块的设计应当还要考虑目前组装的电子设备以及特别是手持设备(例如,膝上型计算机和平板计算机)的配置,以便实现对毫米波信号的高效发送和接收。此外,rf模块的设计应当考虑到接收和发送rf信号的最小功率损耗和最大无线电覆盖。

与较低频率相比,60ghz频带中的操作允许使用较小的天线。但是,与在较低频率下操作相比,在60ghz频带周围的无线电波形具有较高的大气衰减,以及受大气气体、雨水、物体等等的较高水平的吸收,从而导致较高的自由空间损耗。通过使用例如排列在相控阵列中的许多小天线,可以补偿较高的自由空间损耗。

可以协调多个天线以形成沿着期望方向行进的相干波束。可以对电场进行旋转,以改变该方向。由此产生的传输基于电场而极化。接收机还可以包括可以适应匹配或适应变化的传输极性的天线。



技术实现要素:

本公开内容的某些方面提供了用于无线通信的第一装置。该装置通常包括:第一接口,其用于经由至少一个接收天线来获得第一训练信号和第二训练信号,所述第一训练信号和所述第二训练信号是经由具有不同极化的至少第一发射天线和第二发射天线从第二装置发送的;以及处理系统,其被配置为基于所述第一训练信号和所述第二训练信号,来确定针对不同的发射-接收天线对的一个或多个特性,每个发射-接收天线对包括所述第一发射天线和所述第二发射天线中的一者以及所述至少一个接收天线,以及基于所述一个或多个特性,来生成用于指示所述第一装置相对于所述第二装置的旋转的参数。

本公开内容的某些方面提供了一种用于无线通信的方法。该方法通常包括:由第一装置经由至少一个接收天线来获得第一训练信号和第二训练信号,所述第一训练信号和所述第二训练信号是经由具有不同极化的至少第一发射天线和第二发射天线从第二装置发送的;基于所述第一训练信号和所述第二训练信号,来确定针对不同的发射-接收天线对的一个或多个特性,每个发射-接收天线对包括所述第一发射天线和所述第二发射天线中的一者以及所述至少一个接收天线;以及基于所述一个或多个特性,来生成用于指示所述第一装置相对于所述第二装置的旋转的参数。

附图说明

图1示出了根据本公开内容的某些方面的示例性无线通信网络的图。

图2示出了根据本公开内容的某些方面的示例性接入点和用户终端的方块图。

图3示出了根据本公开内容的某些方面的示例性无线设备的方块图。

图4示出了根据本公开内容的某些方面的示例性双极化贴片元件。

图5是示出相控阵天线的实现方式中的信号传播的图。

图6示出了根据本公开内容的某些方面,可以由无线设备执行的用于获得旋转的示例性操作。

图6a示出了能够执行图6中所示出的操作的示例性组件。

图7示出了根据本公开内容的某些方面的示例性训练阶段。

图8示出了根据本公开内容的某些方面,在训练阶段期间的示例性测量。

具体实施方式

本公开内容的方面提供了用于基于天线相对增益和/或从具有不同极化(例如,水平和垂直)的天线发送的训练信号的相位,来确定无线设备与另一个设备的相对旋转的技术。相对于来自机械传感器的测量,这样的技术可以提供各种优势,以及在一些情况下,可以用于验证或者增强这样的测量。

下文参照附图更全面地描述本公开内容的各个方面。但是,本公开内容可以以多种不同的形式来实现,并且其不应被解释为受限于贯穿本公开内容给出的任何特定结构或功能。更确切地说,提供这些方面以便使得本公开内容将变得透彻和完整,并将向本领域技术人员完整地传达本公开内容的保护范围。基于本文中的教导,本领域技术人员应当认识到的是,本公开内容的保护范围旨在覆盖本文所公开的公开内容的任何方面,无论其是独立实现的还是结合本公开内容的任何其它方面实现的。例如,使用本文阐述的任意数量的方面可以实现装置或可以实践方法。此外,本公开内容的保护范围旨在覆盖这样的装置或方法,所述这样的装置或方法可以通过使用其它结构、功能、或者除本文所阐述的本公开内容的各个方面的结构和功能或不同于本文所阐述的本公开内容的各个方面的结构和功能来实现。应当理解的是,本文所公开的公开内容的任何方面可以通过权利要求的一个或多个元素来体现。

虽然本文描述了一些特定的方面,但是这些方面的多种变型和排列也落入本公开内容的保护范围之内。虽然提及了优选的方面的一些利益和优点,但是本公开内容的保护范围并不旨在受到特定的利益、用途或对象的限制。更确切地说,本公开内容的方面旨在广泛地适用于不同的无线技术、系统配置、网络和传输协议,其中的一些通过示例的方式在附图和优选方面的下文描述中进行了说明。具体实施方式和附图仅仅是对本公开内容的说明而不是限制,本公开内容的保护范围由所附权利要求书及其等效物来限定。

示例性无线通信系统

本文描述的技术可以用于各种宽带无线通信系统,包括基于正交复用方案的通信系统。这样的通信系统的例子包括空分多址(sdma)、时分多址(tdma)、正交频分多址(ofdma)系统、单载波频分多址(sc-fdma)系统等等。sdma系统可以充分使用不同的方向来同时发送属于多个用户终端的数据。tdma系统可以通过将传输信号划分成不同的时隙,来允许多个用户终端共享相同的频率信道,每个时隙被分配给不同的用户终端。ofdma系统使用正交频分复用(ofdm),其是将整个系统带宽划分成多个正交的子载波的调制技术。这些子载波还可以称为音调、频段等等。利用ofdm,每个子载波可以利用数据独立地进行调制。sc-fdma系统可以利用交织的fdma(ifdma)来在跨越系统带宽来分布的子载波上进行发送,利用集中式fdma(localizedfdma,lfdma)来在邻近子载波块上进行发送,或利用增强的fdma(efdma)来在多个邻近子载波块上进行发送。通常来说,在频域利用ofdm来发送调制符号,以及在时域利用sc-fdma来发送调制符号。

本文的技术可以并入到各种有线或无线装置(例如,节点)中(例如,在这些装置中实现或者由这些装置执行)。在一些方面,根据本文中的教导来实现的无线节点可以包括接入点或接入终端。

接入点(“ap”)可以包括、实现为或者称为节点b、无线网络控制器(“rnc”)、演进型节点b(enb)、基站控制器(“bsc”)、基站收发机(“bts”)、基站(“bs”)、收发机功能单元(“tf”)、无线路由器、无线收发机、基本服务集(“bss”)、扩展服务集(“ess”)、无线基站(“rbs”)或者某种其它术语。

接入终端(“at”)可以包括、实现为或者称为用户站、用户单元、移动站(ms)、远程站、远程终端、用户终端(ut)、用户代理、用户设备、用户装备(ue)、用户站或某种其它术语。在一些实现方式中,接入终端可以包括蜂窝电话、无绳电话、会话发起协议(“sip”)电话、无线本地环路(“wll”)站、个人数字助理(“pda”)、具有无线连接能力的手持设备、站(“sta”)或者连接到无线调制解调器的某种其它适当的处理设备。因此,本文所教示的一个或多个方面可以并入到电话(例如,蜂窝电话或智能电话)、计算机(例如,膝上型计算机)、平板设备、便携式通信设备、便携式计算设备(例如,个人数据助理)、娱乐设备(例如,音乐或视频设备、或卫星无线设备)、全球定位系统(gps)设备或者被配置为经由无线介质或有线介质进行通信的任何其它适当的设备。在一些方面,该节点是无线节点。这样的无线节点可以经由有线或无线通信链路,来提供针对或者到网络(例如,诸如互联网或蜂窝网络之类的广域网)的连接。

图1示出了具有接入点和用户终端的多址接入多输入多输出(mimo)系统100,其中在该系统100中可以实现本公开内容的方面。

例如,接入点110或用户终端120可以使用本文所描述的技术,来确定设备的相对旋转。在一些情况下,用户终端可以是游戏控制器等等,这些技术可以应用于确定游戏控制器对于游戏站(其充当为接入点)的相对旋转。

为了简单起见,在图1中仅示出了一个接入点110。通常,接入点是与用户终端进行通信的固定站,以及还可以称为基站或者某种其它术语。用户终端可以是固定的或者移动的,以及还可以称为移动站、无线设备或者某种其它术语。接入点110可以在任何给定时刻,在下行链路和上行链路上与一个或多个用户终端120进行通信。下行链路(即,前向链路)是从接入点到用户终端的通信链路,以及上行链路(即,反向链路)是从用户终端到接入点的通信链路。用户终端还可以与另一个用户终端进行对等通信。系统控制器130可以耦合到接入点,以及提供针对接入点的协调和控制。

虽然以下公开内容的部分将描述能够经由空分多址(sdma)进行通信的用户终端120,但对于某些方面,用户终端120还可以包括不支持sdma的一些用户终端。因此,对于这样的方面,ap110可以被配置为与sdma用户终端和非sdma用户终端进行通信。该方法可以方便地允许较旧版本的用户终端(“传统”站)仍然部署在企业中,延长它们的使用寿命,同时允许较新的sdma用户终端如认为适当地被引入。

系统100使用多个发射天线和多个接收天线来在下行链路和上行链路上进行数据传输。接入点110装备有nap个天线,以及表示用于下行链路传输的mimo的多个输入(mi)和用于上行链路传输的多个输出(mo)。一组k个选定的用户终端120共同地表示用于下行链路传输的多个输出和用于上行链路传输的多个输入。对于纯粹的sdma而言,如果没有通过某种方式将针对k个用户终端的数据符号流在编码、频率或时间中进行复用,则期望具有nap≥k≥1。如果使用tdma技术、利用cdma的不同编码信道、利用ofdm的不相交的子带集合等等来对数据符号流进行复用,则k可以大于nap。每个选定的用户终端向接入点发送特定于用户的数据和/或从接入点接收特定于用户的数据。通常,每个选定的用户终端可以装备有一个或多个天线(即,nut≥1)。k个选定的用户终端可以具有相同数量的天线,或不同数量的天线。

sdma系统可以是时分双工(tdd)系统或者频分双工(fdd)系统。对于tdd系统而言,下行链路和上行链路共享相同的频带。对于fdd系统而言,下行链路和上行链路使用不同的频带。mimo系统100还可以使用单个载波或者多个载波来进行传输。每个用户终端可以装备有单个天线(例如,为了使成本降低)或者多个天线(例如,在支持额外的成本的情况下)。如果用户终端120通过将发送/接收划分到不同的时隙来共享相同的频率信道,则系统100还可以是tdma系统,每个时隙被分配给不同的用户终端120。

图2示出了mimo系统100中的接入点110和两个用户终端120m和120x的方块图,其中在该mimo系统100中,可以实现本公开内容的方面。如上文所讨论的,本文所讨论的旋转确定技术可以由接入点110或用户终端120来实践。

接入点110装备有nt个天线224a至224t。用户终端120m装备有nut,m个天线252ma至252mu,以及用户终端120x装备有nut,x个天线252xa至252xu。接入点110是用于下行链路的发送实体和用于上行链路的接收实体。每个用户终端120是用于上行链路的发送实体和用于下行链路的接收实体。如本文所使用的,“发送实体”是能够经由无线信道来发送数据的独立操作的装置或设备,以及“接收实体”是能够经由无线信道来接收数据的独立操作的装置或设备。在以下描述中,下标“dn”表示下行链路,下标“up”表示上行链路,选择nup个用户终端在上行链路上进行同时发送,选择ndn个用户终端在下行链路上进行同时发送,nup可以等于ndn,或者可以不等于ndn,以及nup和ndn可以是静态值,或者可以在每个调度时间间隔内发生改变。在接入点和用户终端处,可以使用波束控制或者某种其它空间处理技术。

在上行链路上,在选定的进行上行链路传输的每个用户终端120处,发送(tx)数据处理器288从数据源286接收业务数据,以及从控制器280接收控制数据。tx数据处理器288基于与针对用户终端选定的速率相关联的编码和调制方案,来对针对用户终端的业务数据进行处理(例如,编码、交织和调制),以及提供数据符号流。tx空间处理器290对数据符号流执行空间处理,以及为nut,m个天线提供nut,m个发射符号流。每个发射机单元(tmtr)254对各自的发射符号流进行接收和处理(例如,转换成模拟信号、放大、滤波和上变频),以生成上行链路信号。nut,m个发射机单元254提供nut,m个上行链路信号,以便从nut,m个天线252向接入点进行传输。

可以调度nup个用户终端在上行链路上进行同时传输。这些用户终端中的每个用户终端对其数据符号流执行空间处理,以及在上行链路上向接入点发送其发射符号流集合。

在接入点110处,nap个天线224a至224ap从在上行链路上进行发送的所有nup个用户终端接收上行链路信号。每个天线224向各自的接收机单元(rcvr)222提供接收的信号。每个接收机单元222执行与由发射机单元254所执行的处理互补的处理,以及提供接收的符号流。rx空间处理器240对来自nap个接收机单元222的nap个接收的符号流执行接收机空间处理,以及提供nup个恢复的上行链路数据符号流。根据信道相关矩阵求逆(ccmi)、最小均方误差(mmse)、软干扰消除(sic)或者某种其它技术,来执行接收机空间处理。每个恢复的上行链路数据符号流是对由各用户终端发送的数据符号流的估计。rx数据处理器242根据用于每个恢复的上行链路数据符号流的速率,对该流进行处理(例如,解调、解交织和解码),以获得解码的数据。针对每个用户终端的解码的数据,可以提供给数据宿244以进行存储和/或提供给控制器230以进行进一步处理。

在下行链路上,在接入点110处,tx数据处理器210从数据源208接收针对ndn个被调度用于下行链路传输的用户终端的业务数据,以及从控制器230接收控制数据,以及可能从调度器234接收其它数据。各种类型的数据可以在不同的传输信道上进行发送。tx数据处理器210基于针对每个用户终端所选定的速率,对针对该用户终端的业务数据进行处理(例如,编码、交织和调制)。tx数据处理器210提供针对ndn个用户终端的ndn个下行链路数据符号流。tx空间处理器220对ndn个下行链路数据符号流执行空间处理(例如,预编码或波束成形,如本公开内容中所描述的),以及为nap个天线提供nap个发射符号流。每个发射机单元222对各自的发射符号流进行接收和处理,以生成下行链路信号。nap个发射机单元222提供nap个下行链路信号,用于从nap个天线224向用户终端进行传输。

在每个用户终端120处,nut,m个天线252从接入点110接收nap个下行链路信号。每个接收机单元254对来自相关联的天线252的接收信号进行处理,以及提供接收的符号流。rx空间处理器260对来自nut,m个接收机单元254的nut,m个接收的符号流执行接收机空间处理,以及提供针对用户终端120的恢复的下行链路数据符号流。根据ccmi、mmse或某种其它技术来执行该接收机空间处理。rx数据处理器270对所恢复的下行链路数据符号流进行处理(例如,解调、解交织和解码),以获得针对用户终端的解码的数据。

在每个用户终端120处,信道估计器278对下行链路信道响应进行估计,以及提供下行链路信道估计,其中该估计可以包括信道增益估计、snr估计、噪声方差等等。类似地,信道估计器228对上行链路信道响应进行估计,以及提供上行链路信道估计。通常,针对每个用户终端的控制器280基于针对该用户终端的下行链路信道响应矩阵hdn,m,来导出针对用户终端的空间滤波器矩阵。控制器230基于有效的上行链路信道响应矩阵hup,eff,来导出针对接入点的空间滤波器矩阵。针对每个用户终端的控制器280可以向接入点发送反馈信息(例如,下行链路和/或上行链路特征向量、特征值、snr估计等等)。控制器230和280还分别对接入点110和用户终端120处的各种处理单元的操作进行控制。

根据本公开内容的某些方面,图2中所示出的各种处理器可以分别指导在ap110和/或用户终端120处的操作,以执行本文所描述的各种技术,以基于训练信号来确定相对旋转和/或用于本文所描述的技术的其它过程。

图3示出了可以在无线设备302中使用的各种组件,其中在该无线设备302中,可以实践本公开内容的方面,并可以在mimo系统100中使用。无线设备302是可以被配置为实现本文所描述的各种方法的设备的例子。无线设备302可以是接入点110或者用户终端120。

无线设备302可以包括处理器304,所述处理器304控制无线设备302的操作。处理器304还可以称作为中央处理单元(cpu)。可以包括只读存储器(rom)和随机存取存储器(ram)的存储器306,向处理器304提供指令和数据。存储器306的一部分还可以包括非易失性随机存取存储器(nvram)。处理器304通常基于存储在存储器306中的程序指令来执行逻辑和算术运算。存储器306中的指令可以执行为实现本文所描述的方法。例如,处理器304可以执行或者指导图6中的操作600,来确定相对旋转和/或用于本文所描述的技术的其它过程。

无线设备302还可以包括壳体308,所述壳体308可以包括发射机310和接收机312,以允许在无线设备302和远程位置之间对数据的发送和接收。可以将发射机310和接收机312组合到收发机314中。可以将单个或者多个发射天线316附接到壳体308以及电耦合到收发机314。无线设备302还可以包括(没有示出)多个发射机、多个接收机和多个收发机。

无线设备302还可以包括信号检测器318,所述信号检测器318可以用于尽力检测和量化收发机314所接收的信号的电平。信号检测器318可以检测如总能量、每子载波每符号的能量、功率谱密度之类的信号和其它信号的这样的信号。无线设备302还可以包括用于对信号进行处理的数字信号处理器(dsp)320。

可以通过总线系统322将无线设备302的各个组件耦合在一起,其中总线系统322除了包括数据总线之外,还可以包括电源总线、控制信号总线和状态信号总线。

本公开内容的某些方面可以支持基于训练信号,来确定设备的相对旋转。在一些情况下,可以根据例如ieee802.11ad标准,将训练信号发送成波束成形(bf)训练过程的一部分。一对毫米波站(例如,接收机和发射机)通常使用bf过程。每一对的站针对这些网络设备之间后续通信,实现必需的链路预算。照此,bf训练是双向序列的bf训练帧传输,其使用扇区扫描,以及提供必要的信号来允许每个站确定用于发送和接收的适当的天线系统设置。在成功地完成bf训练之后,建立毫米波通信链路。

波束成形训练过程有助于通过考虑到增加的天线增益,来解决与毫米波频谱中的通信所经历的高路径损耗有关的问题。照此,如图2中所示,在每个收发机处放置较大数量的天线,以利用波束成形增益来扩展通信范围。也就是说,从阵列中的每个天线发送相同的信号,但在稍微不同的时间进行发送。

根据示例性实施例,bf过程包括三个阶段。例如,三个阶段可以包括:用于选择发射天线的扇区级扫描(sls)阶段、用于训练发射和接收天线的波束精练阶段、以及用于调整以改变信道状况的波束跟踪阶段。

在sls阶段中,sta中的一个sta通过进行发起方扇区扫描,来充当为发起方,接下来是由进行响应的站来进行发射扇区扫描(在进行响应的站进行响应方扇区扫描的情况下)。扇区是与扇区id相对应的发射天线模式或者接收天线模式。如上文所提及的,站可以是包括天线阵列(例如,相控天线阵)中的一个或多个有源天线的收发机。

在sls阶段期间,发起方站和进行响应的站中的每个收发机被配置为经由不同的扇区来进行扇区扫描(ssw)帧的接收机扇区扫描(rxss)接收(其中在该情况下,在多个扇区扫描(ssw)的连续接收和发送(txss)之间执行扫描),或者经由不同的扇区来进行定向多吉比特(dmg)信标帧(其中在该情况下,在连续的传输之间执行扫描)。

发起方站通过向进行响应的站发送针对每个扇区的要被训练的训练帧集合。同样,进行响应的站通过向发起方站发送训练帧集合来执行扇区扫描。随后,在发起方和进行响应的站之间交换扇区扫描反馈信息,这允许每个站确定哪个扇区是它们的最佳发射扇区。通常,在进行发起的站接收到扇区扫描反馈并发送扇区确认(ack)之后,sls阶段结束,从而建立波束形成。

在波束精练阶段期间,每个站可以扫描传输序列,通过短的波束成形帧间空间(sbifs)间隔来分隔开,其中,发射机或接收机处的天线配置可以在传输之间发生改变。例如,发起方可以扫描传输的序列,同时进行响应的站调整其天线配置(例如,通过基于发起方站的扫描序列来调整天线权重向量)来确定最佳的天线配置。随后,进行响应的站可以发送其自己的扫描,这允许发起方站基于进行响应的站的扫描序列来调整其天线配置。因此,波束精练允许站针对发送和接收二者,来改善其天线配置(或者天线权重向量)。每个天线可以具有天线权重向量(awv),该awv还包括用于描述针对天线阵列的每个元件的激励(振幅和相位)的权重向量。

可以结合数据传输来执行波束跟踪。例如,可以向数据分组添加训练字段,或者偶尔地在数据分组之间发送训练字段。随后,可以对这些训练字段进行测量和使用,以针对进一步的传输进行调整。

图4根据本公开内容的某些方面,示出了可以使用的示例性双极化贴片元件400。如图4中所示,天线阵列的单个元件可以包含多个极化天线。可以将多个元件组合在一起以形成天线阵列。这些极化天线可以放射状地分隔开。例如,如图4中所示,两个极化天线可以进行垂直地排列,其对应于水平极化天线410和垂直极化天线420。替代地,可以使用任意数量的极化天线。替代地或另外地,元件的一个或两个天线也可以是圆极化的。

图5是示出相控阵天线的实现方式中的信号传播500的图。相控阵天线使用相同的元件510-1至510-4(下文单独地称为元件510或统称为元件510)。传播信号的方向针对每个元件510产生大致相同的增益,但元件510的相位是不同的。将元件接收的信号组合成在期望的方向上具有正确的增益的相干波束。对天线设计的额外考虑是电场的预期方向。在发射机和/或接收机关于彼此进行旋转的情况下,除了方向发生改变之外,电场也发生旋转。这需要相控阵能够通过使用匹配某种极化的天线或天线馈电,来处理电场的旋转,并倘若极性改变能够适应其它极性或组合的极性。

可以使用关于信号极性的信息来确定信号的发射机的方面。可以通过在不同的方向上进行极化的不同天线,对信号的功率进行测量。可以对天线进行排列,使得天线在正交方向上极化。例如,可以排列第一天线与第二天线垂直,其中第一天线表示水平轴,以及第二天线表示垂直轴,使得第一天线是水平极化,以及第二天线垂直极化。还可以包括额外的天线,它们关于彼此以各种角度分隔开。一旦接收机确定了传输的极性,接收机就可以通过将天线与接收的信号进行匹配,来优化接收性能。

基于训练信号的示例性旋转确定

如上所述,本公开内容的方面提供了用于基于天线相对增益和/或从具有不同极化(例如,水平和垂直)的天线发送的训练信号的相位,来确定无线设备与另一个设备的相对旋转的技术。这些技术可以应用于在其中应用可能使用旋转的任何类型的设备,比如游戏控制器、移动电话等等。

图6根据本公开内容的某些方面,示出了可以由无线设备执行的用于获得旋转的示例性操作600。这些技术可以应用于在其中运行的应用可能使用旋转的任何类型的设备,比如游戏控制器、移动电话等等。

由无线设备执行的操作600开始于602处,经由至少一个接收天线,获得经由至少第一发射天线和第二发射天线从第二装置发送的第一训练信号和第二训练信号,其中,第一发射天线和第二发射天线具有不同的极化。在604处,无线设备基于第一训练信号和第二训练信号,来确定用于不同的发射-接收天线对的一个或多个特性,每个发射-接收天线对包括第一发射天线和第二发射天线中的一者以及至少一个接收天线。在606处,无线设备基于所述一个或多个特性,来生成用于指示第一装置相对于第二装置的旋转的参数。

图7根据本公开内容的某些方面,示出了对在接收天线处的信号的示例性测量。在某些方面,发射机能够在任何给定的时间,只发送水平地、垂直地或者圆极化的信号。

当针对每个天线来测量由发射机发送的训练信号的接收功率增益702(例如,基于互相关)时,可以选择性地开启每个接收天线。此外,可以在每个训练时段内都记录关于接收相位的信息,随后使用该信息来确定发射机与接收机相比的旋转。在一些情况下,波束精练协议(brp)训练阶段的启动,可以开始于对信道估计序列(ces)的接收功率增益704进行测量。

接收机能够测量这样的信号的相位或功率增益。可以在发射机和接收机之间在波束训练阶段期间,进行这样的传输和测量。在一些情况下,在扇区级扫描(sls)和brp阶段中,在用于毫米波通信的各种标准的波束训练阶段中(例如,在802.11ad中),固有地仅发送和接收垂直或水平极化的信号。在使用多极化天线的brp训练阶段期间,可以在对天线进行开和关时,识别发送的信号的互相关。

图8根据本公开内容的某些方面,示出了计算无线设备的旋转的例子。可以根据来自水平极化天线的信号的接收功率或振幅以及来自垂直极化天线的信号的接收功率或振幅,来计算旋转。例如,发射机天线802可以是垂直极化的,以及发送垂直极化的信号804。接收机可以经由垂直极化的天线806来接收信号,以及将该信号的振幅计算成g1。接收机还可以经由水平极化的天线808来接收该信号,并将该信号的振幅计算成g2。随后,接收机可以计算在g2和g1之间的比率,以及应用三角函数来计算旋转参数。例如,可以将旋转参数计算成theta=arctan(g2/g1),以确定在接收机和发射机之间的旋转角度值。随后,可以输出该生成的旋转角度值,以便由运行的应用进行使用。

该计算的旋转参数可以是相对于极化天线集合中的天线的极化。例如,确定该旋转参数表示零度的传输角度810,可以指示发射天线在方向上与接收机的特定天线(例如,垂直极化天线806)成直线,以及导致旋转角度值为零。

类似地,确定旋转参数表示特定度数的传输角度812,可以指示发射天线以匹配的旋转角度值在方向上相对于接收机的特定天线成特定的角度。再举一个例子,无限值或者错误值814可以指示发射天线以作为结果的90度的旋转角度值,在方向上与接收机的特定天线垂直。

再举一个例子,垂直极化天线816可以接收信号,以及计算0.8666的振幅g1,以及水平极化天线818可以接收该信号,以及计算0.5的振幅g2。随后,接收机可以计算旋转参数,以及确定发射机820相对于垂直极化的天线816旋转30度。

在某些方面,接收机可以经由多个极化天线,来确定接收信号的相位。通过将所确定的接收相位与在训练时段期间获得的参考相位进行比较,接收机可以判断是否将旋转参数调整180度。这使设备能够确定该设备关于轴的翻转。

上文所描述的方法的各种操作,可以由能够执行相应功能的任何适当单元来执行。这些单元可以包括各种硬件和/或软件组件和/或模块,其包括但不限于:电路、专用集成电路(asic)或者处理器。通常,在附图中示出有操作的地方,这些操作可以具有类似地进行编号的相应配对的功能模块组件。例如,图6中示出的操作600与在图6a中示出的单元600a相对应。

用于获得(例如,接收)单元可以包括图2中所示出的ut120的接收机(例如,接收机单元254)和/或天线252或者图3中所描述的接收机312和/或天线316。用于发送的单元和用于输出的单元可以是图2中所示出的用户终端120的发射机(例如,收发机254的发射机单元)和/或天线252或者图2中所描述的接入点110的发射机(例如,收发机222的发射机单元)和/或天线224。

用于生成的单元、用于检测的单元、用于确定的单元、用于获得的单元、用于选择的单元、用于调整的单元、用于处理的单元和/或用于应用的单元可以包括处理系统,其中处理系统可以包括一个或多个处理器,比如,ut120的处理器260、270、288和290和/或控制器280或者图3中所描绘的处理器304和/或dsp320。

在一些情况下,不是实际地发送帧,而是设备可以具有用于输出帧以进行传输的接口。例如,处理器可以经由总线接口,向射频(rf)前端输出帧以进行传输。类似地,不是实际地接收帧,而是设备可以具有用于获得从另一个设备接收的帧的接口。例如,处理器可以经由总线接口,从用于接收的rf前端获得(或者接收)帧。

根据某些方面,这样的单元可以由被配置为执行相应功能的处理系统通过以下方式来实现:实现上文所描述的用于确定旋转的各种算法(例如,利用硬件或者通过执行软件指令)。

如本文所使用的,术语“确定”涵盖很多种动作。例如,“确定”可以包括计算、运算、处理、推导、研究、查询(例如,在表、数据库或另一种数据结构中查询)、断定等等。此外,“确定”还可以包括接收(例如,接收信息)、存取(例如,存取存储器中的数据)等等。此外,“确定”还可以包括解析、选定、选择、建立等等。

如本文所使用的,指代列表项“中的至少一个”的短语是指这些项的任意组合,其包括单个成员。举例而言,“a、b或c中的至少一个”旨在覆盖:a、b、c、a-b、a-c、b-c和a-b-c,以及具有多个相同元素的任意组合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或者a、b和c的任何其它排序)。

被设计为执行本文所述功能的通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可编程门阵列(fpga)或其它可编程逻辑器件(pld)、分立门或者晶体管逻辑、分立硬件组件或者其任意组合,可以实现或执行结合本公开内容描述的各种说明性的逻辑方块、模块和电路。通用处理器可以是微处理器,或者,该处理器也可以是任何商业可用处理器、控制器、微控制器或者状态机。处理器还可以实现为计算设备的组合,例如,dsp和微处理器的组合、多个微处理器、一个或多个微处理器与dsp内核的结合,或者任何其它这样的配置。

结合本公开内容描述的方法的步骤或者算法可以直接体现在硬件、由处理器执行的软件模块或二者组合中。软件模块可以位于本领域已知的任何形式的存储介质中。可以使用的一些示例性存储介质包括:随机存取存储器(ram)、只读存储器(rom)、闪存、eprom存储器、eeprom存储器、寄存器、硬盘、可移动盘、cd-rom等等。软件模块可以包括单个指令或多个指令,以及可以分布在一些不同的代码段上、分布在不同的程序之中和跨越多个存储介质来分布。存储介质可以耦合至处理器,从而使处理器能够从该存储介质读取信息,以及向存储介质写入信息。在替代的方案中,存储介质也可以集成到处理器中。

本文所公开的方法包括用于实现所描述方法的一个或多个步骤或动作。在不脱离权利要求的保护范围的情况下,这些方法步骤和/或动作可以相互交换。换言之,除非指定步骤或动作的特定顺序,否则在不脱离本发明保护范围的情况下,可以修改特定步骤和/或动作的顺序和/或用途。

本文描述的功能可以利用硬件、软件、固件或者其任意组合来实现。当使用硬件实现时,示例性硬件配置可以包括无线节点中的处理系统。处理系统可以利用总线架构来实现。取决于处理系统的具体应用和整体设计约束,总线可以包括任意数量的相互连接总线和桥接。总线可以将包括处理器、机器可读介质和总线接口的各种电路链接在一起。除了别的以外,总线接口可以用于经由总线,将网络适配器等等连接到处理系统。网络适配器可以用于实现物理层的信号处理功能。在用户终端120(参见图1)的情况下,还可以将用户接口(例如,键盘、显示器、鼠标、操纵杆等等)连接到总线。总线还链接诸如时钟源、外围设备、电压调节器、电源管理电路等等之类的各种其它电路,其中这些电路是本领域所公知的,因此将不进行任何进一步的描述。

处理器可以负责管理总线和通用处理,包括执行机器可读存储介质上存储的软件。处理器可以利用一个或多个通用处理器和/或专用处理器来实现。示例包括微处理器、微控制器、dsp处理器和能够执行软件的其它电路。软件应当被广义地解释为意味着指令、数据或者其任意组合,无论其被称为软件、固件、中间件、微代码、硬件描述语言还是其它术语。举例而言,机器可读介质可以包括ram(随机存取存储器)、闪存、rom(只读存储器)、prom(可编程只读存储器)、eprom(可擦除可编程只读存储器)、eeprom(电可擦除可编程只读存储器)、寄存器、磁盘、光盘、硬盘或者任何其它适当的存储介质、或者其任意组合。机器可读介质可以用计算机程序产品来体现。计算机程序产品可以包括包装材料。

在硬件实现方式中,机器可读介质可以是与处理器分开的处理系统的一部分。但是,如本领域技术人员将容易理解的,机器可读介质或者其任何部分可以在处理系统之外。举例而言,机器可读介质可以包括传输线、用数据调制的载波波形和/或与无线节点分开的计算机产品,所有这些都可由处理器通过总线接口来访问。替代地或者另外地,机器可读介质或者其任何部分可以被集成到处理器中,例如,该情况可以是具有高速缓存和/或通用寄存器文件。

可以将处理系统配置成具有提供处理器功能的一个或多个微处理器和提供机器可读介质的至少一部分的外部存储器的通用处理系统,所有这些部件通过外部总线架构与其它支持电路链接在一起。或者,处理系统可以利用具有处理器的asic(专用集成电路)、总线接口、用户接口(在接入终端的情况下)、支持电路和集成到单个芯片的机器可读介质的至少一部分来实现,或者利用一个或多个fpga(现场可编程门阵列)、pld(可编程逻辑器件)、控制器、状态机、门控逻辑、分立硬件组件、或者任何其它适当的电路或者能够执行贯穿本公开内容描述的各种功能的电路的任意组合来实现。本领域技术人员将认识到,如何根据具体的应用和对整个系统所施加的整体设计约束,来最佳地实现所述处理系统的所描述功能。

机器可读介质可以包括多个软件模块。这些软件模块包括指令,当指令由处理器执行时,使得处理系统执行各种功能。软件模块可以包括发送模块和接收模块。每个软件模块可以位于单个存储设备中,或者跨越多个存储设备来分布。举例而言,当触发事件发生时,可以将软件模块从硬盘装载到ram中。在对软件模块的执行期间,处理器可以将这些指令中的一些指令装载到高速缓存中,以增加访问速度。随后,可以将一个或多个高速缓存线装载到用于由处理器执行的通用寄存器文件中。当指代下文的软件模块的功能时,将理解的是,在执行来自该软件模块的指令时,由处理器实现这样的功能。

当使用软件来实现时,可以将这些功能存储在计算机可读介质上或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质二者,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。举例而言,但非做出限制,这种计算机可读介质可以包括ram、rom、eeprom、cd-rom或其它光盘存储器、磁盘存储器或其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机进行存取的任何其它介质。此外,可以将任何连接适当地称作计算机可读介质。举例而言,如果软件是使用同轴电缆、光纤电缆、双绞线、数字用户线(dsl)或者诸如红外线(ir)、无线电和微波之类的无线技术,从网站、服务器或其它远程源传输的,那么所述同轴电缆、光纤电缆、双绞线、dsl或者诸如红外线、无线电和微波之类的无线技术包括在所述介质的定义中。如本文所使用的,磁盘和光盘包括压缩光盘(cd)、激光光盘、光盘、数字通用光盘(dvd)、软盘和光盘,其中磁盘通常磁性地再现数据,而光盘则用激光来光学地再现数据。因此,在一些方面,计算机可读介质可以包括非暂时性计算机可读介质(例如,有形介质)。此外,对于其它方面而言,计算机可读介质可以包括暂时性计算机可读介质(例如,信号)。上述的组合也应当包括在计算机可读介质的保护范围之内。

因此,某些方面可以包括用于执行本文所给出的操作的计算机程序产品。例如,该计算机程序产品可以包括其上存储有指令(和/或编码有指令)的计算机可读介质,这些指令可由一个或多个处理器执行,以执行本文所描述的操作。对于某些方面,计算机程序产品可以包括包装材料。

此外,应当认识到的是,用于执行本文所述方法和技术的模块和/或其它适当单元可以通过用户终端和/或基站按需地进行下载和/或以其它方式获得。例如,这样的设备可以耦合至服务器,以便有助于实现对用于执行本文所述方法的单元的传送。或者,本文所描述的各种方法可以经由存储单元(例如,ram、rom、诸如压缩光盘(cd)或软盘之类的物理存储介质等等)来提供,使得用户终端和/或基站可以在将存储单元耦合至或提供给设备时获得各种方法。此外,可以使用向设备提供本文所描述方法和技术的任何其它适当的技术。

应当理解的是,权利要求并不受限于上文示出的精确配置和组件。在不脱离本发明的保护范围的情况下,可以对上文所述方法和装置的排列、操作和细节做出各种修改、改变和变化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1