抗干扰电路结构和移动终端的制作方法

文档序号:14256240阅读:152来源:国知局

本发明涉及电子设备技术领域,更具体而言,涉及一种抗干扰电路结构和移动终端。



背景技术:

目前手机朝着窄边框、大屏占比方向发展,随着屏占比的不断扩大,手机的功能器件排布得更为紧密,例如接近传感器与天线,接近传感器可能会布置在天线的净空区域内,导致接近传感器容易受到天线辐射的干扰而可靠性较差。



技术实现要素:

本发明实施方式提供一种抗干扰电路结构和移动终端。

本发明实施方式的抗干扰电路结构包括天线、处理器和接近传感器,所述天线用于向外发射辐射信号,所述处理器与所述接近传感器通过i2c总线连接,所述抗干扰电路结构还包括滤波模块,所述滤波模块连接在所述过i2c总线上,所述滤波模块用于滤除所述辐射信号对所述i2c总线的干扰。

在某些实施方式中,所述i2c总线包括数据线和时钟线,所述数据线用于传输数据信号,所述时钟线用于传输时钟信号,所述滤波模块包括数据滤波电路和时钟滤波电路,所述数据滤波电路连接在所述数据线上,且用于滤除所述辐射信号对所述数据信号的干扰,所述时钟滤波电路连接在所述时钟线上,且用于滤除所述辐射信号对所述时钟信号的干扰。

在某些实施方式中,所述接近传感器包括发射器和接收器,所述发射器用于发射检测信号,所述接收器用于接收被反射回的所述检测信号,所述接收器包括数据端子,所述数据滤波电路包括数据电感,所述数据电感串联在所述数据线上,所述数据电感通过所述数据线一端与所述处理器连接,另一端与所述数据端子连接。

在某些实施方式中,所述数据滤波电路还包括与所述数据线连接的数据电容,所述数据电容连接于所述处理器与所述数据电感之间,所述数据电容的一端与所述数据线连接,另一端接地。

在某些实施方式中,所述数据电感大于等于15纳亨。

在某些实施方式中,所述接近传感器包括发射器和接收器,所述发射器用于发射检测信号,所述接收器用于接收被反射回的所述检测信号,所述接收器包括时钟端子,所述时钟线滤波电路包括时钟电感,所述时钟电感串联在所述时钟线上,所述时钟电感通过所述时钟线一端与所述处理器连接,另一端与所述时钟端子连接。

在某些实施方式中,所述时钟滤波电路还包括与所述时钟线连接的时钟电容,所述时钟电容连接于所述处理器与所述时钟电感之间,所述时钟电容的一端与所述时钟线连接,另一端接地。

在某些实施方式中,所述时钟电感大于等于15纳亨。

在某些实施方式中,所述处理器与所述接近传感器之间还连接有中断线,所述中断线用于传输中断信号,所述滤波模块还用于滤除所述辐射信号对所述中断信号的干扰。

在某些实施方式中,所述接近传感器包括发射器和接收器,所述发射器用于发射检测信号,所述接收器用于接收被反射回的所述检测信号,所述接收器包括中断端子,所述滤波模块包括中断滤波电路,所述中断滤波电路包括中断电感,所述中断电感串联在所述中断线中,所述中断电感通过所述中断线一端与所述处理器连接,另一端与所述中断端子连接。

本发明实施方式的移动终端包括:

电路板;和

上述任一实施方式所述的抗干扰电路结构,所述抗干扰电路结构设置在所述电路板上。

本发明实施方式提供的抗干扰电路结构和移动终端中,滤波模块用于滤除天线的辐射信号对i2c总线的干扰,使得处理器与接近传感器之间的信号传输较稳定,接近传感器的工作可靠性较高。

本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:

图1是本发明实施方式的移动终端的平面示意图;

图2是本发明实施方式的移动终端的立体分解示意图;

图3是本发明实施方式的抗干扰电路结构的模块示意图;

图4是本发明实施方式的抗干扰电路结构的电路结构示意图;

图5是本发明另一实施方式的抗干扰电路结构的电路结构示意图;

图6是本发明实施方式的电路板的结构示意图;

图7是本发明实施方式的电路板的顶层的平面示意图;

图8是本发明实施方式的电路板的走线层的平面示意图;

图9是本发明实施方式的电路板的铺地层的平面示意图;

图10是本发明实施方式的电路板的连接层的平面示意图。

主要元件符号说明:

移动终端100、抗干扰电路结构10、天线11、接近传感器12、发射器122、接收器124、电源端子vdd、接地端子gnd、发射器连接端子leda、数据端子sda、时钟端子scl、中断端子int、接收器电源v1、发射器电源v2、上拉电源v3、处理器13、滤波模块14、数据滤波电路141、数据电感1411、数据电容1412、时钟滤波电路142、时钟电感1421、时钟电容1422、中断滤波电路143、中断电感1431、中断电容1432、滤波电容15、接地电容16、i2c总线17、数据线171、时钟线172、中断线18、上拉电阻19、旁路电容1a、电路板20、顶层21、固定焊盘211、中间层22、走线层221、连接线路2211、连接焊盘2212、铺地层222、屏蔽区2221、连接层223、底层23、壳体30、正面32、背面34、顶部36、底部38、显示屏40、弹片50。

具体实施方式

以下结合附图对本发明的实施方式作进一步说明。附图中相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。

另外,下面结合附图描述的本发明的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的限制。

在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。

请参阅图1和图2,本发明实施方式的移动终端100包括抗干扰电路结构10和电路板20。移动终端100可以是手机、手表、头显设备、笔记本电脑、平板电脑等,本发明实施方式以移动终端100是手机为例进行说明,可以理解,移动终端100的具体形式可以是其他。移动终端100还可以包括壳体30,抗干扰电路结构10和电路板20均收容在壳体30内,壳体30可用于给抗干扰电路结构10和电路板20提供防水、防尘、防摔等的保护。壳体30包括相背的正面32和背面34,正面32与背面34可以通过顶部36和底部38连接,正面32上可用于设置移动终端100的显示屏40。

请结合图3及图4,抗干扰电路结构10包括天线11、接近传感器12、处理器13、滤波模块14和滤波电容15。抗干扰电路结构10设置在电路板20上。

请参阅图2,天线11的种类可以是主天线、分集天线、wifi天线、nfc天线等,天线11连接在电路板20上,天线11可向外发射辐射信号或者接收外界的辐射信号以使移动终端100与外界通信。具体地,可通过弹片50将天线11与电路板20连接,弹片50的一端固定连接在电路板20上,另一端可与天线11接触于馈点。在本发明实施例中,天线11可以固定在壳体30上,具体地,天线11可以固定在壳体30的顶部36以减少移动终端100的其他部分对天线11的辐射信号的阻挡作用。

请参阅图1和图2,接近传感器12包括发射器122和接收器124。接近传感器12也可以靠近顶部36设置,以使接近传感器12与天线11布置得较紧凑,节约可用于布置显示屏40的空间,提高移动终端100的屏占比。接近传感器12可用于判断壳体30的正面32与外界障碍物之间的距离,例如当接近传感器12检测到该距离小于预设的距离时,判断用户可能正在接听电话,而触发移动终端100的熄屏操作。具体地,发射器122可从正面32向外发射检测波,检测波在传播过程中被外界障碍物反射,接收器124接收被外界反射回的检测波,并进一步通过处理被反射回的检测波的强弱,判断正面32与外界障碍物之间的距离。可以理解,发射器122与接收器124连接以使接收器124容易获取发射器122发射的检测波的信息。例如接收器124可以获取发射器122发射检测波的时间信息,接收器124可以仅在发射器122发射检测波后再开始检测被反射回的检测波;接收器124可以获取发射器122发射的检测波的强度信息,以通过与被反射回的检测波的强度信息进行比较。请结合图4,发射器122的一端与接收器124连接,另一端与发射器电源v2连接,发射器电源v2用于给发射器122提供电能,较佳地,抗干扰电路结构10还包括旁路电容1a,旁路电容1a的一端连接在发射器122和发射器电源v2之间,另一端接地,旁路电容1a可用于滤除发射器电源v2中的高频干扰。

发射器122可以是红外光发射器122,用于向外发射红外光;发射器122也可以是超声波发射器122,用于向外发射超声波;发射器122也可以是激光发射器122,用于向外发射激光。对应的,接收器124也可以是红外光接收器、超声波接收器、激光接收器等。本发明以发射器122为红外led灯为例进行说明,红外led灯在电能的驱动下可向外发射红外光,接收器124为红外光接收器。

请参阅图3和图4,接收器124包括电源端子vdd、接地端子gnd、发射器连接端子leda、数据端子sda、时钟端子scl和中断端子int。电源端子vdd用于连接外部的接收器电源v1,接收器电源v1用于给接收器124提供电能,较佳地,可以在接收器电源v1和电源端子vdd之间连接接地电容16,接地电容16的一端连接在接收器电源v1和电源端子vdd之间,另一端接地,接地电容16可用于滤除接收器电源v1中的高频干扰。接地端子gnd用于将接收器124与地连接,以用于定义低电平且可用于防止外界静电的影响。发射器连接端子leda用于与发射器122连接,发射器122发射的检测波的信息可以通过发射器连接端子leda传输给接收器124。数据端子sda可以用于连接接收器124与处理器13,以实现接收器124与处理器13之间的数据信号传输。时钟端子scl可以用于连接接收器124与处理器13,以实现接收器124与处理器13之间的时钟信号传输。中断端子int可以用于连接接收器124与处理器13,以实现接收器124与处理器13之间的中断信号传输。

请参阅图3和图4,处理器13与接近传感器12连接。处理器13可与接收器124通信连接,以接收由接收器124获取的反射回的检测波的强度信息,并进一步处理该强度信息以得到壳体30的正面32与外界障碍物的距离。具体地,处理器13与接近传感器12的接收器124连接,更具体地,处理器13与接收器124通过i2c总线17和中断线18连接。i2c总线17包括数据线171和时钟线172。数据线171连接数据端子sda与处理器13,且用于传输数据信号;时钟线172连接时钟端子与处理器13,且用于传输时钟信号。中断线18连接中断端子int与处理器13,且用于传输中断信号。

请参阅图2-图4,可以理解,为了使得天线11与接近传感器12设置得较紧凑,接近传感器12可能会位于天线11的净空区域内,而在天线11的净空区域中,接近传感器12容易受到天线11发射的辐射信号的干扰。以i2c总线17受到干扰为例,辐射信号可能会改变i2c总线17上传输的信号的波形,导致处理器13接收到错误的信息,还可能会造成处理器13的相关模块死机,使整条i2c总线17上连接的功能器件都失效。因此,需要在抗干扰电路结构10中设计滤波模块14。滤波模块14可用于滤除天线11发射的辐射信号对i2c总线17的干扰,滤波模块14还可用于滤除天线11发射的辐射信号对中断线18传输的中断信号的干扰。具体地,滤波模块14包括数据滤波电路141、时钟滤波电路142和中断滤波电路143。

数据滤波电路141连接在数据线171上,且用于滤除辐射信号对数据信号的干扰。数据滤波电路141包括数据电感1411,数据电感1411串联在数据线171上。数据电感1411的一端通过数据线171与处理器13连接,另一端与数据端子sda连接。当高频的辐射信号对数据线171产生干扰,使得数据线171中产生高频突变电流时,数据电感1411可以对高频突变电流产生抑制作用,以滤除辐射信号对数据信号产生的干扰。数据电感1411可以大于或等于15纳亨,例如15纳亨、100纳亨、177纳亨、2000纳亨等,以使数据电感1411对高频突变电流的抑制效果较好。请参阅图5,在一个例子中,数据滤波电路141还可以包括数据电容1412,数据电容1412与数据线171连接,具体地,数据电容1412连接于处理器13与数据电感1411之间,数据电容1412的一端与数据线171连接,另一端接地。数据电容1412可用于提高从处理器13发送到数据端子sda的数据信号的波形质量。当然,数据滤波电路141也可以不包括数据电容1412。

时钟滤波电路142连接在时钟线172上,且用于滤除辐射信号对时钟信号的干扰。时钟滤波电路142包括时钟电感1421,时钟电感1421串联在时钟线172上。时钟电感1421的一端通过时钟线172与处理器13连接,另一端与时钟端子scl连接。当高频的辐射信号对时钟线172产生干扰,使得时钟线172中产生高频突变电流时,时钟电感1421可以对高频突变电流产生抑制作用,以滤除辐射信号对时钟信号产生的干扰。时钟电感1421可以大于或等于15纳亨,例如15纳亨、100纳亨、500纳亨、1000纳亨等,以使时钟电感1421对高频突变电流的抑制效果较好。请参阅图5,在一个例子中,时钟滤波电路142还可以包括时钟电容1422,时钟电容1422与时钟线172连接,具体地,时钟电容1422连接于处理器13与时钟电感1421之间,时钟电容1422的一端与时钟线172连接,另一端接地。时钟电容1422可用于提高从处理器13发送到时钟端子scl的时钟信号的波形质量。当然,时钟滤波电路142也可以不包括时钟电容1422。

中断滤波电路143连接在中断线18上,且用于滤除辐射信号对中断信号的干扰。中断滤波电路143包括中断电感1431,中断电感1431串联在中断线18上。中断电感1431的一端通过中断线18与处理器13连接,另一端与中断端子int连接。当高频的辐射信号对中断线18产生干扰,使得中断线18中产生高频突变电流时,中断电感1431可以对高频突变电流产生抑制作用,以滤除辐射信号对中断信号产生的干扰。中断电感1431可以大于或等于15纳亨,例如15纳亨、100纳亨、600纳亨、5000纳亨等,以使中断电感1431对高频突变电流的抑制效果较好。请参阅图5,在一个例子中,中断滤波电路143还可以包括中断电容1432,中断电容1432与中断线18连接,具体地,中断电容1432连接于处理器13与中断电感1431之间,中断电容1432的一端与中断线18连接,另一端接地。中断电容1432可用于提高从处理器13发送到中断端子int的中断信号的波形质量。当然,中断滤波电路143也可以不包括中断电容1432。

请参阅图4,滤波电容15的一端连接在发射器122和接收器124之间,另一端接地,滤波电容15用于滤除辐射信号对发射器122的干扰。当发射器122受到干扰时,发射器122两端的电压会被干扰,例如会在发射器122的靠近发射器连接端子leda的一端产生电压跌落,导致发射器122两端的电势差变大,发射的检测波的强度变大,而影响到接收器124接收到的被反射回的检测波的强度,也就是影响了接近传感器12检测距离的准确性。滤波电容15可以大于或等于0.1微法,例如可以是0.1微法、0.15微法、0.23微法、0.57微法、1.2微法等,以使滤波电容15具有较好的抗干扰能力。

请参阅图4,抗干扰电路结构10还可以包括一个或多个上拉电阻19,上拉电阻19的一端与外部的上拉电源v3连接,另一端连接在信号传输线(数据线171、时钟线172或中断线18)上,以在信号传输线中需要高电平的时候提供高电平。例如如图4所示,在中断线18上连接有上拉电阻19,上拉电阻19的一端连接在中断电感1431与处理器13之间,另一端连接上拉电源v3,以在中断线18上需要高电平时提供高电平。

请参阅图2和图6,电路板20包括顶层21、至少一个中间层22和底层23。电路板20可以是多层印刷板,电路板20上可以用于设置抗干扰电路结构10,电路板20上还可以用于设置移动终端100的功能元器件,功能元器件可以是受话器、摄像头、闪光灯、光感器、指纹识别模组、红外补光灯、结构光投射器等。

请参阅图1、图6和图7,顶层21靠近壳体30的正面32,设置在顶层21的功能元器件可用于朝正面32发射信号(例如受话器向外发射声波信号),或者接受自正面32进入移动终端100的信号(例如前置摄像头接收外界的光线信号)。本发明实施方式的发射器122和接收器124连接在顶层21,发射器122用于朝正面32发射检测信号,接收器124用于接收由外界障碍物向正面32反射回的检测信号。具体地,在顶层21可以形成有固定焊盘211,发射器122的封装引脚可以穿过固定焊盘211以穿过顶层21,且发射器122的封装引脚焊接在固定焊盘211上。

请参阅图6,中间层22布置在顶层21与底层23之间,中间层22的数量依据实际需求可以是三层、四层、五层、六层、七层、十层等任意多层(两层或两层以上),中间层22与顶层21、不同的中间层22之间可以通过过孔连接,中间层22内可以铺设线路以用于传输各功能元器件的电信号,也可以用于布置数据线171、时钟线172、中断线18等线路。在本发明实施例中,中间层22包括走线层221、铺地层222和连接层223。其中图7-图10中的虚线框所围的范围为发射器122在各层上的正投影所在区域。

请参阅图7和图8,走线层221与顶层21相邻,走线层221上铺设有连接线路2211,例如铺设有i2c总线17、中断线18、电源线、接地线、发射器122与接收器124的连接线等。走线层221上还形成有连接焊盘2212,连接焊盘2212与固定焊盘211的位置对应,当发射器122的封装引脚穿过顶层21后,可以与连接焊盘2212固定连接,进一步增加电路板20对发射器122的固定强度。在本发明实施例中,走线层221的数量为一层且与顶层21相邻,连接线路2211均铺设在该走线层221上。当然,走线层221的数量为可以是多层,例如两层、三层、四层、五层等任意多层(两层或两层以上)。

请参阅图6和图9,铺地层222设置在走线层221的与顶层21相背的一侧,铺地层222形成有屏蔽区2221。屏蔽区2221由导电材料覆盖,具体地,导电材料可以是铜、铂、金、银等导电材料,屏蔽区2221与发射器122的位置对应,屏蔽区2221可以用于屏蔽由天线11发射的辐射信号,以避免辐射信号影响发射器122正常工作。屏蔽区2221与发射器122的位置对应,具体可以是发射器122在铺地层222上的正投影完全落入到屏蔽区2221内,也可以是发射器122在铺地层222上的正投影部分落入到屏蔽区2221内。当然,屏蔽区2221也可以同时与接收器124的位置对应,也就是说,屏蔽区2221可以同时用于屏蔽辐射信号对发射器122和接收器124的干扰,接收器124在铺地层222上的正投影可以完全落入到屏蔽区2221内,也可以部分落入到屏蔽区2221内。

请参阅图6和图10,连接层223设置在铺地层222的与走线层221相背的一侧。连接层223的数量可以为多层(两层或两层以上),例如两层、三层、四层、十层等。连接层223的与屏蔽区2221对应的区域由绝缘材料制成,使得当天线11连接在底层23时,减少连接层223对天线11发射和接收辐射信号的影响。

请参阅图2和图6,底层23靠近壳体30的背面34,设置在底层23的功能元器件可用于朝背面34或顶端发射信号(例如闪光灯向外发射光线信号),或者接收自背面34进入移动终端100的信号(例如后置摄像头接收外界的光线信号)。本发明实施方式的天线11可通过弹片50连接在底层23,天线11向发射器122和接收器124的方向发射的辐射信号至少部分被屏蔽区2221屏蔽,以减少辐射信号对接近传感器12的干扰,同时接近传感器12设置在顶层21,接近传感器12与天线11的距离较远,二者的互相干扰较微弱。

综上,本发明实施方式的移动终端100中,滤波模块14用于滤除天线11的辐射信号对i2c总线17的干扰,使得处理器13与接近传感器12之间的信号传输较稳定,同时,滤波电容15用于滤除辐射信号对发射器122的干扰,发射器122的发射强度容易控制,接近传感器12的工作可靠性较高。

在一个实施方式中,抗干扰电路结构10包括上述的天线11、处理器13和接近传感器12。天线11用于向外发射辐射信号,处理器13与接近传感器12通过i2c总线17连接,抗干扰电路结构10还包括滤波模块14,滤波模块14连接在i2c总线17上,滤波模块14用于滤除辐射信号对i2c总线17的干扰。本实施方式中,滤波模块14用于滤除天线11的辐射信号对i2c总线17的干扰,使得处理器13与接近传感器12之间的信号传输较稳定,接近传感器12的工作可靠性较高。

在另一个实施方式中,抗干扰电路结构10包括上述的天线11和接近传感器12。天线11用于向外发射辐射信号。接近传感器12包括互相连接的发射器122和接收器124,发射器122用于发射检测信号,接收器124用于接收被反射回的检测信号。抗干扰电路结构10还包括滤波电容15,滤波电容15的一端连接在发射器122和接收器124之间,另一端接地,滤波电容15用于滤除辐射信号对发射器122的干扰。本实施方式中,滤波电容15用于滤除辐射信号对发射器122的干扰,发射器122的发射强度容易控制,接近传感器12的工作可靠性较高。

在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1