基于κ‑μ阴影衰落信道的无线体域网通信系统中断概率分析方法与流程

文档序号:12136867阅读:319来源:国知局

本发明涉及一种准确分析无线体域网通信系统中断概率的方法,更具体的说,尤其涉及一种基于κ-μ阴影衰落信道的无线体域网通信系统在同信道干扰情形下的中断概率分析方法。



背景技术:

在无线体域网中,移动设备通常离人体较近,因而,设备-设备之间的通信链路容易受到周围环境以及人体的随机遮挡,且受人体运动的影响,该阴影效应会加剧。κ-μ信道模型假定接收信号来源于多个簇,直射分量为确定性值,因而,只考虑了信号衰落的多径效应,忽略了随机遮挡的影响。考虑到阴影效应对无线体域网信道的影响,我们采用κ-μ阴影衰落信道模型来描述无线体域网信道的衰落特性,该模型是一个包含多径效应和阴影衰落的信道模型,它可以很好地刻画无线体域网信道的阴影效应,其散射分量服从κ-μ分布,阴影衰落服从Nakagami-m分布。该模型为更一般化的信道模型,它包含了一些常见的信道模型,如Rayleigh,Rice,Nakagami-m,Rician shadowed,κ-μ等。

中断概率是反映无线通信系统性能的重要指标,也是衡量通信系统中断事件发生频率的参数。对于时变的无线体域网信道,当接收端信号的信噪比r大于系统所要求的最低阈值rth时,系统能够正常工作;当r<rth,正常通信将会中断。当多个体域网移动设备共存时,来自附近用户的同信道干扰(Co-Channel Interference,CCI)为接收端信号的主要噪声源,它会大大削减系统的信道容量,而多输入多输出(MIMO)技术可以消除信道深度衰落对于接收信号的影响,提高无线通信系统的频谱效率和可靠性,且最大比合并接收(Maximal Ratio Combining,MRC)技术不需要对同信道干扰的协方差信息进行准确的估计,实现相对简单,可以达到系统复杂性和性能的有效平衡。



技术实现要素:

为了克服上述技术问题的缺点,本发明提供了一种基于κ-μ阴影衰落信道的无线体域网通信系统在同信道干扰情形下的中断概率分析方法。

本发明的基于κ-μ阴影衰落信道的无线体域网通信系统中断概率分析方法,首先建立天线数目、干扰用户数量一定的系统模型,并确定出采用最大比合并接收时接收的信号-干扰噪声比;然后确定基于κ-μ阴影衰落信道的信号功率计算模型,然后再依次计算接收端的信号-干扰噪声比的条件概率密度函数、无条件概率密度函数和广义非完整矩量母函数,最终计算出同信道干扰条件下的无线体域网通信系统的中断概率。

本发明的基于κ-μ阴影衰落信道的无线体域网通信系统中断概率分析方法,其特征在于,具体通过以下步骤来实现:

a).建立系统模型,设系统的天线数目为L个,理想用户接收到的信号受到M个同信道干扰和加性白色高斯噪声的影响,加性白色高斯噪声的均值为0、协方差为理想用户的信号服从κ-μ阴影衰落,干扰用户的信号服从独立同分布的瑞利Rayleigh衰落,在信号接收端采用最大比合并接收技术;

理想用户的信道增益为:hs=[hs1hs2...hsL]T,干扰用户的信道增益为:hi=[hi1hi2...hiL]T,其中,T表示向量转置,则接收到的L维的基波信号可以表示为:

其中,Pi为第i个干扰的平均功率,n为L维的加性白色高斯噪声,bs和bi分别为理想用户和第i个干扰用户传输的符号信息,简单起见,假定‖bs‖=1,‖bi‖=1,i=1,2,...,L;

用理想用户的信道增益对接收到的基波信号进行加权得到:

其中,H为赫米特转置,则采用最大比合并接收技术,接收的信号-干扰噪声比SINR为:

其中,因此,W为L个κ-μ阴影衰落随机变量的平方之和,Y为全部干扰信号的瞬时功率之和;

b).建立κ-μ阴影衰落信道模型,基于κ-μ阴影衰落模型,信号功率Wl可以通过同相分量和正交分量来表示:

其中,Xi,l和Yi,l为相互独立的高斯随机过程,E[Xi,l]=E[Yi,l]=0,pi,l,qi,l为实数;假定全部的直射分量LOS受到相似的随机遮挡影响,该阴影效应由随机变量ξl来描述,它服从Nakagami-m分布,形状参数为m,μl为多径数目;

c).计算接收端信号-干扰噪声比的条件概率密度函数,由方程(4)可知,当ξl确定时,Wl为2μl个服从独立非中心卡方分布的随机变量之和,所以Wl的条件概率密度函数可以表示为:

其中,Iv(·)为修正的第一类贝塞尔函数,且Wl的均值为考虑L个κ-μ阴影衰落随机变量的平方之和,即采用最大比合并接收技术,则:

这里,Wl,l=1,...,L为独立任意分布的κ-μ阴影衰落随机变量的平方;显然,W为个服从独立非中心卡方分布的随机变量之和,所以,W的条件概率密度函数可以表示为:

定义随机变量其中,它表示全部直射分量的功率与散射分量的功率之比,则通过随机变量变换法则可以得到的概率密度函数为:

显然,服从Gamma分布,形状参数为m,尺度参数为μlκl/m。采用最大比合并接收技术,定义瞬时的信号-干扰噪声比为其中,为信号-干扰噪声比的平均值,同时,可以得到W的均值为

根据随机变量变换法则,信号-干扰噪声比γ的条件概率密度函数为:

d).计算接收端信号-干扰噪声比的无条件概率密度函数,当各直射分量相互独立时,则随机变量相互独立,因而,的概率密度函数可以表示为:

其中,β0=min{μlκl/m},Γ(·)为Gamma函数,同时,δk可由公式(11)所示的递推公式得到:

其中,δ0=1;定义则信号-干扰噪声比γ的条件概率密度函数可表示为:

相对随机变量Z取期望,可以得到信号-干扰噪声比γ的无条件概率密度函数为:

其中,

通过求解积分(14),最终得到信号-干扰噪声比γ的闭合形式的概率密度函数为:

这里,1F1(a;b;z)为合流超几何函数confluent hypergeometric function;

e).计算接收端信号-干扰噪声比的广义非完整矩量母函数,当接收天线数目为L,且各分支信号经历独立任意分布的κ-μ阴影衰落时,采用最大比合并接收技术,接收到的瞬时信号-干扰噪声比根据(15)式,信号-干扰噪声比γ的矩量母函数可表示如下:

利用拉普拉斯变换的线性和漂移特性,可以得到

其中,

对于任意实数a≥0,ò≥0,b∈C,Re(b)<0,L个独立任意分布的κ-μ阴影衰落随机变量的平方之和的广义矩量母函数Gγ(a,b;0)可由下式计算得到

其中,c1=Lm-ζ,c2=-Lm,(x)n=x(x-1)(x-2)…(x-n+1)为阶乘幂符号;

对于任意实数a≥0,ò≥0,b∈C,Re(b)<0,L个独立任意分布的κ-μ阴影衰落随机变量的平方之和的广义非完整矩量母函数的补函数可由下式计算得到:

其中为多变量合流超几何函数,进一步,我们可以得到广义非完整矩量母函数如下:

f).计算同信道干扰条件下的无线体域网通信系统的中断概率,将M个干扰源按照功率大小分成K组,且组内的干扰源功率相同,设第i个组的干扰源数目为ni,每个干扰源功率为Pi,则系统的中断概率可由下面公式计算得出:

其中,γ0为设定的阈值,系数Eij计算如下:

这里,ΩA为集合满足是非负整数集。

由(21)式可以看出,中断概率可以表示为两部分积分的和,其中,第一部分表示无干扰情形下的系统中断概率,它可以通过接收端信号-干扰噪声比的累积分布函数计算得出,即第二部分代表存在同信道干扰情形下的系统中断概率,它可以由信号-干扰噪声比的广义非完整矩量母函数来计算,即所以,将(18)-(20)式代入(21)式,可以得到基于κ-μ阴影衰落信道的无线体域网通信系统在同信道干扰情形下的中断概率为:

本发明的有益效果是:

1)提出了一种准确分析无线体域网通信系统中断概率的方法,加快了仿真分析速度,节省了仿真分析所需的硬件开销,有效解决了无线体域网通信系统中断概率特性缺乏准确分析手段的技术难题。

2)该分析方法所采用的κ-μ阴影衰落信道模型,可以很好地刻画无线体域网内信号传播的多径效应和阴影衰落效应,该模型为更为一般化的模型,它包含了一些常见的信道模型,如Rayleigh,Rice,Nakagami-m,κ-μ等。

3)采用最大比合并接收(Maximal Ratio Combining,MRC)技术可以消除信道深度衰落对于接收信号的影响,提高无线通信系统的频谱效率和可靠性,且该方法不需要对同信道干扰的协方差信息进行准确的估计,实现相对简单,可以达到系统复杂性和性能的有效平衡。

4)同时考虑了同信道干扰(服从瑞利衰落)和加性白色高斯噪声对于系统性能的影响,通过分析接收端信号-干扰噪声比(SINR)的统计特性,得到闭合形式的中断概率表达式,为评估信道衰落特性和同信道干扰对于无线体域网通信系统的影响提供了理论基础和依据。

附图说明

图1为本发明的基于κ-μ阴影衰落信道的无线体域网通信系统模型。

具体实施方式

下面结合附图与实施例对本发明作进一步说明。

如图1所示,给出了本发明的基于κ-μ阴影衰落信道的无线体域网通信系统模型,其中SOI表示理想用户,其发送的符号信息为bs,Interferer1、Interferer2、…、Interfereri、InterfererM表示M个干扰用户,第个i个干扰用户发送的符号信息为bi;所示的天线数目为L,在信号接收端采用最大比合并接收技术。

本发明的基于κ-μ阴影衰落信道的无线体域网通信系统中断概率分析方法,

具体通过以下步骤来实现:

a).建立系统模型,设系统的天线数目为L个,理想用户接收到的信号受到M个同信道干扰和加性白色高斯噪声的影响,加性白色高斯噪声的均值为0、协方差为理想用户的信号服从κ-μ阴影衰落,干扰用户的信号服从独立同分布的瑞利Rayleigh衰落,在信号接收端采用最大比合并接收技术;

理想用户的信道增益为:hs=[hs1hs2...hsL]T,干扰用户的信道增益为:hi=[hi1hi2...hiL]T,其中,T表示向量转置,则接收到的L维的基波信号可以表示为:

其中,Pi为第i个干扰的平均功率,n为L维的加性白色高斯噪声,bs和bi分别为理想用户和第i个干扰用户传输的符号信息,简单起见,假定‖bs‖=1,‖bi‖=1,i=1,2,...,L;

用理想用户的信道增益对接收到的基波信号进行加权得到:

其中,H为赫米特转置,则采用最大比合并接收技术,接收的信号-干扰噪声比SINR为:

其中,因此,W为L个κ-μ阴影衰落随机变量的平方之和,Y为全部干扰信号的瞬时功率之和;

b).建立κ-μ阴影衰落信道模型,基于κ-μ阴影衰落模型,信号功率Wl可以通过同相分量和正交分量来表示:

其中,Xi,l和Yi,l为相互独立的高斯随机过程,E[Xi,l]=E[Yi,l]=0,pi,l,qi,l为实数;假定全部的直射分量LOS受到相似的随机遮挡影响,该阴影效应由随机变量ξl来描述,它服从Nakagami-m分布,形状参数为m,μl为多径数目;

该步骤中,κ-μ阴影衰落信道模型同时考虑信号传播的多径效应和阴影衰落效应,假定接收信号来源于多个簇,同时,散射分量功率相同,直射分量功率任意,且簇内散射波相位随机,时延相似,而与簇内的时延相比,簇与簇之间的时延相对较大,因而,散射分量服从κ-μ分布,同时,阴影效应会导致直射分量产生随机变化,这里,考虑阴影衰落服从Nakagami-m分布。

对于确定性的LOS情形,ξl=1;从方程(4)可以看出,求和表达式中的每一项代表一个多径分量,μl为多径数目。对第i个簇而言,其散射分量由复高斯随机变量Xi,l+jYi,l表示,且散射分量功率为2σ2,直射分量由ξlpi,l+jξlqi,l表示,直射分量功率为

c).计算接收端信号-干扰噪声比的条件概率密度函数,由方程(4)可知,当ξl确定时,Wl为2μl个服从独立非中心卡方分布的随机变量之和,所以Wl的条件概率密度函数可以表示为:

其中,Iv(·)为修正的第一类贝塞尔函数,且Wl的均值为考虑L个κ-μ阴影衰落随机变量的平方之和,即采用最大比合并接收技术,则:

这里,Wl,l=1,…,L为独立任意分布的κ-μ阴影衰落随机变量的平方;显然,W为个服从独立非中心卡方分布的随机变量之和,所以,W的条件概率密度函数可以表示为:

定义随机变量其中,它表示全部直射分量的功率与散射分量的功率之比,则通过随机变量变换法则可以得到的概率密度函数为:

显然,服从Gamma分布,形状参数为m,尺度参数为μlκl/m。采用最大比合并接收技术,定义瞬时的信号-干扰噪声比为其中,为信号-干扰噪声比的平均值,同时,可以得到W的均值为

根据随机变量变换法则,信号-干扰噪声比γ的条件概率密度函数为:

d).计算接收端信号-干扰噪声比的无条件概率密度函数,当各直射分量相互独立时,则随机变量相互独立,因而,的概率密度函数可以表示为:

其中,β0=min{μlκl/m},Г(·)为Gamma函数,同时,δk可由公式(11)所示的递推公式得到:

其中,δ0=1;定义则信号-干扰噪声比γ的条件概率密度函数可表示为:

相对随机变量Z取期望,可以得到信号-干扰噪声比γ的无条件概率密度函数为:

其中,

通过求解积分(14),最终得到信号-干扰噪声比γ的闭合形式的概率密度函数为:

这里,1F1(a;b;z)为合流超几何函数confluent hypergeometric function;

e).计算接收端信号-干扰噪声比的广义非完整矩量母函数,当接收天线数目为L,且各分支信号经历独立任意分布的κ-μ阴影衰落时,采用最大比合并接收技术,接收到的瞬时信号-干扰噪声比根据(15)式,信号-干扰噪声比γ的矩量母函数可表示如下:

利用拉普拉斯变换的线性和漂移特性,可以得到

其中,

对于任意实数a≥0,ò≥0,b∈C,Re(b)<0,L个独立任意分布的κ-μ阴影衰落随机变量的平方之和的广义矩量母函数Gγ(a,b;0)可由下式计算得到

其中,c1=Lm-ζ,c2=-Lm,(x)n=x(x-1)(x-2)…(x-n+1)为阶乘幂符号;

对于任意实数a≥0,ò≥0,b∈C,Re(b)<0,L个独立任意分布的κ-μ阴影衰落随机变量的平方之和的广义非完整矩量母函数的补函数可由下式计算得到:

其中(·)为多变量合流超几何函数,进一步,我们可以得到广义非完整矩量母函数如下:

f).计算同信道干扰条件下的无线体域网通信系统的中断概率,将M个干扰源按照功率大小分成K组,且组内的干扰源功率相同,设第i个组的干扰源数目为ni,每个干扰源功率为Pi,则系统的中断概率可由下面公式计算得出:

其中,γ0为设定的阈值,系数Eij计算如下:

这里,ΩA为集合满足是非负整数集。

由(21)式可以看出,中断概率可以表示为两部分积分的和,其中,第一部分表示无干扰情形下的系统中断概率,它可以通过接收端信号-干扰噪声比的累积分布函数计算得出,即第二部分代表存在同信道干扰情形下的系统中断概率,它可以由信号-干扰噪声比的广义非完整矩量母函数来计算,即所以,将(18)-(20)式代入(21)式,可以得到基于κ-μ阴影衰落信道的无线体域网通信系统在同信道干扰情形下的中断概率为:

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1