一种无线设备的射频功率校准控制方法、装置及终端设备与流程

文档序号:32421340发布日期:2022-12-02 23:04阅读:64来源:国知局
一种无线设备的射频功率校准控制方法、装置及终端设备与流程

1.本发明涉及无线通信领域,尤其涉及一种无线设备的射频功率校准控制方法、装置及终端设备。


背景技术:

2.wifi6无线路由器生产过程中需要进行输出射频功率校准,保证输出功率符合各国标准。由于射频功率放大器(pa)功率控制因子参数的离散型,1db压缩点也有所不同,导致每个wifi6无线路由器的最大可用射频功率不完全一致,pa芯片厂家一般提供从较低的功率开始校准到线性失真(如5dbm-26dbm)为止的校准脚本供整机设计生产厂家进行生产校准参考用,从中选出每台wifi6无线路由器可用的较大功率作为出厂功率。
3.现有常规的射频功率校准方法效率较低,加上wifi6无线路由器产品和其它wifi6产品具有802.11a/b/g/n/ac/ax等多模工作模式和2.4g/5g的双频工作模式,完整校准一台wifi6无线路由器或其它wifi6产品的射频功率需要5分钟以上,每个单路仪器设备校准工位每天只能校准不足96台(按每天8小时工作时间计算),因此射频功率校准环节往往需要多路仪器设备和多操作工位才能满足一条生产线的最低流水要求,形成制约产能的瓶颈,更增加了生产的仪器设备成本和工时成本,降低了产品的竞争力。
4.因此,亟需一种无线设备的射频功率校准控制策略,来解决当前无线路由器校准效率低的问题。


技术实现要素:

5.本发明实施例提供一种无线设备的射频功率校准控制方法、装置及终端设备,以提高当前无线路由器的校准效率。
6.为了解决上述问题,本发明一实施例提供一种无线设备的射频功率校准控制方法,包括:
7.获取第一功率控制数据;其中,所述第一功率控制数据包括:第一功率值和第一功率控制因子,所述第一功率值和所述第一功率控制因子一一对应;
8.根据所述第一功率控制数据,获取目标无线设备反馈的第一误差向量幅度;
9.根据所述第一误差向量幅度,通过预设的幅度值,判断所述第一误差向量幅度是否满足幅度指标;
10.当第一误差向量幅度小于等于预设的幅度值时,则射频功率校准成功,完成所述目标无线设备的功率校准;当第一误差向量幅度大于预设的幅度值时,则通过预设的减法算法,对第一功率控制数据进行数值调整。
11.由上可见,本发明具有如下有益效果:
12.本发明公开了一种无线设备的射频功率校准控制方法,根据筛选获得的第一功率控制数据,测量功率并获取目标无线设备的第一误差向量幅度,能够满足大部分无线设备的产品质量要求,避免了使用无效的功率控制数据进行射频测试,提高了无线设备的校准
效率。同时,通过比较第一误差向量幅度和预设幅度值之间的关系,判断第一误差向量是否满足幅度指标,若满足,则完成功率校准,若不满足,则通过减法算法对第一功率控制数据进行数值调整,对于第一功率控制数据对应功率下无法满足误差向量幅度指标要求的产品,通过减法算法进行功率控制数据的调整,从而确保无线设备能够满足误差向量幅度要求,保证了无线信号的质量和无线数据的吞吐速率,且选择和固化的校准功率在保证误差向量幅度满足标准的前提下,选取较高功率和产测通过率,提高了无线设备无线覆盖的性能。
13.作为上述方案的改进,在所述获取第一功率控制数据之前,还包括:
14.获取多组第二功率控制数据;其中,每组第二功率控制数据的数值并不相同;
15.根据每组所述第二功率控制数据,获取若干试产无线设备通过射频测试生成的第二误差向量幅度;其中,所述试产无线设备与所述目标无线设备型号一致;
16.根据若干所述第二误差向量幅度,通过预设的幅度值,获得若干试产无线设备在每组所述第二功率控制数据测试下的合格率;
17.根据若干所述试产无线设备的合格率和多组所述第二功率控制数据,通过预设的合格率阈值和预设的功率阈值,筛选获得所述第一功率控制数据。
18.实施本实施例的改进方案,本实施例通过若干试产无线设备对功率控制数据进行测试,获取若干无线设备在每组功率控制数据测试下的合格率,根据预设的合格率阈值和功率阈值,获得满足试产无线设备误差向量幅度合格要求的功率控制数据,通过对试生产阶段的无线产品进行功率控制数据的摸底统计,从而为提高目标无线设备的校准效率奠定基础。
19.作为上述方案的改进,所述通过预设的减法算法,对第一功率控制数据进行数值调整,具体为:
20.根据第一功率值和当前判断次数,通过预设的第一差值,计算获得第三功率值;
21.根据第一功率控制因子和当前判断次数,通过预设的第二差值,计算获得第三功率控制因子;
22.根据所述第三功率值和所述第三功率控制因子,获取目标无线设备反馈的第三误差向量幅度,并判断所述第三误差向量幅度是否满足所述幅度指标;
23.当第三误差向量幅度小于等于预设的幅度值时,则射频功率校准成功;当第三误差向量幅度大于预设的幅度值时,则当前判断次数增加一次,再次计算第三功率值和第三功率控制因子,并重新获取目标无线设备反馈的第三误差向量幅度,直到重新获取的第三误差向量幅度小于等于与预设的幅度值,完成所述目标无线设备的功率校准。
24.实施本实施例的改进方案,本实施例通过对功率值和功率控制因子进行调整计算,并根据调整后的功率值和功率控制因子进行目标无线设备的测试,并对测试获得的误差向量幅度进行判断,若不满足则再次进行功率值和功率控制因子的循环计算,直到满足误差向量幅度要求为止,提高了无线设备的射频功率校准的准确性。
25.作为上述方案的改进,所述根据所述第一功率控制数据,获取目标无线设备反馈的第一误差向量幅度,具体为:根据所述第一功率控制数据,将所述第一功率控制数据传输给目标无线设备,以使目标无线设备根据所述第一功率控制数据进行射频测试,获得并传输第一误差向量幅度。
26.实施本实施例的改进方案,本实施例通过目标无线设备接收第一功率控制数据,从而进行射频测试,获得误差向量幅度,实现了误差向量幅度的获取,并为误差向量幅度的判断奠定了基础。
27.相应的,本发明一实施例还提供了一种无线设备的射频功率校准控制装置,包括:数据获取模块、数据反馈模块、判断模块和调整模块;
28.所述数据获取模块,用于获取第一功率控制数据;其中,所述第一功率控制数据包括:第一功率值和第一功率控制因子,所述第一功率值和所述第一功率控制因子一一对应;
29.所述数据反馈模块,用于根据所述第一功率控制数据,获取目标无线设备反馈的第一误差向量幅度;
30.所述判断模块,用于根据所述第一误差向量幅度,通过预设的幅度值,判断所述第一误差向量幅度是否满足幅度指标;
31.所述调整模块,用于当第一误差向量幅度小于等于预设的幅度值时,则射频功率校准成功,完成所述目标无线设备的功率校准;当第一误差向量幅度大于预设的幅度值时,则通过预设的减法算法,对第一功率控制数据进行数值调整。
32.作为上述方案的改进,在所述获取第一功率控制数据之前,还包括:测试模块,所述测试模块包括:测试数据获取单元、测试数据反馈单元、统计单元和筛选单元;
33.所述测试数据获取单元,用于获取多组第二功率控制数据;其中,每组第二功率控制数据的数值并不相同;
34.所述测试数据反馈单元,用于根据每组所述第二功率控制数据,获取若干试产无线设备通过射频测试生成的第二误差向量幅度;其中,所述试产无线设备与所述目标无线设备型号一致;
35.所述统计单元,用于根据若干所述第二误差向量幅度,通过预设的幅度值,获得若干试产无线设备在每组所述第二功率控制数据测试下的合格率;
36.所述筛选单元,用于根据若干所述试产无线设备的合格率和多组所述第二功率控制数据,通过预设的合格率阈值和预设的功率阈值,筛选获得所述第一功率控制数据。
37.作为上述方案的改进,所述通过预设的减法算法,对第一功率控制数据进行数值调整,具体为:
38.根据第一功率值和当前判断次数,通过预设的第一差值,计算获得第三功率值;
39.根据第一功率控制因子和当前判断次数,通过预设的第二差值,计算获得第三功率控制因子;
40.根据所述第三功率值和所述第三功率控制因子,获取目标无线设备反馈的第三误差向量幅度,并判断所述第三误差向量幅度是否满足所述幅度指标;
41.当第三误差向量幅度小于等于预设的幅度值时,则射频功率校准成功;当第三误差向量幅度大于预设的幅度值时,则当前判断次数增加一次,再次计算第三功率值和第三功率控制因子,并重新获取目标无线设备反馈的第三误差向量幅度,直到重新获取的第三误差向量幅度小于等于与预设的幅度值,完成所述目标无线设备的功率校准。
42.作为上述方案的改进,所述数据反馈模块,具体为:根据所述第一功率控制数据,将所述第一功率控制数据传输给目标无线设备,以使目标无线设备根据所述第一功率控制数据进行射频测试,获得并传输第一误差向量幅度。
43.相应的,本发明一实施例还提供了一种计算机终端设备,包括处理器、存储器以及存储在所述存储器中且被配置为由所述处理器执行的计算机程序,所述处理器执行所述计算机程序时实现如本发明所述的一种无线设备的射频功率校准控制方法。
44.相应的,本发明一实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如本发明所述的一种无线设备的射频功率校准控制方法。
附图说明
45.图1是本发明一实施例提供的无线设备的射频功率校准控制方法的流程示意图;
46.图2是本发明一实施例提供的无线设备的射频功率校准控制装置的结构示意图;
47.图3是本发明一实施例提供的第一功率控制数据的获取方法的流程示意图;
48.图4是本发明一实施例提供的预设的减法算法的流程示意图;
49.图5是本发明一实施例提供的一种终端设备结构示意图。
具体实施方式
50.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
51.实施例一
52.参见图1,图1是本发明一实施例提供的一种无线设备的射频功率校准控制方法的流程示意图,如图1所示,本实施例包括步骤101至步骤104,各步骤具体如下:
53.在本实施例中,目标无线设备对于射频功率校准标准有以下要求:1、射频功率最大值不能超过相关标准(不同国家标准有所不同);2、在标准允许范围和误差向量幅度(evm)满足指标的前提下,功率越大,无线覆盖越好,用户体验越好。3、产品射频功率离散性小体现批量产品无线性能一致性好。4、射频功率校准工位校准时间要短,一次校准通过率要高。5、由于射频功率校准工位是影响生产效率的短板节点,常规校准需配备较多仪器设备和操作工位。6、产线平均每台出厂产品所需生产工时越低,生产效率越高,经济效益和竞争力越高。7、wifi6具有802.11a/b/g/n/ac/ax等多模工作模式和2.4g/5g的双频工作模式,需保证不同工作模式不同信道射频功率和调制信号质量;
54.基于射频功率校准标准的要求2、3、4可知,如把射频功率校准的理想功率值在设计标准范围内适当设低,批量生产时功率校准一次通过率高,产品射频功率值离散性小,批量产品无线性能一致性好;但由于功率相应降低,无线覆盖效果有所下降,特别是信号空间穿墙效果较弱,影响用户体验;
55.而基于射频功率校准的要求5、6可知,射频功率校准投入过多的仪器设备和设置过多的工位,可以满足生产线流水需要,但每台产品工时成本会增加。
56.步骤101:获取第一功率控制数据;其中,所述第一功率控制数据包括:第一功率值和第一功率控制因子,所述第一功率值和所述第一功率控制因子一一对应。
57.在本实施例中,在所述获取第一功率控制数据之前,还包括:
58.获取多组第二功率控制数据;其中,每组第二功率控制数据的数值并不相同;
59.根据每组所述第二功率控制数据,获取若干试产无线设备通过射频测试生成的第二误差向量幅度;其中,所述试产无线设备与所述目标无线设备型号一致;
60.根据若干所述第二误差向量幅度,通过预设的幅度值,获得若干试产无线设备在每组所述第二功率控制数据测试下的合格率;
61.根据若干所述试产无线设备的合格率和多组所述第二功率控制数据,通过预设的合格率阈值和预设的功率阈值,筛选获得所述第一功率控制数据。
62.在一具体的实施例中,预设的幅度值为:误差向量幅度evm≦-35db;合格率阈值为:合格率大于等于95%;预设的功率阈值为:17dbm~20dbm(50-100mw)范围之间。
63.在一具体的实施例中,请参见图3,可通过程序进行理想功率pn值选取的测量统计,包括步骤301至步骤305:
64.步骤301:程序初始化,设置n的初始值为14;
65.步骤302:通过n=14对应的功率值对预设数目的设备(数目由测试员确定)进行功率测量,并记录n值对那个的功率值pn和误差向量幅度evm值;
66.步骤303:对n值进行判断:若n=52,则进入步骤304;若n≠52,则n+1并进入到步骤302;
67.步骤304:将统计的pn和evn值统计成报表(如表1);
68.步骤305:并选取95%以上evm值合格的n值和pn值(若用户需要功率高的设备,则可选取90%以上evm值合格的n值和pn值),以提供给产品校准使用。
69.在一具体的实施例中,为更好的说明,以802.11ax工作模式80mhz带宽、149信道测试为例,整机电路板设计的传导功率指标要求为17-20dbm(50-100mw),误差向量幅度evm≦-35db:产阶段抽取100个pcba电路板,按常规方法摸底校准功率值pn和功率控制因子参数n;
70.100个电路板802.11ax80mhz带宽149信道射频指标统计结果如表1所示:
71.[0072][0073]
表1
[0074]
如表1所示,兼顾较高的功率值、较高的射频功率校准通过率、以及校准要求(传导功率指标要求为17-20dbm(50-100mw)、误差向量幅度evm≦-35db),本例选理想功率20dbm(功率校准通过率96%)为批量生产初始校准功率值。
[0075]
步骤102:根据所述第一功率控制数据,获取目标无线设备反馈的第一误差向量幅度。
[0076]
在本实施例中,所述根据所述第一功率控制数据,获取目标无线设备反馈的第一误差向量幅度,具体为:根据所述第一功率控制数据,将所述第一功率控制数据传输给目标无线设备,以使目标无线设备根据所述第一功率控制数据进行射频测试,获得并传输第一误差向量幅度。
[0077]
步骤103:根据所述第一误差向量幅度,通过预设的幅度值,判断所述第一误差向量幅度是否满足幅度指标。
[0078]
在一具体的实施例中,
[0079]
步骤104:当第一误差向量幅度小于等于预设的幅度值时,则射频功率校准成功,完成所述目标无线设备的功率校准;当第一误差向量幅度大于预设的幅度值时,则通过预设的减法算法,对第一功率控制数据进行数值调整。
[0080]
在本实施例中,所述通过预设的减法算法,对第一功率控制数据进行数值调整,具体为:
[0081]
根据第一功率值和当前判断次数,通过预设的第一差值,计算获得第三功率值;
[0082]
根据第一功率控制因子和当前判断次数,通过预设的第二差值,计算获得第三功率控制因子;
[0083]
根据所述第三功率值和所述第三功率控制因子,获取目标无线设备反馈的第三误差向量幅度,并判断所述第三误差向量幅度是否满足所述幅度指标;
[0084]
当第三误差向量幅度小于等于预设的幅度值时,则射频功率校准成功;当第三误差向量幅度大于预设的幅度值时,则当前判断次数增加一次,再次计算第三功率值和第三功率控制因子,并重新获取目标无线设备反馈的第三误差向量幅度,直到重新获取的第三误差向量幅度小于等于与预设的幅度值,完成所述目标无线设备的功率校准。
[0085]
在一具体的实施例中,如生产厂家注重无线覆盖效果,可设置较高的功率pn开始,校准一次通过率相应会降低,个别pa和滤波器有损坏的危险。为预防这个风险,校准工位电源要设置限流功能,因为校准时pa如超过1db压缩点工作在非线性区,电流会激增导致pa或滤波器损坏,限流可有效保护pa。功率校准完成后,赋值固化了射频功率因子参数,pa恢复工作在线性区,不会导致出厂产品工作在异常的大电流状态而损坏。
[0086]
在一具体的实施例中,为更好的说明功率值和功率控制因子的校准步骤,请参见图4,包括以下步骤:
[0087]
步骤401:程序初始化,设定n的初始值为43,即95%合格率对应的pn功率值;
[0088]
步骤402:根据n=43所对应的功率进行产品的测试,并记录pn值和evm值;
[0089]
步骤403:对evm值进行判断:若evm值满足evm≤-35dbm的条件时,则进入步骤404;若evm值不满足evm≤-35dbm的条件是,则n-1,并回到步骤402;
[0090]
步骤404:确认pn值和evm值,并固化校准值,完成产品的校准。
[0091]
其中,在批量产线上,考虑到功率控制因子有轻微离散性,按表1的统计数据,兼顾较高的功率值和较高的射频功率校准通过率,本例选理想功率20dbm(功率校准通过率96%)为批量生产初始设置校准功率值。软件控制脚本的功率控制因子直接从稍大的n=43(即功率约20.5dbm)开始测量,如一次校准通过,仪器记录功率值即可锁定功率控制因子结束。
[0092]
在一具体的实施例中,如第一次校准无法通过(不满足evm≦-35db),软件控制脚本自动置功率控制因子为n-1,即降低功率约0.5db再测量,通过即可锁定功率控制因子结束校准,否则以此类推,最终自动选取17dbm以上满足evm≦-35db的判合格。反之判不合格品。
[0093]
在一具体的实施例中,由于pa芯片功率的平坦度容易满足芯片的要求,本实施例选择有代表性的802.11g/n/ax工作模式且分别在不同且有代表性的信道进行校准,也同步检测了通带平坦度指标,而不是像传统方式在每个工作模式分别在不同信道都校准,这样也提高了校准效率,通过选有代表性的其它工作模式802.11g/n在有代表性的信道上类推,实现了射频功率的校准。
[0094]
在一具体的实施例中,软件研发工程师和产线支持工程师都可以轻松掌握这种wifi6射频功率校准方法,提高wifi6路由器产品和其它wifi6产品的生产效率和产线产能,满足当前迅猛的wifi6产品量产需求。
[0095]
本实施例、根据筛选获得的第一功率控制数据,获取目标无线设备进行第一误差向量幅度,并通过比较第一误差向量幅度和预设幅度值之间的关系,判断第一误差向量是否满足幅度指标,若满足,则完成功率校准,若不满足,则通过减法算法对第一功率控制数据进行数值调整,通过对国家标准、用户体验、生产效率、工时成本和产能需求的分析,抓住射频功率校准的本质特征,通过应用批量生产前的试产摸底常规校准测试取得相应数据,在批量生产时90%、95%或98%(按需求自行选取)以上产品按某功率测试完成即可校准完
成,余下部分自动降低功率控制因子在标准内完成校准,较大地提高了生产效率和兼顾较好射频覆盖性能。本实施例的单设备单工位射频功率校准时间是一般通用常规方法的2/5,提高了生产效率和产品的竞争力。
[0096]
实施例二
[0097]
参见图2,图2是本发明一实施例提供的一种无线设备的射频功率校准控制装置的结构示意图,包括:数据获取模块201、数据反馈模块202、判断模块203和调整模块204;
[0098]
所述数据获取模块201,用于获取第一功率控制数据;其中,所述第一功率控制数据包括:第一功率值和第一功率控制因子,所述第一功率值和所述第一功率控制因子一一对应;
[0099]
所述数据反馈模块202,用于根据所述第一功率控制数据,获取目标无线设备反馈的第一误差向量幅度;
[0100]
所述判断模块203,用于根据所述第一误差向量幅度,通过预设的幅度值,判断所述第一误差向量幅度是否满足幅度指标;
[0101]
所述调整模块204,用于当第一误差向量幅度小于等于预设的幅度值时,则射频功率校准成功,完成所述目标无线设备的功率校准;当第一误差向量幅度大于预设的幅度值时,则通过预设的减法算法,对第一功率控制数据进行数值调整。
[0102]
作为上述方案的改进,在所述获取第一功率控制数据之前,还包括:测试模块205,所述测试模块205包括:测试数据获取单元、测试数据反馈单元、统计单元和筛选单元;
[0103]
所述测试数据获取单元,用于获取多组第二功率控制数据;其中,每组第二功率控制数据的数值并不相同;
[0104]
所述测试数据反馈单元,用于根据每组所述第二功率控制数据,获取若干试产无线设备通过射频测试生成的第二误差向量幅度;其中,所述试产无线设备与所述目标无线设备型号一致;
[0105]
所述统计单元,用于根据若干所述第二误差向量幅度,通过预设的幅度值,获得若干试产无线设备在每组所述第二功率控制数据测试下的合格率;
[0106]
所述筛选单元,用于根据若干所述试产无线设备的合格率和多组所述第二功率控制数据,通过预设的合格率阈值和预设的功率阈值,筛选获得所述第一功率控制数据。
[0107]
作为上述方案的改进,所述通过预设的减法算法,对第一功率控制数据进行数值调整,具体为:
[0108]
根据第一功率值和当前判断次数,通过预设的第一差值,计算获得第三功率值;
[0109]
根据第一功率控制因子和当前判断次数,通过预设的第二差值,计算获得第三功率控制因子;
[0110]
根据所述第三功率值和所述第三功率控制因子,获取目标无线设备反馈的第三误差向量幅度,并判断所述第三误差向量幅度是否满足所述幅度指标;
[0111]
当第三误差向量幅度小于等于预设的幅度值时,则射频功率校准成功;当第三误差向量幅度大于预设的幅度值时,则当前判断次数增加一次,再次计算第三功率值和第三功率控制因子,并重新获取目标无线设备反馈的第三误差向量幅度,直到重新获取的第三误差向量幅度小于等于与预设的幅度值,完成所述目标无线设备的功率校准。
[0112]
作为上述方案的改进,所述数据反馈模块202,具体为:根据所述第一功率控制数
据,将所述第一功率控制数据传输给目标无线设备,以使目标无线设备根据所述第一功率控制数据进行射频测试,获得并传输第一误差向量幅度。
[0113]
本实施例通过数据获取模块进行第一功率控制数据的获取,并通过数据反馈模块接收目标无线设备反馈的第一误差向量幅度,从而通过判断模块进行第一误差向量幅度的幅度指标判断,通过调整模块根据判断结果进行第一功率数据的数值调整,直到第一误差向量幅度满足幅度指标,完成目标无线设备的功率校准。本发明基于筛选获得的第一功率控制数据,能够满足大部分无线设备的产品质量要求,避免了使用无效的功率控制数据进行射频测试,提高了无线设备的校准效率。
[0114]
实施例三
[0115]
参见图5,图5是本发明一实施例提供的终端设备结构示意图。
[0116]
该实施例的一种终端设备包括:处理器501、存储器502以及存储在所述存储器502中并可在所述处理器501上运行的计算机程序。所述处理器501执行所述计算机程序时实现上述各个无线设备的射频功率校准控制方法在实施例中的步骤,例如图1所示的无线设备的射频功率校准控制方法的所有步骤。或者,所述处理器执行所述计算机程序时实现上述各装置实施例中各模块的功能,例如:图2所示的无线设备的射频功率校准控制装置的所有模块。
[0117]
另外,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行如上任一实施例所述的无线设备的射频功率校准控制方法。
[0118]
本领域技术人员可以理解,所述示意图仅仅是终端设备的示例,并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备还可以包括输入输出设备、网络接入设备、总线等。
[0119]
所称处理器501可以是中央处理单元(central processing unit,cpu),还可以是其他通用处理器、数字信号处理器(digital signal processor,dsp)、专用集成电路(application specific integrated circuit,asic)、现成可编程门阵列(field-programmable gate array,fpga)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器501是所述终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分。
[0120]
所述存储器502可用于存储所述计算机程序和/或模块,所述处理器501通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器502内的数据,实现所述终端设备的各种功能。所述存储器502可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(smart media card,smc),安全数字(secure digital,sd)卡,闪存卡(flash card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
[0121]
其中,所述终端设备集成的模块/单元如果以软件功能单元的形式实现并作为独
立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、u盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(rom,read-only memory)、随机存取存储器(ram,random access memory)、电载波信号、电信信号以及软件分发介质等。
[0122]
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
[0123]
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1