用于云托管传感器数据的车辆通信系统的制作方法

文档序号:13883591阅读:127来源:国知局
用于云托管传感器数据的车辆通信系统的制作方法

本发明一般涉及用于云托管传感器数据的车辆通信系统,更具体而言,涉及有选择地管理来自多辆自动化车辆上的多个传感器的传感器数据的系统。



背景技术:

已知,自动化车辆配备有诸如雷达单元、激光雷达单元,和/或摄像机之类的多个传感器。当交通密度高时,许多物体可能会被多辆车辆和传感器感应到。当传感器如雷达单元和激光雷达单元那样发出检测信号时,存在返回信号被混淆的风险。此外,当传感器数据被信息分发系统共享或收集时,数据的量可能会导致不希望的拥塞和频谱的特定部分上的一般的噪声。



技术实现要素:

本文描述了云托管(即,收集、重新分发、使用)来自车辆具有的多个传感器以及来自多辆车辆的传感器信息的系统。然后,系统聚集或编译信息,并在各种车辆之间共享此聚集的信息。然后,例如,如果位于交通流量的高度拥挤的区域的车辆可以有选择地关闭传感器或切换到低功率模式/降低的能力,以降低频谱上的噪声并节省能量。

根据一个实施例,提供了用于云托管来自多辆车辆的传感器数据的车辆通信系统,其中,车辆中的每一辆都配备有一个或多个传感器,用于检测车辆中的每一辆附近的物体。系统包括收发器和控制器。收发器用于传递来自第一车辆上的第一传感器的和来自第二车辆上的第二传感器的传感器数据。控制器被配置成通过收发器接收来自第一传感器的第一数据,以及来自第二传感器的第二数据,并确定何时第一数据和第二数据两者都指示第一车辆和第二车辆附近的物体,其中,第一数据由第一置信度来表征,而第二数据由第二置信度来表征。控制器被配置成当第一置信度大于第二置信度时防止第二数据被传递到第一车辆。

在阅读优选实施例的下列详细描述并参考各个附图,进一步的特征和优点将更加显而易见,优选实施例只是作为非限制性示例给出的。

附图说明

现在将参考各个附图,作为示例,来描述本发明,其中:

图1是根据一实施例的车辆通信系统的图示;

图2是由根据一实施例的图1的系统遇到的交通流量情况的图示;以及

图3是由根据一个实施例的图1的系统遇到的交通流量情况的图示。

具体实施方式

图1示出了车辆通信系统10(下文称为系统10)的非限制性示例,该系统10,用于云托管来自多辆车辆12的传感器数据14。一般而言,车辆12中的每一辆都配备有一个或多个传感器,用于检测车辆12中的每一辆附近的物体,例如,物体16。尽管本文所呈现的示例可以被表征为一般涉及当车辆12正在以自动模式(即,完全自主模式)操作时的情况,其中,车辆12的每一实例的操作员(未示出)仅仅指定目的地,但是,可以构想,本文所呈现的原理也适用于在手动模式下操作车辆12中的一辆或多辆的情况。尽管在手动模式下自动化的程度或级别可以只是向操作员提供操纵协助,操作员一般性地控制车辆12的操纵、加速器以及制动器。即,系统10可以根据需要只协助操作员,例如,使车辆12保持在车道中心,保持对车辆12的控制,和/或避免干扰和/或与另一车辆的碰撞。

系统10包括收发器20,收发器20用于传递来自第一车辆24a上的第一传感器22a以及来自第二车辆24b上的第二传感器22b的传感器数据14。收发器20可以,例如,类似于用于已知的车辆到基础设施(v2i)和车辆到车辆(v2v)通信的那些。尽管下面阐述的许多示例描述了系统10如何与车辆12的两个实例进行交互,但是,可以构想,通常会涉及两辆以上的车辆。例如,也可能会有配备有第三传感器22c的第三车辆24c和配备有第四传感器22d的第四车辆24d。进一步地,尽管本文所呈现的示例可以解释为暗示车辆12中的每一辆都只配备有单一传感器,这样只是为了简化说明。即,认识到,车辆12的大多数实例将配备有多个传感器,包括不同类型的传感器的多个实例(例如,雷达单元、激光雷达单元、摄像机、超声波换能器等等)和/或同一类型的传感器的多个实例(例如,前视、后视、左视和右视雷达单元或摄像机)。

系统10包括控制器26,该控制器26被配置成通过收发器20接收来自第一传感器22a的第一数据30a,以及来自第二传感器22b的第二数据30b,以及来自适当地配备的并在收发器20的范围之内的任何其他车辆的数据。控制器26可以与收发器20处于同一位置,或可以远离收发器20,并与这里未示出的收发器的其他实例进行通信。如精通本技术的人员所认识到的,控制器26可包括处理器(未具体地示出),诸如微处理器或其他控制电路,其诸如包括用于处理数据的专用集成电路(asic)的模拟和/或数字控制电路。控制器26可包括存储器(未具体地示出),包括非易失性存储器,诸如用于存储一个或多个例程、阈值,以及捕捉到的数据的电可擦可编程只读存储器(eeprom)。一个或多个例程可以由处理器执行,以执行用于基于由控制器26从收发器20接收到的信号来确定物体16的位置的一些步骤,,如本文所描述的。

在文献中讨论了提供系统10以收集有关多个车辆的周围的物体的信息(即,检测物体16),然后将该信息分发到其他车辆的优点。为克服太多的信息被传输到收发器20和/或由控制器26处理,以及传感器之间的干扰的问题,系统10被配置成“云托管”(即,聚集或编译,并随后共享)来自车辆12的全部传感器数据14。然后,位于交通流量高度拥挤的区域的车辆能够有选择地关掉某些传感器和/或切换到低功率模式/降低的能力,以减少波普上的噪声并节省能量。

图2示出了许多车辆彼此接近的交通流量情况32a的非限制性示例。如果车辆12中的每一辆都配备有用于感应每一车辆的前方、后方、左侧以及右侧的单个传感器,则不需要的数据可能会通过收发器20被传递到控制器。从附图明显地看出,只需要远离车辆组地定向的传感器,以检测物体16,在此情况下为行人,因此某些传感器可以被关闭和/或在短距离模式下操作,如视场36的有限的数量所暗示的。

作为示例而不是限制,再次参考图1,控制器26可以被配置成确定何时第一数据30a和第二数据30b两者都指示物体16,即,两者都检测到和/或报告物体16在第一车辆24a和第二车辆24b的附近存在。为了确定首选使用第一数据30a和第二数据30b中的哪一个来向例如第三汽车24c和第四汽车24d传递物体16的存在和/或位置,第一数据30a可以由第一置信度34a来表征,第二数据30b可以由第二置信度34b来表征。稍后将比较详细地描述可以用来确定置信水平34的各种方法。

一旦确定了接收到的传感器数据14的置信水平34,那么,当第一置信度34a大于第二置信度34b时,控制器26就可以防止或避免将第二数据30b传递(即,重复传输)到第一车辆24a(和/或第三车辆24c和/或第四车辆24d)。作为进一步的示例,如果第一数据30a在所有传感器数据14中具有最高置信度,则控制器26可以只(即,仅仅)基于传输的第一数据30a有关物体16的存在/位置的信息。

除当有带有相对较高的置信度值的传感器数据可用时防止带有相对较低的置信度值的传感器数据的传递之外,或作为替代方案,系统10还可以被配置成,例如,当第一置信度34a大于第二置信度34b时,禁用(即,临时关闭)第二传感器22b。例如,再次参考图2,如果第二车辆24b的左侧传感器(未示出以指示传感器已经被禁用的视场)能够瞥见物体16,即,以较低置信度检测到物体16,而第一车辆24a的前方传感器以较高置信度检测到物体16,系统10禁用第二车辆24b的左侧传感器。如果左侧传感器是雷达单元,禁用此传感器或降低由雷达传感器发出的雷达信号的强度可帮助缩小雷达单元操作所在的电磁波谱的一部分中的噪声水平。

如上文所指出的,有多种方式可以确定传感器数据的置信水平34。例如,并参考图1,第一置信度34a可以基于从第一传感器22a到物体16的第一距离38a,而第二置信度34b可以基于从第二传感器22b到物体16的第二距离38b。如在图1中所示出的,第一置信度34a大于第二置信度34b,因为第一距离38a小于第二距离38b。如果传感器是雷达单元,则距离可以直接由雷达单元来测量,和/或由从物体16返回的信号的信号强度所指示。

作为另一示例,第一置信度34a可以基于物体16由第一传感器22a指示的第一分辨率40a;第二置信度34b可以基于物体16由第二传感器22b指示的第二分辨率40b。如果第一传感器22a和第二传感器22b两者都是摄像机,那么,使用多少像素来记录物体16的图像可以是第一分辨率40a和第二分辨率40b的指示。作为另一示例,如果传感器是雷达单元或激光雷达单元,则分辨率可以由每一传感器的角分辨率指示。然而,在确定了分辨率的情况下,当第一分辨率40a大于第二分辨率40b时,第一置信度34a大于第二置信度34b。

本文所描述的系统10的另一个优点是,控制器26可以被配置成当从第三传感器22c到物体16的视线被阻碍时,将第一数据30a传递到配备有第三传感器22c的第三车辆24c。从第三传感器22c到物体16的视线被阻碍可以由控制器通过评估车辆12和物体的相对位置来确定。可另选地,视线被阻碍可以简单地由这样的事实指出:第三传感器22c不指示物体16的存在。然而,应该认识到,第三传感器22c可能不能检测到物体16,是因为第三传感器22c有故障,即,被损坏。可以构想,可以通过判断传感器是否能够检测到物体16之外的任何东西来测试传感器的功能状态(有故障还是无故障)。在图2中,显而易见地看出,第三车辆24c上的几乎任何传感器都将不大可能能够检测到物体16,因为被第一车辆24a阻碍。然而,第三车辆24c上的传感器,例如,第三传感器22c,将能够检测到其他车辆中的至少一辆,例如,第一车辆24a和/或第二车辆24b。如此,系统能够确定,例如,第三传感器22c何时有故障。

图3示出了另一交通流量情况32b的非限制性示例,其中,第一车辆24a、第二车辆24b、第三车辆24c以及第四车辆24d被排列在物体16的未定义的实例(例如,可能诸如摩托车之类的另一车辆)周围。附图示出了第三车辆24c上的传感器不能检测到物体16。控制器26(图1)被配置成通过收发器20接收来自第三车辆上的第三传感器22c的第三数据34c,确定何时第一数据30a、第二数据30b,以及第三数据30c应该全部都指示物体16,当第三数据34c不指示物体16时,将第三传感器22c分类为有故障。即,如果系统10确定车辆12到物体16的相对位置,并判断第三车辆24c上的第三传感器22c处于应该允许第三传感器22c检测到物体16的状态,但是,第三传感器22c未能这样做,则系统将第三传感器22c分类为有故障。

如果第三传感器22c被分类或视为有故障,则在其上面安装了第三传感器22c的第三车辆24c可以被视为部分盲。然而,可以构想,来自由系统10监控的其他传感器的传感器数据14可以被提供到第三车辆24c,以向第三车辆24c提供“虚拟拖曳”。在带有故障传感器并以有限的功能操作的车辆的情况下,系统可以将第三车辆24c与,例如,在相同路线上行驶的第一车辆24a配对,并确保第三车辆24c尽可能到达靠近目的地的地方或路上的服务中心(如果可能的话)。如此,控制器26可以被配置成当第三传感器22c被分类为有故障时,将第一数据30a传递到第三车辆24c,用于操作第三车辆24c。

因此,提供了车辆通信系统(系统10)、系统10的控制器26以及操作系统10的方法。系统10用于共享来自多辆车辆上的多个传感器的传感器数据,降低由多个传感器检测到同一物体所导致的系统噪声,并当该车辆上的传感器有故障时帮助车辆。

尽管以及根据本发明的优选实施例描述了本发明,但是并不限制于此,而是仅在所附的权利要求书所阐述的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1