用户设备和相关方法与流程

文档序号:18163867发布日期:2019-07-13 09:28阅读:127来源:国知局
用户设备和相关方法与流程

本公开涉及无线通信技术领域,更具体地,本公开涉及一种用户设备和与早期数据传输(edt)相关的方法。



背景技术:

2017年3月,在第三代合作伙伴计划(3rdgenerationpartnershipproject:3gpp)ran#75次全会上,一个关于窄带物联网(narrowbandinternetofthings,nb-iot)进一步增强的新工作项目(参见rp-170852:newwidonfurthernb-iotenhancements)和一个关于机器类通信(machinetypecommunication:mtc)更进一步增强的新的工作项目(参见非专利文献:rp-170732:newwidonevenfurtherenhancedmtcforlte)获得批准。这两个研究项目的目标之一是针对小数据包业务的传输进行增强,考虑小数据包业务在一段时间内所要传输的数据量比较小,比如1000比特,即通过一个物理层的传输块即可传完,而现有机制中数据传输都必须在完成与空口的连接进行rrc连接状态之后才能完成,这使得用于传输小数据包的信令开销比较大,考虑到mtc或nb-iot的用户终端数据庞大,导致了更严重的信令开销;同时过大的信令开销也导致了不必要的用户终端能耗。为了使得能以较少的信令开销来完成小数据包的传输,并实现用户终端(userequipment,ue)的节能,在版本15的小数据传输增强中,提出ue可以不进入无线资源控制(radioresourcecontrol,rrc)连接态来实现数据传输,比如在随机接入过程中将小数据和随机接入消息3一起发送。在当前3gpp达成的共识中,ue根据当前数据发送的若干条件来判断是否采用小数据传输机制进行数据传输,比如网络侧是否配置了小数据传输的参数、ue是否支持小数据传输,将要发送的小数据的数据量是否小于等于所配置的门限值等。小数据传输块大小门限值是由基站配置的,只有当ue将要传输的数据量小于等于该传输块大小门限值时,才能使用小数据传输机制。每个增强覆盖等级都会对应一个传输块大小门限值。此外,用于小数据传输所使用的随机接入前导也是会每个增强覆盖等级进行配置的,并与传统非小数据传输机制所使用的随机接入前导区分开,也就是说是否采用小数据传输机制需要基于ue所对应的增强覆盖等级所对应的参数来判断。在当前的3gppran2会议达成的结论中,uerrc层来决定是否使用小数据传输机制,而ue的增强覆盖等级是由mac层决定的,在这种情况下,需要mac层和rrc联合作用才能完成是否采用小数据传输机制的确定。

本公开旨在解决在基于增强覆盖等级的系统中如何实现uemac层和rrc层交互以实现是否采用小数据传输机制的决策的问题。



技术实现要素:

根据本公开的第一方面,提供了一种用户设备ue中的方法,包括:在无线资源控制rrc层,确定要发起早期数据传输edt;在rrc层向媒体接入控制mac层发送第一指示信息,指示mac层发起用于edt的随机接入过程;以及在mac层响应于接收到第一指示信息,发起用于edt的随机接入过程。

在实施例中,所述确定要发起edt是至少部分基于测量的参考信号接收功率rsrp来执行的。

在实施例中,上述方法还包括:当增强覆盖等级爬升时,在mac层将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在mac层向rrc层发送第二指示信息,指示edt失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在mac层继续执行edt。

在实施例中,上述方法还包括:当增强覆盖等级爬升时,在mac层将爬升后的增强覆盖等级与edt的最大增强覆盖等级进行比较;当爬升后的增强覆盖等级高于edt的最大增强覆盖等级时,在mac层向rrc层发送第二指示信息,指示edt失败;或当爬升后的增强覆盖等级低于或等于edt的最大增强覆盖等级时,在mac层继续执行edt。

在实施例中,上述方法还包括:在rrc层响应于接收到第二指示信息,回退到非edt操作。

在实施例中,上述方法还包括:在rrc层向mac层发送第三指示信息,指示mac层回退到非edt操作;以及在mac层响应于接收到第三指示信息,执行非edt的随机接入过程。

在实施例中,所述edt的最大增强覆盖等级被包括在第一指示信息中。

在实施例中,上述方法还包括:当增强覆盖等级爬升时,在mac层向rrc层发送第四指示信息,指示爬升后的增强覆盖等级;在rrc层响应于接收到第四指示信息,将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在rrc层向mac层发送第三指示信息,指示edt失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在rrc层向mac层发送第五指示信息,指示mac层继续执行edt。

在实施例中,上述方法还包括:在mac层响应于接收到第三指示信息,执行非edt的随机接入过程;或在mac层响应于接收到第五指示信息,继续执行edt。

根据本公开的第二方面,提供了一种用户设备ue,包括收发机、处理器和存储器,所述存储器存储所述处理器可执行的指令,使得所述ue执行根据上述第一方面的方法。

附图说明

通过下文结合附图的详细描述,本公开的上述和其它特征将会变得更加明显,其中:

图1示出了根据本公开实施例的用户设备ue中的方法的流程图;以及

图2示出了根据本公开实施例的用户设备的框图。

具体实施方式

根据结合附图对本公开示例性实施例的以下详细描述,本公开的其它方面、优势和突出特征对于本领域技术人员将变得显而易见。

在本公开中,术语“包括”和“含有”及其派生词意为包括而非限制;术语“或”是包含性的,意为和/或。

在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不背离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同参考数字用于相似功能和操作。

下文以lte移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统,如nb-iot系统中、mtc系统中,也可以用于5g下一代无线通信系统(newradio,nr)中。

本公开中的基站可以是任何类型基站,包含nodeb、增强基站enb,也可以是5g通信系统基站gnb、或者微基站、微微基站、宏基站、家庭基站等;所述小区也可以是上述任何类型基站下的小区。在本公开中,在无明确说明的前提下,覆盖增强等级(coverageenhancementlevel)等同于增强覆盖等级(enhancedcoveragelevel)。

不同的实施例之间也可以结合工作。

下面先对本公开涉及到的一些概念和进行说明。值得注意的是,在下文的描述中的一些命名仅是实例说明性的,而不是限制性的,也可以作其他命名。

增强覆盖用户(userequipment,ue):指的是增强覆盖内的ue,即ue需要通过增强覆盖功能/机制来接入到小区或网络。

增强覆盖等级:增强覆盖技术中将需要增强覆盖的程度分为多个增强覆盖等级,比如在nb-iot中,增强覆盖等级可以是等级0~3。在一些增强覆盖方法中,每一个增强覆盖等级可以对应一套不同的无线参数配置,如随机接入配置(如prach(physicalrandomaccesschannel)资源)。在最新的3gpp协议规范中(技术规范36.321ve40),ue的媒体接入控制(mediumaccesscontrol)层在发起随机接入时,会根据所测量的rsrp和系统信息中收到的用于确定增强覆盖等级的rsrp门限值来判断ue的增强覆盖等级,并根据所确定的增强覆盖等级选择对应的随机接入资源(如随机接入前导(简称为前导))和参数(如随机接入响应窗口大小)来发起随机接入过程。每个增强覆盖等级还可以包含一个前导最大传输次数的配置。在一个随机接入过程中,在成功接收到随机接入响应之前,当ue使用一个增强覆盖等级n对应的随机接入资源和参数发起随机接入发送前导的次数达到或超过当前增强覆盖等级n所对应的前导最大传输次数时,ue会认为当前的增强覆盖等级不合适,此时,ue认为其增强覆盖等级为下一个增强覆盖等级即增强覆盖等级n+1。在下一次的前导传输时,则采用增强覆盖等级n+1对应的随机接入资源和参数,本公开中称这种随机接入过程中的增强覆盖等级递增为增强覆盖等级爬升(ramp)。

随机接入响应(randomaccessresponse,rar):随机接入过程中的第二条消息。基站会在接收到ue的随机接入前导之后,通过发送随机接入响应消息来对该随机接入前导的接收进行响应。随机接入响应消息中包括时间提前域、上行许可(uplinkgrant)域、ue标识域等。

消息3:随机接入过程中的第三条消息。在本公开中,消息3统指ue在rar中包含的上行许可所指示的上行资源上所发送的上行传输。既可以指基于竞争的随机接入过程中的第三条传输,也可以指基于非竞争的随机接入过程后的第一个上行传输。

用户面优化方案和控制面优化方案:

实际上,在r15之前的通信系统中,已经支持两种优化的数据传输方案,以用来降低数据传输的信令开销和ue能耗,称控制面蜂窝演进分组服务优化(cp-ciot-eps-optimisation)和用户面蜂窝演进分组服务优化(up-ciot-eps-optimisation)。在控制面蜂窝演进分组服务优化方案中,应用层的数据作为一个非接入层(nonaccessstratum,nas)数据包包含在控制面的信令无线承载(signallingradiobearer,srb)上传输,所述信令无线承载在r14之前指的是srb1或srb1bis,如ue在完成随机接入过程后在rrc连接建立完成消息中包含一个nas数据包进行发送。这种优化方案可简称为控制面优化方案或控制面方案。在用户面蜂窝演进分组服务优化方案中,仍和传统系统中的数据传输一样应用层的数据在rrc连接状态下的数据无线承载((user)dataradiobearer,drb)上传输,但在当数据传输完成后,ue和enb挂起(suspend)rrc连接(通过包含挂起指示的rrc连接释放消息来指示),保存ue上下文,进入rrc空闲状态。当ue要进行数据传输时,ue向enb发起rrc连接恢复流程(在该流程中,ue向基站发送rrc连接恢复请求消息来发起连接恢复,基站向ue发送rrc连接恢复消息来指示其恢复rrc连接,继而ue向基站反馈rrc连接恢复完成消息以进行响应),因为ue和enb上保存了ue上下文,通过该流程可以恢复其rrc连接、drb和安全,无需重新建立rrc连接、drb和安全。这种方案也可简称用户面优化方案或用户面方案。其中ue保存了ue上下文的rrc空闲态,虽然也称rrc空闲态,但实际上可以看做一个rrc空闲态和连接态的一个中间状态。这个中间状态,在5gnr系统中,可以认为是其定义的rrc非活动状态(rrc_inactive)。

早期数据传输(earlydatatransmission,edt):

r15中的小数据传输优化方案基于上述两种优化方案并针对小数据传输的特性做了进一步的优化。对于上行数据传输来说,优化的内容主要是在随机接入过程中伴随消息3一起传输小数据,因为这种优化方式相较传统数据传输方式而言,能够在更早的时刻完成数据传输,所以称为早期数据传输,本公开中,小数据(smalldata或smallpacket)可等同于早期数据(earlydata)。在支持edt优化方案的小区中,基站通过系统信息广播发起edt所使用的物理随机接入资源如随机接入前导,以及传输块大小(transportblocksize,tbs)门限值。所述tbs门限值和/或edt所使用的随机接入资源是对每个增强覆盖等级配置的,即每个增强覆盖等级对应一个edt传输块大小门限值和/或随机接入参数(如物理随机接入资源或随机接入前导组)。

下面简单描述edt的过程。

1.当ue要进行上行传输时,ue判断是否满足edt的条件,比如包含数据包的tbs是否小于或等于当前增强覆盖等级所对应的tbs门限值,如果是,则ue使用edt特定的前导在edt特定的物理随机接入信道资源(physicalrandomaccesschannel,prach)上发起随机接入过程。

2.基站在edt特定的prach资源上接收到edt特定的前导,得知ue正在发起edt过程,则基站会在rar中分配可用于小数据传输的上行许可。

3.接收到rar后,ue判断rar中的上行许可是否足够容纳整个小数据包,如果是,则ue将小数据包含在消息3中和rrc消息一起在上行许可所对应的资源上进行上行传输;如果否,则ue回退(fallback)到传统非edt过程,即不将小数据包包含在消息3中一起传输,即消息3中仅传输rrc消息,以请求rrc连接建立/恢复,期望在rrc连接建立/恢复之后传输数据。优选地,所述包含小数据包的整个传输块指的是包含小数据和消息3中的rrc消息以及其对应的mac头在内的整个传输块。备选地,所述包含小数据包的整个传输块指的是小数据分组数据汇聚协议(packetdatacovergenceprotocol,pdcp)服务数据单元(servicedataunit,sdu)或pdcppdu和rrc消息。

本公开下述实施例中,指示(indicate/indication)和通知(notify/notification)或知会/信息(inform/information)可以互换。ue可以指nb-iotue、带宽降低低复杂度(bandwidthreducedlowcomplexity,bl)ue、或在增强覆盖(enhancedcoverage)中的ue、也可以是其他ue如5gnrue。

本公开下述实施例中具体描述ue如何基于增强覆盖等级以及随机过程中的增强覆盖等级爬升来确定是否(继续)使用edt机制的方法,通过本发明的下述实施例,ue可以基于当前的覆盖等级来确定是否使用edt,并选择对应的随机接入资源前导,使得收到前导的基站根据该前导来获知ue是否使用edt及其增强覆盖等级,从而在rar和后续的传输过程中分配合适的上行许可及其传输参数如传输重复次数。

在本公开中,所述将要传输的数据指的是上行缓存中将要发送的可用数据总量,或者描述为上行缓存中将要发送的数据加上其导致的mac头所形成的macpdu其大小。备选地,也可指上行缓存中的pdcpsdu/pdu。

图1示出了根据本公开实施例的用户设备ue中的方法100的流程图。方法100包括以下步骤。

在步骤s110,在无线资源控制rrc层,确定要发起早期数据传输edt。

在步骤s120,在rrc层向媒体接入控制mac层发送第一指示信息,指示mac层发起用于edt的随机接入过程。

在步骤s130,在mac层响应于接收到第一指示信息,发起用于edt的随机接入过程。

在非限制性示例中,在步骤s110中,确定要发起edt可以至少部分基于测量的参考信号接收功率rsrp来执行。

在非限制性示例中,例如参见以下示例1,方法100还可以包括:当增强覆盖等级爬升时,在mac层将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较。当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在mac层向rrc层发送第二指示信息,指示edt失败。当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在mac层继续执行edt。

在非限制性示例中,例如参见以下示例3,方法100还可以包括:当增强覆盖等级爬升时,在mac层将爬升后的增强覆盖等级与edt的最大增强覆盖等级进行比较。当爬升后的增强覆盖等级高于edt的最大增强覆盖等级时,在mac层向rrc层发送第二指示信息,指示edt失败。当爬升后的增强覆盖等级低于或等于edt的最大增强覆盖等级时,在mac层继续执行edt。

在非限制性示例中,方法100还可以包括:在rrc层响应于接收到第二指示信息,回退到非edt操作。

在非限制性示例中,方法100还可以包括:在rrc层向mac层发送第三指示信息,指示mac层回退到非edt操作;以及在mac层响应于接收到第三指示信息,执行非edt的随机接入过程。

在非限制性示例中,所述edt的最大增强覆盖等级可以被包括在第一指示信息中。

在非限制性示例中,例如参见以下示例2,方法100还可以包括:当增强覆盖等级爬升时,在mac层向rrc层发送第四指示信息,指示爬升后的增强覆盖等级;以及在rrc层响应于接收到第四指示信息,将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较。当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在rrc层向mac层发送第三指示信息,指示edt失败。当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在rrc层向mac层发送第五指示信息,指示mac层继续执行edt。

在非限制性示例中,方法100还可以包括:在mac层响应于接收到第三指示信息,执行非edt的随机接入过程;或在mac层响应于接收到第五指示信息,继续执行edt。

以下结合具体示例来描述方法100的具体实现。

示例1:

本示例中,支持edt的ue确定是否使用edt机制进行数据传输的操作包括下述一个或多个:

操作1:uerrc层至少根据所测量的rsrp来确定是否发起edt。这里,确定是否发起edt还可以根据其他条件。

所述“其他条件”可以包括下述条件的一个或多个,但并不限制下述,ue在下述条件满足时确定发起edt:

条件1:非接入层nas请求为edt建立一个rrc连接且ue支持基于控制面方案的edt;

条件2:nas请求为edt恢复rrc连接且ue支持基于用户面方案的edt且ue保存有用于edt的安全参数值。所述安全参数值可以为nexthopchainingcount值。

条件3:nas指示所述请求(建立/恢复rrc连接请求)适用于edt。nas可基于所述请求的理由或请求类型(如仅数据、非信令、短信息业务、呼叫类型、移动发起类型、移动终结类型等)来确定是否适用于edt。本公开不限于这些情形。

条件4:系统信息块sib类型2中包含了用于edt的prach配置,即ue驻留的小区当前支持edt传输且广播了edt传输的参数配置。

条件5:要发送的数据量一次传输即可传完,即要发送的数据量小于或等于ue当前的增强覆盖等级所对应的传输块大小门限值。

所述ue当前的增强覆盖等级可由rrc根据所测量的rsrp和从系统信息中获取的用于确定增强覆盖等级的rsrp门限值来确定。举例如下:如果系统支持增强覆盖等级的范围为0~n,则如果配置了增强覆盖等级n的rsrp门限th_n且所测量的rsrp小于该门限值th_n且ue支持增强覆盖等级n,则ue或uerrc层认为其处于增强覆盖等级n;否则若配置了增强覆盖等级n-1的rsrp门限th_n-1且所测量的rsrp小于该门限值th_n-1且ue支持增强覆盖等级n-1,则ue或uerrc层认为其处于增强覆盖等级n-1;否则若配置了增强覆盖等级n-2的rsrp门限th_n且所测量的rsrp小于该门限值th_n-2且ue支持增强覆盖等级n-2,则ue或uerrc层认为其处于增强覆盖等级n-2;以此类推,否则若配置了增强覆盖等级1的rsrp门限th_1且所测量的rsrp小于该门限值th_1,则ue或uerrc层认为其处于增强覆盖等级1;否则认为其处于增强覆盖等级0。

操作2:若操作1中rrc确定发起edt,即若ue正在发起/进行edt或ue正在发起/进行edt的rrc连接恢复/建立,则rrc发送第一指示信息给mac层。所述第一指示信息用于向mac层告知rrc层发起了edt传输和/或指示mac层发起用于edt的随机接入过程。所述“rrc发送第一指示信息”也可描述为“rrc发送edt随机接入指示”或“rrc告知mac层发起edt”等,本公开不限定其描述。

操作3:若收到操作2中来自rrc层的所述第一指示信息,则mac层发起用于edt的随机接入过程。所述发起用于edt的随机接入过程指的是采用专用于edt的随机接入参数发起随机接入过程。这里的随机接入参数可以是物理随机接入资源、随机接入前导、rar窗大小、竞争解决定时器、消息3最大传输(重传)次数、rar中上行许可(或消息3传输)所允许的传输块大小等。

因为每个增强覆盖等级会对应一个前导组,uemac层在发送前导时需要根据当前ue的增强覆盖等级从该增强覆盖等级所对应的前导组中选择一个。在操作3中,优选地,所述当前ue的增强覆盖等级可以是ue根据所测量的rsrp和系统信息中所获取的用于确定增强覆盖等级的rsrp门限值进行比较所确定的(参见3gpp技术规范文档36.321ve0),备选地,也可以是mac层从rrc层获取的,即在操作2中rrc层还会将操作1中所确定的当前ue的增强覆盖等级告知mac层。

操作4:在用于edt的随机接入过程中,在rar接收不成功时,若发生增强覆盖等级爬升,mac层比较将要传输的数据量和当前(爬升后)ue的增强覆盖等级所对应的传输块大小门限值(prach-tbs-edt)确定接下来的前导重传是否用于edt。若将要传输的数据量大于相应的增强覆盖等级的传输块大小门限值时,mac层向rrc层发送(或指示)第二指示信息,可选地,mac层在收到来自rrc层的第三指示信息(见操作5)时继续随机接入资源的选择。所述第二指示信息用于指示上述将要传输的数据总量大于所述传输块大小门限值而无法进行edt的情况,或者也可以直接描述为edt不适用,需要执行回退,或edt失败等。若将要传输的数据量小于或等于相应的增强覆盖等级的传输块大小门限值时,mac继续进行用于edt的随机接入过程即继续随机接入资源的选择,此时mac层不向rrc层发送第二指示信息。上述过程中继续进行随机接入资源的选择进一步描述为:若mac层没有发送第二指示信息给rrc层,则继续随机接入资源的选择(这里的随机接入资源是指用于edt的随机接入资源),否则直到接收到来自rrc层的第三指示信息时再进行随机接入资源的选择(这里的随机接入资源指不用于edt专用的随机接入资源)。

所述增强覆盖等级爬升可描述为:当变量覆盖增强前导发送计数值(preamble_transmission_counter_ce)等于当前ue增强覆盖等级n所对应的增强覆盖最大前导尝试次数(maxnumpreambleattemptce)加1时,若ue和服务小区都支持下一个增强覆盖等级n+1,则ue认为当前ue的增强覆盖等级为下一个增强覆盖等级n+1。

备选地,所述第二指示信息还包括当前ue的增强覆盖等级。

操作5:当在一个用于edt的正在进行的rrc过程中,收到来自mac层的第二指示信息时,rrc层确定执行回退,取消已经发起的edt。所述回退指的是从当前的用于edt的过程回退到非edt的随机接入过程和/或rrc连接建立/恢复过程,应用传统非edt的随机接入流程或rrc连接建立/恢复流程进入rrc连接态以实现数据传输。备选地,操作5还包括rrc向mac层发送第三指示信息,所述第三指示信息用于指示mac层回退到非edt操作。更确切地,用于指示mac层采用非edt操作方式(继续)执行随机接入过程。所述第三指示信息也可称为非edt随机接入指示或回退指示,本公开并不限定其名称。

操作6:当收到来自rrc层的第三指示信息时,mac执行回退到非edt,继续进行用于非edt的随机接入过程。所述进行用于非edt的随机接入指的是采用不用于edt专用的随机接入参数来执行随机接入过程。

备选地,在示例1中还包括,若mac层收到了来自rrc层的第一指示信息,则mac层认为随机接入过程是用于edt的;否则,若mac层没有收到来自rrc层的第一指示信息或者mac层收到了来自rrc层的第三指示信息,则mac层认为随机接入过程是不用于edt的。

值得注意的是,mac层在从用于edt的随机接入过程回退到非edt的传统随机接入过程时,所述随机接入过程是同一个随机接入过程,即随机接入过程中的相关计数器如前导发送次数等并不重置。

示例2:

示例2与示例1的不同主要在于示例2中当发生增强覆盖等级变更/爬升时根据将要传输的数据量和相应增强覆盖等级的传输块大小门限值的比较来确定是否继续edt过程的确定操作是在rrc层完成,而在示例1中,该操作是在mac层完成。

本示例中,支持edt的ue确定是否使用edt机制进行数据传输的操作包括下述一个或多个:

操作1:uerrc层至少根据所测量的rsrp来确定是否发起edt。这里,确定是否发起edt还可以根据其他条件。

所述“其他条件”可以包括下述条件的一个或多个,但并不限制下述,ue在下述条件满足时确定发起edt:

条件1:非接入层nas请求为edt建立一个rrc连接且ue支持基于用户面方案的edt;

条件2:nas请求为edt恢复rrc连接且ue支持基于用户面方案的edt且ue保存有用于edt的安全参数值。所述安全参数值可以为nexthopchainingcount值。

条件3:nas指示所述请求(建立/恢复rrc连接请求)适用于edt。nas可基于所述请求的理由或请求类型(如仅数据、非信令、短信息业务、呼叫类型、移动发起类型、移动终结类型等)来确定是否适用于edt。本公开不限于这些情形。

条件4:系统信息块sib类型2中包含了用于edt的prach配置,即ue驻留的小区当前支持edt传输且广播了edt传输的参数配置。

条件5:要发送的数据量一次传输即可传完,即上行缓存中将要发送的数据加上其导致的mac头所形成的macpdu其大小小于或等于ue当前的增强覆盖等级所对应的传输块大小门限值。

所述ue当前的增强覆盖等级可由rrc根据所测量的rsrp和从系统信息中获取的用于确定增强覆盖等级的rsrp门限值来确定。举例如下:如果系统支持增强覆盖等级的范围为0~n,则如果配置了增强覆盖等级n的rsrp门限th_n且所测量的rsrp小于该门限值th_n且ue支持增强覆盖等级n,则ue或uerrc层认为其处于增强覆盖等级n;否则若配置了增强覆盖等级n-1的rsrp门限th_n-1且所测量的rsrp小于该门限值th_n-1且ue支持增强覆盖等级n-1,则ue或uerrc层认为其处于增强覆盖等级n-1;否则若配置了增强覆盖等级n-2的rsrp门限th_n且所测量的rsrp小于该门限值th_n-2且ue支持增强覆盖等级n-2,则ue或uerrc层认为其处于增强覆盖等级n-2;以此类推,否则若配置了增强覆盖等级1的rsrp门限th_1且所测量的rsrp小于该门限值th_1,则ue或uerrc层认为其处于增强覆盖等级1;否则认为其处于增强覆盖等级0。

操作2:若操作1中rrc确定发起edt,即若ue正在发起/进行edt或ue正在发起/进行edt的rrc连接恢复/建立,则rrc发送第一指示信息给mac层。所述第一指示信息用于向mac层告知rrc层发起了edt传输和/或指示mac层发起用于edt的随机接入过程。所述“rrc发送第一指示信息”也可描述为“rrc发送edt随机接入指示”或“rrc告知mac层发起edt”等,所述第一指示信息也可简称为edt指示,本公开不限定其描述。

操作3:若收到操作2中来自rrc层的所述第一指示信息,则mac层发起用于edt的随机接入过程。所述发起用于edt的随机接入过程指的是采用专用于edt的随机接入参数发起随机接入过程。这里的随机接入参数可以是物理随机接入资源、随机接入前导、rar窗大小、竞争解决定时器、消息3最大传输(重传)次数、rar中上行许可(或消息3传输)所允许的传输块大小等。

因为每个增强覆盖等级会对应一个前导组,uemac层在发送前导时需要根据当前ue的增强覆盖等级从该增强覆盖等级所对应的前导组中选择一个。在操作3中,优选地,所述当前ue的增强覆盖等级可以是ue根据所测量的rsrp和系统信息中所获取的用于确定增强覆盖等级的rsrp门限值进行比较所确定的(参见3gpp技术规范文档36.321ve0),备选地,也可以是mac层从rrc层获取的,即在操作2中rrc层还会将操作1中所确定的当前ue的增强覆盖等级告知mac层。

操作4:在用于edt的随机接入过程中,在rar接收不成功时,若发生增强覆盖等级爬升,mac层向rrc层发送(或指示)第四指示信息。所述第四指示信息用于指示发生了增强覆盖等级变更/爬升,或者理解为请求是否继续edt。可选地,mac层在收到来自rrc层的第三指示信息(见操作5)时继续随机接入资源的选择,也就是说mac层在收到第三指示信息之前中断正在进行的随机接入过程,或者描述为mac层推迟随机接入资源的选择,直到收到来自rrc层的第三指示信息。

所述增强覆盖等级爬升可描述为:当变量覆盖增强前导发送计数值(preamble_transmission_counter_ce)等于当前ue增强覆盖等级n所对应的增强覆盖最大前导尝试次数(maxnumpreambleattemptce)加1时,若ue和服务小区都支持下一个增强覆盖等级n+1,则ue认为当前ue的增强覆盖等级为下一个增强覆盖等级n+1。

备选地,所述第四指示信息还包括当前ue的增强覆盖等级。

操作5:当在一个用于edt的正在进行的rrc过程中,收到来自mac层的第四指示信息时,rrc层比较/重新评估将要传输的数据量和当前(爬升后)ue的增强覆盖等级所对应的传输块大小门限值(prach-tbs-edt)以确定接下来的随机接入/rrc过程是否用于edt。若将要传输的数据量大于相应的增强覆盖等级的传输块大小门限值时,rrc层确定执行回退,取消已经发起的edt。所述回退指的是从当前的用于edt的过程回退到非edt的随机接入过程和/或rrc连接建立/恢复过程,应用传统非edt的随机接入流程或rrc连接建立/恢复流程进入rrc连接态以实现数据传输。可选地,还包括向mac层发送第三指示信息;所述第三指示信息用于指示mac层回退到非edt操作。更确切地,用于指示mac层采用非edt操作方式(继续)执行随机接入过程。所述第三指示信息也可称为非edt随机接入指示或回退指示,本公开并不限定其名称。若将要传输的数据量小于或等于相应的增强覆盖等级的传输块大小门限值时,rrc继续进行用于edt的过程,并向mac层指示第五指示信息,用于指示mac层继续用于edt的随机接入过程。所述第五指示信息实际上可以等同于第一指示信息,都是用于指示mac随机接入过程是用于edt的,或描述为当前处于edt过程中。

操作6:当mac层接收到来自rrc层的第三指示信息或第五指示信息时,mac层继续随机接入资源的选择来继续正在进行的随机接入过程。也可描述为,mac层推迟(delay)进行随机接入资源的选择,直到其收到来自rrc层的指示信息(第三指示信息或第五指示信息)。所述继续进行随机接入资源的选择进一步描述为:若mac收到第五指示信息,则继续随机接入资源的选择(这里的随机接入资源是指用于edt的随机接入资源),否则若接收到来自rrc层的第三指示信息时则进行随机接入资源的选择(这里的随机接入资源指不用于edt专用的随机接入资源)。在该操作中,当收到来自rrc层的第三指示信息时,mac执行回退到非edt,继续进行用于非edt的随机接入过程。所述进行用于非edt的随机接入指的是采用不用于edt专用的随机接入参数来执行随机接入过程。

备选地,在示例2中还包括,若mac层收到了来自rrc层的第一指示信息或第五指示信息,则mac层认为随机接入过程是用于edt的;否则,若mac层收到了来自rrc层的第三指示信息,则mac层认为随机接入过程是不用于edt的。

值得注意的是,mac层在从用于edt的随机接入过程回退到非edt的传统随机接入过程时,所述随机接入过程是同一个随机接入过程,即随机接入过程中的相关计数器如前导发送次数等并不重置。

示例3

示例3与示例1的不同主要在于示例3中当发生增强覆盖等级变更/爬升时,mac层根据第一指示信息和当前(爬升后)ue的增强覆盖等级来确定是否继续edt过程;而在示例1中,mac根据将要传输的数据量和当前(爬升后)ue的增强覆盖等级的传输块大小门限值的比较来确定是否继续edt过程。

本示例中,支持edt的ue确定是否使用edt机制进行数据传输的操作包括下述一个或多个:

操作1:uerrc层至少根据所测量的rsrp来确定是否发起edt。这里,确定是否发起edt还可以根据其他条件。

所述“其他条件”可以包括下述条件的一个或多个,但并不限制下述,ue在下述条件满足时确定发起edt:

条件1:非接入层nas请求为edt建立一个rrc连接且ue支持基于用户面方案的edt;

条件2:nas请求为edt恢复rrc连接且ue支持基于用户面方案的edt且ue保存有用于edt的安全参数值。所述安全参数值可以为nexthopchainingcount值。

条件3:nas指示所述请求(建立/恢复rrc连接请求)适用于edt。nas可基于所述请求的理由或请求类型(如仅数据、非信令、短信息业务、呼叫类型、移动发起类型、移动终结类型等)来确定是否适用于edt。本公开不限于这些情形。

条件4:系统信息块sib类型2中包含了用于edt的prach配置,即ue驻留的小区当前支持edt传输且广播了edt传输的参数配置。

条件5:要发送的数据量一次传输即可传完,即要发送的数据量小于或等于ue当前的增强覆盖等级所对应的传输块大小门限值。

所述ue当前的增强覆盖等级可由rrc根据所测量的rsrp和从系统信息中获取的用于确定增强覆盖等级的rsrp门限值来确定。举例如下:如果系统支持增强覆盖等级的范围为0~n,则如果配置了增强覆盖等级n的rsrp门限th_n且所测量的rsrp小于该门限值th_n且ue支持增强覆盖等级n,则ue或uerrc层认为其处于增强覆盖等级n;否则若配置了增强覆盖等级n-1的rsrp门限th_n-1且所测量的rsrp小于该门限值th_n-1且ue支持增强覆盖等级n-1,则ue或uerrc层认为其处于增强覆盖等级n-1;否则若配置了增强覆盖等级n-2的rsrp门限th_n且所测量的rsrp小于该门限值th_n-2且ue支持增强覆盖等级n-2,则ue或uerrc层认为其处于增强覆盖等级n-2;以此类推,否则若配置了增强覆盖等级1的rsrp门限th_1且所测量的rsrp小于该门限值th_1,则ue或uerrc层认为其处于增强覆盖等级1;否则认为其处于增强覆盖等级0。

操作2:若操作1中rrc确定发起edt,即若ue正在发起/进行edt或ue正在发起/进行edt的rrc连接恢复/建立,则rrc发送第一指示信息给mac层。所述第一指示信息用于向mac层告知rrc层发起了edt传输和/或指示mac层发起用于edt的随机接入过程。所述“rrc发送第一指示信息”也可描述为“rrc发送edt随机接入指示”或“rrc告知mac层发起edt”等,本公开不限定其描述。

在本示例中,所述第一指示信息还包括可采用edt的最大增强覆盖等级。该可采用edt的最大增强覆盖等级用于指示可以采用edt参数发起/继续随机接入过程的最大增强覆盖等级。可进一步理解为:若当前ue的增强覆盖等级小于或等于所述可采用edt的最大增强覆盖等级时,可以发起/继续用于edt的随机接入流程,否则若当前ue的增强覆盖等级大于所述可采用edt的最大增强覆盖等级时,不能发起/继续用于edt的随机接入流程。所述可采用edt的最大增强覆盖等级由rrc层根据当前ue将要传输的数据量和系统信息中收到的各个增强覆盖等级对应传输块大小门限值比较结果来确定。即在满足上述“其他条件”的基础上,若将要传输的数据量小于或等于增强覆盖等级n所对应的传输块大小门限值tn但是大于增强覆盖等级n+1所对应的传输块大小门限值t(n+1)时,则rrc认为可采用edt的最大增强覆盖等级为n。在另一种情况下,若将要传输的数据量小于或等于增强覆盖等级n所对应的传输块大小门限值tn,n为ue和/或服务小区所能支持的最大增强覆盖等级时,则rrc认为可采用edt的最大增强覆盖等级为n。

操作3:若收到操作2中来自rrc层的所述第一指示信息,则mac层发起用于edt的随机接入过程。所述发起用于edt的随机接入过程指的是采用专用于edt的随机接入参数发起随机接入过程。这里的随机接入参数可以是物理随机接入资源、随机接入前导、rar窗大小、竞争解决定时器、消息3最大传输(重传)次数、rar中上行许可(或消息3传输)所允许的传输块大小等。

因为每个增强覆盖等级会对应一个前导组,uemac层在发送前导时需要根据当前ue的增强覆盖等级从该增强覆盖等级所对应的前导组中选择一个。在操作3中,优选地,所述当前ue的增强覆盖等级可以是ue根据所测量的rsrp和系统信息中所获取的用于确定增强覆盖等级的rsrp门限值进行比较所确定的(参见3gpp技术规范文档36.321ve0),备选地,也可以是mac层从rrc层获取的,即在操作2中rrc层还会将操作1中所确定的当前ue的增强覆盖等级告知mac层。

操作4:在用于edt的随机接入过程中,在rar接收不成功时,若发生增强覆盖等级爬升,mac层比较当前(爬升后)ue的增强覆盖等级和edt的最大增强覆盖等级(可以包括在第一指示信息中)以确定接下来的前导重传是否用于edt。若当前ue的增强覆盖等级大于第一指示信息中所包括的可采用edt的最大增强覆盖等级时,mac层向rrc层发送(或指示)第二指示信息,可选地,mac层在收到来自rrc层的第三指示信息(见操作5)时继续随机接入资源的选择。所述第二指示信息用于指示edt不适用,需要执行回退,或edt失败等。若当前ue的增强覆盖等级小于或等于第一指示信息中所包括的可采用edt的最大增强覆盖等级时,mac继续进行用于edt的随机接入过程即继续随机接入资源的选择,此时mac层不向rrc层发送第二指示信息。上述过程中继续进行随机接入资源的选择进一步描述为:若mac层没有发送第二指示信息给rrc层,则继续随机接入资源的选择(这里的随机接入资源是指用于edt的随机接入资源),否则直到接收到来自rrc层的第三指示信息时再进行随机接入资源的选择(这里的随机接入资源指不用于edt专用的随机接入资源)。

所述增强覆盖等级爬升可描述为:当变量覆盖增强前导发送计数值

(preamble_transmission_counter_ce)等于当前ue增强覆盖等级n所对应的增强覆盖最大前导尝试次数(maxnumpreambleattemptce)加1时,若ue和服务小区都支持下一个增强覆盖等级n+1,则ue认为当前ue的增强覆盖等级为下一个增强覆盖等级n+1。

备选地,所述第二指示信息还包括当前ue的增强覆盖等级。

操作5:当在一个用于edt的正在进行的rrc过程中,收到来自mac层的第二指示信息时,rrc层确定执行回退,取消已经发起的edt。所述回退指的是从当前的用于edt的过程回退到非edt的随机接入过程和/或rrc连接建立/恢复过程,应用传统非edt的随机接入流程或rrc连接建立/恢复流程进入rrc连接态以实现数据传输。备选地,操作5还包括rrc向mac层发送第三指示信息,所述第三指示信息用于指示mac层回退到非edt操作。更确切地,用于指示mac层采用非edt操作方式(继续)执行随机接入过程。所述第三指示信息也可称为非edt随机接入指示或回退指示,本公开并不限定其名称。

操作6:当收到来自rrc层的第三指示信息时,mac执行回退到非edt,继续进行用于非edt的随机接入过程。所述进行用于非edt的随机接入指的是采用不用于edt专用的随机接入参数来执行随机接入过程。

备选地,在示例3中还包括,若mac层收到了来自rrc层的第一指示信息,则mac层认为随机接入过程是用于edt的;否则,若mac层没有收到来自rrc层的第一指示信息或者mac层收到了来自rrc层的第三指示信息,则mac层认为随机接入过程是不用于edt的。

值得注意的是,mac层在从用于edt的随机接入过程回退到非edt的传统随机接入过程时,所述随机接入过程是同一个随机接入过程,即随机接入过程中的相关计数器如前导发送次数等并不重置。

与上述方法100相对应,本公开提供了一种用户设备ue。图2示出了根据本公开实施例的ue200的框图。如图所示,ue200包括:收发机210、处理器220和存储器230。收发机210可以用于例如接收edt的配置信息、发送随机接入前导、接收随机接入响应等。所述存储器230存储所述处理器220可执行的指令,使得所述ue200执行以上结合图1描述的方法100。

具体地,所述存储器230存储所述处理器220可执行的指令,使得ue200:在无线资源控制rrc层,确定要发起早期数据传输edt;在rrc层向媒体接入控制mac层发送第一指示信息,指示mac层发起用于edt的随机接入过程;以及在mac层响应于接收到第一指示信息,发起用于edt的随机接入过程。

在一个示例中,所述确定要发起edt是至少部分基于测量的参考信号接收功率rsrp来执行的。

在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得ue200:当增强覆盖等级爬升时,在mac层将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在mac层向rrc层发送第二指示信息,指示edt失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在mac层继续执行edt。

在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得ue200:当增强覆盖等级爬升时,在mac层将爬升后的增强覆盖等级与edt的最大增强覆盖等级进行比较;当爬升后的增强覆盖等级高于edt的最大增强覆盖等级时,在mac层向rrc层发送第二指示信息,指示edt失败;或当爬升后的增强覆盖等级低于或等于edt的最大增强覆盖等级时,在mac层继续执行edt。

在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得ue200:在rrc层响应于接收到第二指示信息,回退到非edt操作。

在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得ue200:在rrc层向mac层发送第三指示信息,指示mac层回退到非edt操作;以及在mac层响应于接收到第三指示信息,执行非edt的随机接入过程。

在一个示例中,所述edt的最大增强覆盖等级被包括在第一指示信息中。

在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得ue200:当增强覆盖等级爬升时,在mac层向rrc层发送第四指示信息,指示爬升后的增强覆盖等级;在rrc层响应于接收到第四指示信息,将要传输的数据量与爬升后的增强覆盖等级所对应的传输块大小门限值进行比较;以及当要传输的数据量大于爬升后的增强覆盖等级所对应的传输块大小门限值时,在rrc层向mac层发送第三指示信息,指示edt失败;或当要传输的数据量小于或等于爬升后的增强覆盖等级所对应的传输块大小门限值时,在rrc层向mac层发送第五指示信息,指示mac层继续执行edt。

在一个示例中,所述存储器230还存储所述处理器220可执行的指令,使得ue200:在mac层响应于接收到第三指示信息,执行非edt的随机接入过程;或在mac层响应于接收到第五指示信息,继续执行edt。

以上结合方法100所描述的各个方面,尤其是示例1~3,也适用于ue200。

运行在根据本公开的设备上的程序可以是通过控制中央处理单元(cpu)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器ram)、硬盘驱动器(hdd)、非易失性存储器(如闪速存储器)、或其他存储器系统中。

用于实现本公开各实施例功能的程序可以记录在计算机可读记录介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。

用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可编程门阵列(fpga)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。

此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如av设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。

如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1