用于放电灯的镇流器的制作方法

文档序号:8141969阅读:264来源:国知局
专利名称:用于放电灯的镇流器的制作方法
技术领域
本发明涉及一种用于放电灯的镇流器(ballast),该镇流器以高频功率开启放电灯。
背景技术
日本专利号No.3106592公开了一种包括一直流电源和一逆变器电路的用于放电灯的镇流器。直流电源接收一输入电压,并且为逆变器电路提供一已调节的直流输出电压。逆变器电路将该直流输出电压转换为一高频电压,以将其作用于放电灯而驱动放电灯。直流电源包括一电感、一电容和一开关元件,并且通过开启和关闭该输入电压,在一滤波电容两端产生一预定直流输出电压。逆变器电路包括串联连接后与滤波电容并联的两个开关元件,并且通过交替地开启和关闭这两个开关元件产生一高频电压。该镇流器还包括一第一控制单元,开启和关闭直流电源的开关元件,以将直流输出电压保持在一预定值;一第二控制单元,开启和关闭逆变器电路的开关元件,以将来自逆变器电路的高频电压保持在一预定值,或者改变高频电压;以及一驱动电路,接收分别从第一控制单元和第二控制单元产生的一第一控制信号和一第二控制信号,并且产生一用以驱动开关元件的信号。
在该常规镇流器中,控制直流电源的第一控制单元和控制逆变器电路的第二控制单元形成为分立的集成控制电路,并且设计为每个集成控制电路包括一驱动电路。因此,安装有这两个集成控制电路的印刷电路板上的电路图形会受到限制,并且直流电源和逆变器电路的安装位置,特别是用于它们中的开关元件的安装位置的灵活度很低,所以难以小型化镇流器电路。

发明内容
实现本发明是为了解决上述不足,本发明的目的在于提供一种可小型化的用于放电灯的镇流器。按照本发明的用于放电灯的镇流器包括一直流电源、一逆变器电路、一负载电路以及一集成控制电路。该直流电源接收一输入电压和提供一已调节的直流输出电压。该直流电源包括一开关元件,该开关元件以一受控方式被驱动开启和关闭,以提供该直流输出电压。该逆变器电路将该直流输出电压转换为一高频电压。该逆变器电路包括至少一对的两个开关元件,该开关元件串联地跨接在该直流输出电压的两端,并且被控制为交替地开启和关闭,以提供该高频电压。该负载电路接收该高频电压,以将其作用于放电灯,用以驱动该放电灯。该集成控制电路控制该直流电源和该逆变器电路的该开关元件。该集成控制电路包括一第一控制单元、一第二控制单元和一驱动电路。该第一控制单元产生一第一控制信号,用于控制该直流电源的该开关元件。该第二控制单元产生一第二控制信号,用于控制该逆变器电路的开关元件。该驱动电路提供驱动信号,用以按照该第一控制信号和该第二控制信号,驱动该直流电源和该逆变器电路的每个开关元件。
如上所述,因为用以控制直流电源和逆变器电路的控制电路被集成到单个部件中,可减少安装于印刷电路板上的部件的数量,因此可简化该印刷电路板上的电路图形,结果直流电源、逆变器电路和负载电路在印刷电路板上的安装位置灵活度高。所以镇流器可小型化。
优选地,该直流电源是一升压斩波电路,用以将输入电压升压到该直流输出电压。也优选地,该负载电路包括相互配合而形成一共振电路的一电感和一电容,该高频电压经过该共振电路作用于该放电灯。该集成控制电路包括一启动器电路、一第一定时器和一选择器。该启动器电路提供一受控功率,用以激励该第一控制单元、该第二控制单元和该驱动电路。一旦激励该第一控制单元、该第二控制单元和该驱动电路,该第一定时器开始计时,用以限定一预热时间期间,在该预热时间期间内,该放电灯的灯丝被加热,并且用以限定一后续的灯启动时间期间,在该灯启动时间期间内一启动电压作用于该放电灯。该选择器响应于该第一定时器的输出,改变该逆变器电路的开关元件的占空率和开关频率中的至少一个,该逆变器电路用以在该预热时间期间内提供一预热电流到该灯丝,并且用以在该灯启动时间期间内提供该启动电压。如上所述,该从预热到启动一直控制着放电灯的电路也设置于单个集成控制电路中。
而且,优选地,该集成控制电路包括一调光器控制单元,该调光器控制单元接收一外部调光信号,并且将其转换为一内部调光信号,供应至该第二控制单元,用以改变该放电灯的灯输出。与此相关,该逆变器电路包括一灯监测器,该灯监测器监测该放电灯的灯工作状态,并且提供标示该工作状态的一检测信号。这时,该调光器控制单元包括一信号转换器,该信号转换器将该外部调光信号转换为该内部调光信号;以及一比较器单元,该比较器单元比较该内部调光信号与该检测信号,并且将反映一比较结果的一校正信号提供到该第二控制单元。该第二控制单元响应于该校正信号,改变该逆变器电路的开关元件的占空率和开关频率中的至少一个,用以调节该放电灯。因此,放电灯的亮度可按照放电灯的工作状态来改变。
优选地,该调光器控制单元保持禁能,直至该第一控制单元、该第二控制单元和该驱动电路被激励,以激活该直流电源和该逆变器电路的开关元件为止。这时,可防止过度的压力施加于构成逆变器电路和负载电路的电路元件。
而且,优选地,该调光器控制单元保持禁能,直至该灯启动时间期间结束为止。这时,即使调光器控制单元在该期间无意地接收到外部调光信号,放电灯仍可确定地启动,而不受该外部调光信号的影响。
而且,优选地,本发明的镇流器还包括一灯监测器,该灯监测器监测该放电灯的工作状态,并且提供一标示所监测的灯工作状态的监测器信号。与此相关,该集成控制电路包括一故障鉴别器和一第一输出限制器。该故障鉴别器分析该监测器信号,以确定它是否标示该放电灯的异常状态,并且在该异常状态持续了一预定临界时间期间时提供一故障信号。该第一输出限制器响应于该故障信号,提供一第一限制信号到该第一和第二控制单元中的至少一个,由此该第一和第二控制单元中的至少一个进行动作,以减少或停止提供该输出。因此,在检测到放电灯的异常状态时,通过减少或停止提供输出到放电灯,可防止过度的压力施加于构成逆变器电路和负载电路的电路元件。
这时,优选地,该集成控制电路包括一第三定时器,该第三定时器限定一受限时间期间,在该受限时间期间,该第一输出限制器被使能,以保持提供该第一限制信号,该第三定时器进行工作,以在该受限时间期间过去之后激活该第一定时器,以再次给出用以重启该放电灯的该预热时间期间和该灯启动时间期间。因此,在利用对异常状态的检测来保护电路之后,该第三定时器可重启放电灯,并且如果异常状态已消除,则放电灯可自动重启。
而且,优选地,均由该第一定时器限定的该预热时间期间以及该灯启动时间期间与一环境温度成正比例地变化,由该故障鉴别器限定的该临界时间期间与该环境温度成反比例地变化,以及由该第三定时器限定的该受限时间期间与该环境温度成正比例地变化。这确保了直流电源和逆变器电路的正确控制和放电灯的稳定操作,即使环境温度已随着环境因素或放电灯的异常状态有所改变。
进而,优选地,本发明的镇流器包括一检测该直流电源的输出电压的功率输出检测器单元。基于该测得的直流电压,该第一控制单元通过反馈方法改变直流电源的开关元件的占空率,以给出一固定的直流输出电压。另一方面,该功率输出检测器监测流过逆变器电路和负载电路之一的共振电流的波形,并且该故障鉴别器分析该波形的相位,以确定放电灯的异常状态。因此,通过在放电灯变为异常状态时所产生的共振电流的超前相运动,可防止过度的压力施加于电路元件。
而且,该功率输出检测器单元制备于集成控制电路中,并且只要该直流电源的输出电压小于一预定电平,提供一第一禁止信号到第一输出限制器,以阻止该第一输出限制器发出第一限制信号。如果在直流电源的直流输出电压上升时所见的一过渡期间中,逆变器电路的输入电压下降,尽管放电灯正常,在负载电路中的共振电路中会出现超前相运动。这时,产生第一禁止信号可消除过渡期间中不正确的异常状态的检测,并且用以进行稳定控制。
代替利用第一禁止信号,该第一输出限制器可被阻止提供第一限制信号,直至由第一定时器所限定的预热时间已过去为止。这时,在直流输出电压上升时所见的在过渡期间中的不正确异常状态检测也可消除,并且可进行稳定的控制。第一输出限制器可在一时间区间被阻止提供第一限制信号,该时间区间从预热时间区间的末尾开始,在灯启动时间期间过去之时或之前结束。
本发明的镇流器还包括一功率输入监测器,该功率输入监测器监测一供应至该直流电源的输入电压,并且提供一标示所监测的输入电压的输出。这时,该集成控制电路包括一比较器,该比较器比较该输入电压与一第一阈值,并且在该输入电压超过该阈值时,将该第一定时器、该第一控制单元和该第二控制单元使能。一般地,在直流电源的输入电压为低时,输出一预定输出会对逆变器的开关元件和直流电源造成大的压力。所以,在输入电压为低时,将直流电源和逆变器禁能,而在输入电压变得充分高时,将它们使能,可保护电路元件。
优选地,该比较器比较该直流电源的该输入电压与一小于该第一阈值的第二阈值,并且提供一低压标示信号,直至该输入电压在下降到该第二阈值以下之后又上升到该第一阈值以上为止。在该低压标示信号已持续了一预定参考时间期间时,该第二禁止器可将该直流电源和该逆变器电路禁能。如果直流电源的输入电压为一脉动流动电压,则具有滞后特性的用以检测输入电压的比较器,可激活逆变器电路,而不受瞬间的电压下降的影响,并且放电灯可稳定地发光。然而,如果输入电压持续下降到较低的第二阈值以下的期间变长,则逆变器电路和放电灯将遭受不必要的压力。所以,这种情况下,第二禁止器将直流电源和逆变器电路禁能,由此保护镇流器和放电灯。
而且,优选地,集成控制电路包括一第二输出限制器,该第二输出限制器在所测得的输出电压下降到一阈值以下时提供一第二限制信号。该第二限制信号使得该第二控制单元降低该逆变器电路的输出。来自该第二输出限制器的该第二限制信号在一时间期间被无效,该时间期间从该灯启动时间期间的起始开始,在一等于或早于该灯启动时间期间的末尾的时间结束。当直流电源的输出电压由于某些原因下降到一预定值时,流过逆变器电路的共振电流的波形变为一超前相,并且逆变器电路的开关元件将遭受压力。这时,通过提供第二输出限制器来降低逆变器电路的输出可防止产生不合需要的压力。此外,由于在直流电源的输出功率相对不稳定的灯启动时间期间,第二输出限制器的第二限制信号被无效,所以放电灯可确定地从启动转移到稳定发光。
进而,优选地,该集成控制电路包括检测该放电灯的故障状态的故障检测装置。该故障检测装置提供一输出限制信号到该第一和第二控制单元,用以限制该直流电源和该逆变器电路的输出,并且在该故障状态已消除时,提供一释放信号到该第一和第二控制单元,由此恢复该直流电源和该逆变器电路。这时,优选地,该集成控制电路还包括一延迟电路,该延迟电路响应于该释放信号,将提供到该第一和第二控制单元的用以释放该输出限制的该释放信号延迟一预定时间,并且首先提供该释放信号到该第二控制单元,然后,提供到该第一控制单元。因此,即使意外地输出释放信号,放电灯的异常状态可在直流电源和逆变器电路已恢复之后被立即检测到,这时从直流电源提供到逆变器电路的电压为低。因此,异常状态可在部件和元件几乎不遭受压力的状态下被检测到。
优选地,该第一控制单元提供该第一控制信号,该第一控制信号与一环境温度成反比例地改变该直流电源的输出直流电压,并且该第二控制单元提供该第二控制信号,该第二控制信号与该环境温度成正比例地改变该直流电源的一高频输出电压。
该集成控制电路,以及该直流电源和该逆变器电路安装于单个印刷电路板上,并且该直流电源的开关元件排列在该驱动电路的输出端附近,该驱动电路响应于该第一控制单元的第一控制信号而输出该驱动信号,该逆变器电路的开关元件排列在该驱动电路的输出端的附近,该驱动电路响应于该第二控制单元的第二控制信号而输出该驱动信号,该直流电源和该逆变器电路的开关元件以并排关系排列。通过这样的安排,可简化印刷电路板上的电路图形,并且可抑制产生会造成不正确操作的噪声,多个开关元件可以最优方式来排列。更优选地,容纳集成控制单元的矩形封装在其相对的横向侧面上具有引线,用于连接印刷电路板上的信号线,并且该封装在其相对的纵向端附近的部分,分别提供有功率输入端和信号输出端,并且直流电源、集成控制单元、逆变器电路单元和负载电路沿着该封装的长度方向顺序排列。


图1是按照本发明第一实施例的用于放电灯的镇流器的电路图。
图2是用于说明上述镇流器的操作的波形图。
图3、4和5是组成上述镇流器的各部分的布局图。
图6是按照本发明第二实施例的用于放电灯的镇流器的电路图。
图7是说明第二实施例的改型实施例的电路图。
图8是按照本发明第三实施例的用于放电灯的镇流器的电路图。
图9是用于说明上述镇流器的操作的波形图。
图10是说明用于上述镇流器的定时器的温度特性的示意图。
图11是说明用于上述镇流器的定时器的温度特性的坐标图。
图12是按照本发明第四实施例的用于放电灯的镇流器的电路图。
图13是用于说明上述镇流器的操作的波形图。
图14是按照本发明第五实施例的用于放电灯的镇流器的电路图。
图15是图14的具体电路图。
图16是用于说明上述镇流器的操作的波形图。
图17是按照本发明第六实施例的用于放电灯的镇流器的电路图。
图18是用于说明上述镇流器的操作的波形图。
图19是按照本发明第七实施例的用于放电灯的镇流器的电路图。
图20是图19的具体电路图。
图21是按照本发明第八实施例的用于放电灯的镇流器的电路图。
图22是用于说明上述镇流器的操作的波形图。
图23是按照本发明第九实施例的用于放电灯的镇流器的电路图。
具体实施例方式
图1为按照本发明第一实施例的用于放电灯的镇流器。该镇流器包括一整流电路10,连接于一交流电源并且提供一整流直流电压;一直流电源20,接收该整流直流电压并且提供一预定的已调节直流输出电压;一逆变器电路30,将该直流输出电压转换为高频电压;以及一负载电路40,从逆变器电路30接收该高频电压并且将其作用于放电灯L。
直流电源20组成为一升压(step-up)斩波电路,包括一开关元件21、一电感22和一滤波电容23。开关元件21由MOSFET实现,其串联连接于电感22后与整流电路10并联,并且高频地开启和关闭,以经过二极管24在滤波电容23中累计一滤波电压。用以开启和关闭开关元件21的第一控制信号,由集成控制电路100中所提供的第一控制单元121来产生。第一控制信号供应至驱动电路122,并且转换为一驱动信号,然后作用于开关元件21。
逆变器30是半桥逆变器电路的形式,其包括与滤波电容23并联的开关元件31、32的串联电路。每个开关元件31、32由MOSFET实现。逆变器30通过交替地开启和关闭开关元件31、32,将来自直流电源20的直流输出电压转换为一高频电压。用以开启和关闭开关元件31、32的第二控制信号,由集成控制电路100中所提供的第二控制单元131来产生。第二控制信号供应至驱动电路132,并且转换为一驱动信号,然后作用于开关元件31、32。
负载电路40由一串联电路组成,该串联电路包括一电感41、一电容42和一隔直电容43,并且连接于低端(low-side)开关元件31的漏极和源极之间。放电灯L并联连接于电容42。电感41和电容42相互配合而形成一共振电路,该共振电路随着由逆变器电路30的开关元件31、32的开关操作所产生的高频电压,产生一高频共振电流,并且将共振电流作用于放电灯L以驱动它。
除了第一控制单元121、第二控制单元131和驱动电路122、132之外,在单个芯片中,集成控制电路100还具有一启动器电路110、一第一定时器140和一选择器150。启动器电路110从滤波电容23中接收一电压,产生一加在电容50两端的控制电压Vcc,并且将控制电压Vcc提供给集成控制电路100的每个部分,以激励它们。也就是说,当镇流器连接于交流电源时,第一控制单元121会响应于来自启动器电路110的控制电压,产生第一控制信号以开启和关闭直流电源20的开关元件21,第二控制单元131产生第二控制信号以交替地开启和关闭逆变器电路30的开关元件31、32。这时,第一定时器140开始计时。
第一定时器140和选择器150通过在启动开始一段时间过去后,改变逆变器电路30的开关元件31、32的开关频率,来改变提供到放电灯L的电流和电压。也就是说,它们获得一预热电流用以预热放电灯,一启动电流用以启动放电灯,以及一发光保持电流用以保持启动之后的稳定发光。第一定时器140具有两个输出端OUT1、OUT2。如图2中所示,紧接着启动之后,在时刻T0和时刻T1之间,从两个输出端OUT1、OUT2提供低电平信号给选择器150。选择器150响应于该信号,发出指令到第二控制单元131,从而逆变器电路30应提供预热电流。当第一定时器140已经计数到一预定时刻T1时,从输出端OUT1的输出变为高电平,并且响应于此,选择器150发出指令到第二控制单元131,从而逆变器电路30应提供启动电流。此后,当第一定时器140已经计数到一预定时刻T2(T2>T1)时,从输出端OUT2的输出也变为高电平,并且响应于此,选择器150发出指令到第二控制单元131。从而逆变器电路30应提供发光保持电流。以这样的方式,在打开电源之后,第一定时器140安排一预热时间期间、一灯启动时间期间和一稳定发光时间期间。以使得放电灯稳定发光。每个期间中的开关频率的关系是f1(预热时间期间)>f2(灯启动时间期间)>f3(稳定发光时间期间)。
如图1所示,集成控制电路100还包括一调光器控制单元160,其接收一外部调光信号并将其转换为一内部调光信号,并且将由内部调光信号所确定的一输出校正信号提供给第二控制单元131,以改变开关元件31、32的开关频率,从而逆变器电路30的输出应改变为一由外部调光信号所指定的电平。调光器控制单元160包括一信号转换器161,将外部调光信号转换为内部调光信号;以及一输出校正器162,接收内部调光信号,发出输出校正信号,并且将其提供给第二控制单元131。输出校正器162内置有一计数器,并且如图2所示,被阻止提供输出校正信号到第二控制单元131,直到计数器在启动之后计数了预定经过的时间t1(T1<t1≤T2)为止,而与外部调光信号的存在无关。
图3至5说明封装实例,在这些封装实例中,作为集成控制电路100的具体化的IC封装与整流器10、直流电源20、负载电路40和开关元件21、31、32一起安装于单个的印刷电路板90上。IC封装100是一矩形平行六面体,并且设计为它的纵向与印刷电路板90的纵向一致。在封装100的两侧面中设置的引线101连接于印刷电路板90上的信号线,并且在封装100的一个纵向端的相邻部分设置的功率输入端102和信号输出端103,分别连接于直流电源20的输出端和开关元件21,而在另一纵向端相邻的部分设置的信号输出端104,连接到开关元件31,32。该整流器10经过一输入连接器106连接于交流电源,并且负载电路40经过输出连接器107连接到放电灯。由于包括许多电路元件和线路的集成控制电路100被装入到一个封装之中,所以可简化印刷电路板90上的电路图形,并且直流电源20的开关元件21和逆变器电路的开关元件31、32的布局灵活性变高。结果,如图3至5中所示,能够这样布局,所有沿着印刷电路板的纵向排列的开关元件,或逆变器电路的开关元件31、32和直流电源20的开关元件21以彼此间隔的关系来放置,而这会有益于印刷电路板90的小型化。
图6为按照本发明第二实施例的用于放电灯的镇流器。该实施例的镇流器与第一实施例一致,不同的是配备有一用以监测放电灯工作状态的灯监测器80,并且调光控制按照放电灯的工作状态来进行。因此,这些实施例的相似部分由相同的标记字符来标示,并且这里不进行重复的说明。
灯监测器80监测放电灯两端的电压,并且提供给比较器单元163一标示灯的操作状态的检测信号。比较器单元163将该检测信号与从信号转换器161发出的内部调光信号做比较,从而提供给第二控制单元131一校正信号,以通过反馈控制使放电灯变暗。也就是说,内部调光信号和检测信号根据所表示出的灯电压来创建,当放电灯的输出下降,并且该检测信号变得低于内部调光信号时,比较器163发出改变开关元件31、32的开/关时间的校正信号,而使放电灯的输出变大。并且,当该检测信号变得高于内部调光信号时,比较器163发出改变开关元件31、32的开/关时间的校正信号,而使放电灯的输出变小。
如图7所示,检测放电灯工作状态的灯监测器,可利用电阻81两端的电压作为表示放电灯工作状态的检测信号。电阻81连接于低端开关元件31的源极和地之间。在该改型的实施例中,集成电路用作接收内部调光信号的输出校正器,并且如图7所示,该集成电路包括一运算放大器164、一电阻165和一电容166。内部调光信号输入到运算放大器164的同相输入端,来自灯监测器81的检测信号经过一电阻165输入到运算放大器164的反相输入端,并且一电容166连接于运算放大器164的输出端和反相输入端之间。为了按照外部调光信号调节放电灯,运算放大器164将该检测信号与该内部调光信号做比较,以提供用以改变开关频率的校正信号,从而稳定从逆变器电路30到放电灯的灯电流。用作集成元件的电阻165和电容166可形成于集成控制电路100的外部。
图8为按照本发明第三实施例的用于放电灯的镇流器。该实施例的镇流器与图6中所示的第二实施例一致,不同的是还包括一故障鉴别器170和一第一输出限制器180。所以,这些实施例的相似部分由相同的标记字符来标示,并且这里不进行重复说明。故障鉴别器170包括一故障检测器171,其分析来自灯监测器80的表示灯电压的电压,以确定放电灯是否处于异常状态,并且在异常状态已持续了由第二定时器172所决定的一预定临界定时器期间时,提供一故障信号。第一输出限制器180响应于该故障信号,分别提供一限制信号到第一控制单元121和第二控制单元131,以降低或停止直流电源20和逆变器电路30的输出。
标示着第一输出限制器180发出了第一限制信号或第二限制信号的信号,被供应至第三定时器190,并且当在第三定时器190中过去一预定的受限时间期间之后,第三定时器190提供一复位信号到第一定时器140。第一定时器140响应于该复位信号,再一次设置预热时间期间、灯启动期间和稳定的发光时间期间,以重启放电灯。
图9为说明异常状态检测时的操作的信号波形图。如果在放电灯以全功率稳定发光的同时,在时刻t3检测到放电灯的异常状态,则在时刻t4,如故障鉴别器170中的第二定时器172在该状态下计数到三个时钟脉冲时,故障鉴别器170供应故障信号至第一输出限制器180。第一输出限制器180响应于此,提供一高电平限制信号到第一控制单元121和第二控制单元131。结果,直流电源20的输出和逆变器电路30的输出下降到最低。第三定时器190在时刻t4启动操作,并且在时刻t5,如第三定时器190计数到七个时钟脉冲时,提供复位信号到第一输出限制器180和第一定时器140,从而该限制信号被改变为低电平,并且在经过预热时间期间和灯启动期间之后,第一定时器140被再次激活从而重启放电灯。如果在该时刻,异常状态已被消除,则放电灯可保持稳定的发光。如果异常状态仍未消除,则重复上述操作。并且,如果复位信号在一预定时间期间内产生多次,则认为在放电灯中有严重的异常状态进而停止镇流器。
上述异常状态可归咎于,比如放电灯中封闭气体的泄漏和灯丝的断开,二者均由于随时间的变化而造成。这样的异常状态基于流过逆变器电路的共振电流的相位来确定。也就是说,如图10所示,当放电灯正常时,当逆变器电路30的开关元件31从开状态切换到关状态时,会流过正电流。但是,如果放电灯异常,则包括电感41和电容43的共振电路中的共振电流相对于流过开关元件31的电流变为一超前相,结果是,当开关元件31从开状态切换到关状态时,该开关元件31会流过负电流。因此,放电灯的异常状态可通过在到达开关元件31的驱动信号被切断时,检查流过开关元件31的电流的相位来检测到。
另外,由于直流电源20的输出电压在放电灯的预热时间期间中总是很低,即使放电灯正常,到达逆变器30的输入电压也很低。这样,共振电流相对于流过开关元件31的电流变为一超前相,故障检测器171可检测到异常状态,并且故障鉴别器170可产生故障信号,结果就是限制了逆变器电路的输出。为了避免这种不便,在该实施例中,将第一输出限制器的工作禁能,直至直流电源20的输出电压超过一预定电平为止,以经过预热时间期间和灯启动时间期间转移到稳定的发光。
为了防止在预热时间期间中错误的输出限制,提供一功率输出检测器单元210,其检测来自直流电源20的直流输出电压,并且当该直流输出电压下降到一预定电平以下时,从功率输出检测器单元210中的第一禁止器220供应一第一禁止信号至第一输出限制器180和故障鉴别器170,以阻止第一输出限制器180限制直流电源20和逆变器电路30的输出。此外,功率输出检测器单元210总是发送该直流输出电压到第一控制单元121,从而,第一控制单元121通过基于该输出电压的反馈控制,来改变开关元件21的占空率或频率,以将该输出电压控制为一预定值。
虽然在该实施例中,第一禁止器220提供于功率输出检测器单元210中,以在直流电源20上升时输出第一禁止信号,用以阻止第一输出限制器180的工作,但是本发明并不限于此,例如可用一定时器来代替第一禁止器220。该定时器建立直流电源20的输出可上升至足够电平的时间期间,并且在该时间期间中,该定时器输出第一禁止信号。该定时器可共享第一定时器。
此外,在集成控制电路100中提供的每个定时器可利用从同一个脉冲产生器中输出的时钟脉冲。
而且,如图11中所示,第一定时器140、第二定时器172和故障鉴别器170中的定时器分别具有一温度特性,从而随着环境温度而改变将被计数的时间。第一定时器建立预热时间期间和灯启动时间期间,而当环境温度下降时,放电灯的初始放电会难以发生。为此,第一定时器具有一负温度特性,并且预热时间期间和灯启动时间期间随着环境温度的下降而延长。也就是说,时钟脉冲的宽度会随着环境温度而变化,由此改变了由相同数目的计数所决定的时间期间。
故障鉴别器170中的第二定时器172判断放电灯的异常状态是否持续了一预定时间期间,并且建立从产生异常状态到输出限制的时间期间。当放电灯中产生故障状态时,一大于正常状态时的压力(stress)会作用于构成逆变器电路30的电子部件上,而使这些电子部件的温度上升。为此,第二定时器具有一负温度特性,并且将被计数的时间期间会随着由于电子部件的温度的上升所造成环境温度的上升来缩短。因此,从产生异常状态到输出限制的时间期间变短,从而降低了作用于该电子部件的压力。
第三定时器190的任务是在伴随着检测放电灯异常状态的输出限制启动之后,复位第一定时器140;以及建立一从直流电源20和逆变器电路30的初始状态到重启的时间期间。也就是说,第三定时器建立受限的时间期间。当放电灯中产生故障状态时,一压力会作用于电子部件而使电子部件的温度上升。考虑到这一点,提供该受限的时间期间,以降低已经在该异常状态下上升的电子部件的温度。为此,第三定时器具有一正温度特性,并且该受限的时间期间随着电子部件的温度的上升而延长,由此可确保足够的时间来降低电子部件的温度。也就是说,电子部件的温度上升得越高,该受限的时间期间增加得就越多。
图12为按照本发明第四实施例的用于放电灯的镇流器。该实施例的镇流器与图8中所示的镇流器实质上相同,不同的是故障检测器171监测作用于放电灯的灯电压,以检测放电灯的异常状态。所以,这些实施例的相似部分由相同的标记字符来标示,并且这里不进行重复说明。在灯电压超过一预定阈值时,故障检测器171检测异常状态,并且在异常状态已持续了一由第二定时器172所确定的预定时间期间时,故障鉴别器170产生故障信号以限制直流电源和逆变器电路的输出。然而,即使放电灯处于正常状态,在灯启动时间期间内,灯电压仍可能超过一阈值。因此,在该实施例中,第一输出限制器180的功能在灯启动时间期间被禁能,从而,直流电源20和逆变器30的输出在灯启动时间期间不会意外地受到限制。也就是说,决定灯启动时间期间的第一定时器140在灯启动时间期间向第二定时器172提供了一使第二定时器172的操作无效的信号。由此,如图13所示,即使灯电压在灯启动时间期间暂时超过了一预定阈值,故障鉴别器170也不会产生故障信号,从而防止了直流电源20和逆变器电路30的输出受到限制。
图14为按照本发明第五实施例的用于放电灯的镇流器。该实施例的镇流器与如图1所示的镇流器相同,不同的是包括一比较器单元240和一监测直流电源20的输入电压的功率输入监测器230。因此,这些实施例的相似部分由相同的标记字符来标示,并且这里不进行重复说明。
如图15所示,功率输入监测器230包括串联连接后与整流电路10的输出端并联的一对电阻231、232;以及并联连接于该电阻232的电容233。功率输入监测器230通过电容233平滑从整流电路10输入到直流电源20的脉动流动电压,并且提供该电容两端的平滑电压到比较器单元240的同相输入端。比较器单元240比较该输入电压与第一阈值Vth1,并且在该输入电压超过第一阈值Vth1时,输出将第一控制单元121、第二控制单元131和第一定时器140使能的信号。比较器240提供于集成控制电路100中,并且它的输出被供应至AND门252、253,以及经过反相器254被供应至第一定时器140中的计时器141的STOP端。
第一定时器140从参考电源255接收一从控制电压Vcc发出的功率。第一定时器140包括一电流镜电路,其包括一连接于参考电源255和多个FET的恒定电流源256;一比较器单元142;以及计数器141。该电流镜电路被连接到一外部电容256以提供一充电和放电电流到外部电容256,以及连接到比较器单元142,它在该电容256的两端产生一三角波电压,并将该三角波电压与提供给比较器单元142的同相输入端的一参考值做比较,以发送一时钟信号到计数器141。
计数器141具有一STOP端,当STOP端的输入为高电平时,即当功率输入监测器230的输出低于阈值Vth1时,计数器停止计数以保持OUT1和OUT2的输出为低电平,如图16所示。选择器150识别该状态,并且选择器150发出一指令到第二控制单元131,从而逆变器电路30提供预热电流。此后,当STOP端的输入变为低电平时,也就是说,当功率输入监测器230的输出超过阈值Vth1,以及提供给直流电源20充分的输入时,计数器141开始计数,并且在一预定时间过去之后,计数器141在时刻T1将输出端OUT1变为高电平,并发出一指令到选择器150以启动灯启动时间期间。此后,在过去了一预定时间之后的时刻T2,计数器141将输出端OUT2变为高电平,并且发出一指令到选择器150,以停止灯启动时间期间和启动稳定的发光。
如果交流电源的输出瞬间中断或瞬间下降,则功率输入监测器230的输出也同时下降,如果功率输入监测器230的输出下降到比较器单元240的阈值Vth1以下时,来自第一控制单元121和第二控制单元131的控制信号并不会到达驱动电路122、132,结果直流电源20的开关元件21和逆变器电路30的开关元件31、32关闭,并且镇流器停止。当交流电源恢复时,计数器在复位之后开始工作,因此放电灯按照正常过程开启;预热时间期间和灯启动时间期间。于是,不会有大的压力作用于该电子部件。
图17为按照本发明第六实施例的用于放电灯的镇流器。该实施例的镇流器与图7所示的镇流器相同,不同的是功率输入监测器230监测脉动流动电压,该脉动流动电压为整流电路10的输出,并且基于脉动流动电压来控制逆变器电路30。所以,这些实施例的相似部件由相同的标记字符来标示,并且这里不进行重复说明。功率输入监测器230包括串联连接于整流电路10的输出端之间的电阻231、232,并且如图18所示,它输出脉动流动电压到比较器单元240的同相输入端,该脉动流动电压为交流电压的全波整流。
比较器单元240将脉动流动电压与具有滞后特性的阈值Vth1、Vth2(Vth2<Vth1)做比较。比较器单元的输出供应至第二禁止器260,该第二禁止器在直流电源20的输入电压下降之后,延迟一段时间以复位第一定时器140。阈值Vth1、Vth2由滞后电路242准备,并且如果脉动流动电压超过第一阈值Vth1,则第二阈值Vth2供应至比较器单元240的反相输入端,如果脉动流动电压下降到第二阈值以下,那么第一阈值Vth1供应至比较器单元240的反相输入端。
提供第二禁止器260,用以在直流电源20的输入电压瞬时下降时,防止第一定时器140被复位。第二禁止器260具有一计数器261和一反相器262。计数器261的OUT端保持在低电平,直至输入到比较器单元240的脉动流动电压在上升到第一阈值Vth1以上之后又下降到第二阈值以下为止。也就是说,计数器261的输出端OUT保持在低电平,以在直流电源的输入电压充分高时,不控制第一定时器140。虽然当一时钟信号从第一定时器140的振荡器141供应至计数器261的时钟输入端CLK时,计数器261计数一次,但是STOP端的输入保持在高电平,从而输出端OUT保持在低电平,直至输入到比较器单元240的脉动流动电压在上升到第一阈值Vth1以上之后又下降到第二阈值之下为止。另一方面,当脉动流动电压下降到第二阈值Vth2之下时,比较器单元240的输出从高电平切换到低电平,然后计数器261开始计数。如果这样的状态一直持续到两次检测到时钟信号的后沿,则计数器261的输出变为高电平,并且该高电平输出经过反相器262、263提供到第一定时器140的计数器142,从而停止计数器142。由此,复位第一定时器140的计数器142,并且建立预热时间期间、灯启动时间期间和稳定发光时间期间以启动放电灯。那时,从反相器262到AND门252、253的输出为低电平,该AND门252、253停止驱动电路122、132以停止直流电源20和逆变器电路30。
如上所述,当直流电源20的输入电压下降并且这样的状态已持续了一预定时间期间(在该时间期间两次检测到时钟信号的后沿)时,第二禁止器260复位第一定时器140的预热时间期间和灯启动时间期间。结果就是,即使输入电压瞬间下降,仍不会复位第一定时器140,并且镇流器持续工作,免于不小心地启动重启操作。
图19为按照本发明第七实施例的用于放电灯的镇流器。该实施例的镇流器与图17所示的镇流器相同,不同的是还包括一第二输出限制器280,其监测直流电源20的输出,并且基于直流电源20的输出限制逆变器30的输出。所以,这些实施例的相似部件由相同的标记符号来标示,并且这里不进行重复说明。
如图20所示,第二输出限制器280具有一比较器单元281,其比较功率输出监测器270的输出与第三阈值Vth3,并且将比较结果反映给第一定时器140,该功率输出监测器270包括串联连接后与直流电源20并联的两个电阻271、272。第一定时器140具有AND门143、144以及振荡器141和计数器142。比较器单元281的输出供应至AND门143、144。计数器142的输出端OUT1、OUT2的输出供应至选择器150,以建立预热时间期间、灯启动时间期间和稳定发光时间期间。如基于图2的第一实施例中所示,当输出端OUT1、OUT2的输出端的输出都为低电平时,建立预热时间期间,并且当输出端OUT1的输出为高电平而输出端OUT2的输出为低电平时,建立灯启动时间期间,并且当输出端OUT1、OUT2的输出都为高电平时,建立稳定发光时间期间。这些输出端OUT1、OUT2的输出分别供应至AND门143、144。因此,强制预热时间期间持续,直至直流电源的输出超过阈值Vth3为止,从而限制了逆变器电路30的输出。
图21为按照本发明第八实施例的用于放电灯的镇流器。该实施例的镇流器与图20中所示的镇流器相同,不同的是第二输出限制器280和第一定时器140的组成变为,即使在从灯启动时间期间的开始起过去一预定时间期间之前,直流电源20的输出瞬间下降,也不复位第一定时器,并且仅当在从灯启动时间期间的开始起过去了一预定时间期间之后,直流电源20的输出下降时,才复位第一定时器以重启放电灯。所以,这些实施例的相似部件由相同的标记字符来标示,并且这里不进行重复说明。
第一定时器140的计数器142具有三个输出端OUT1、OUT2和OUT3。如图22所示,计数器142在时刻t24开始工作,此时,控制电压Vcc被提供给集成控制电路100,并且输出端OUT1、OUT2的输出保持在低电平直到时刻t25为止,以限定该预热时间期间。输出端OUT1的输出在时刻t25变为高电平,以限定该灯启动时间期间。输出端OUT1和OUT2的输出在时刻t27都变为高电平,以限定该稳定发光时间期间。每个时间期间由选择器150来识别,并且第二控制单元131以对应于每个时间期间的开关频率,驱动逆变器30的开关元件,从而向放电灯提供对应于每个时间期间的电流。计数器142将输出端OUT3保持在低电平直至时刻t26为止,并且在时刻t26之后将其保持在高电平。建立时刻t26,使其在时刻t25之后而在时刻t27之前(t25<t26≤t27),在该时刻t25,灯启动时间期间开始,而在该时刻t27,稳定发光时间期间开始。
而且,第一定时器140具有NAND门145,其接收来自第二输出限制器280的比较器单元281的输出,以及来自计数器142的输出端OUT3的输出,并且具有NAND门146,其接收来自NAND门145和第二禁止器260的输出。NAND门146的输出端连接于计数器142的输入端STOP。NAND门145的输出与输出端OUT1、OUT2的输出一起被输入到AND门143、144。
当直流电源20的输出低于阈值Vth3时,也就是说当直流电源20的输出不充分时,第二输出限制器280的比较器单元281提供一高电平输出给NAND门145。当直流电源的输出足够高时,比较器单元提供一低电平输出给NAND门145。因为计时器142的输出端OUT3的输出保持在低电平直至时刻t26过去为止,所以NAND门145的输出保持在高电平,而与比较器单元281的输出无关。并且在时刻t25,意味着灯启动时间期间的开始的高电平输出,从输出端OUT1经过AND门143供应至选择器150,并且逆变器电路30在灯启动时间期间开始工作。在输出端OUT3的输出在时刻t26变为高电平之后,只要比较器单元281的输出为低电平,换句话说,只要直流电源20的输出保持足够高,NAND145的输出就会保持在高电平。并且当计数器142的输出端OUT2在时刻t27变为高电平时,灯启动时间期间结束,稳定发光时间期间开始。
如图22所示,如果直流电源20的输出由于某些原因,比如在时刻t26之后的时刻t28下降,比较器单元281的输出就会变为高电平,然后,NAND门145的输出就会变为低电平,NAND门146的输出就会变为高电平,并且复位计数器142,以及第一定时器140再次建立预热时间期间和灯启动时间期间以重启放电灯。虽然在图22中时刻t26<时刻t27(稳定发光时间期间的开始),但是时刻t27可等于时刻t26(t26=t27),在该时刻t27,从计数器142的输出端OUT3的输出变为高电平。
此外,第二禁止器260的输出提供给NAND门146,并且当发现直流电源20的输入电压在一预定时间期间为低时,NAND门146的输入变为低电平,从而计数器142被该NAND门146复位。
图23为按照本发明第九实施例的用于放电灯的镇流器。该实施例的镇流器与图1中所示的镇流器相同,不同的是集成控制电路100还包括一异常负载检测器300、一超前相检测器310、灯连接检测器320和一延迟电路330。所以,这些实施例的相似部件由相同的标记字符来标示,并且这里不进行重复说明。
异常负载检测器300监测放电灯L的灯电压,并且在发现灯电压指示放电灯的异常状态时,发出一指令到第一控制单元121和第二控制单元131,以限制或停止它们的输出。
超前相检测器310监测流经逆变器电路30的开关元件的共振电流。当开关元件31、32以低于包括电感41和电容42的共振电路的共振频率的频率开启和关闭,并且由放电灯的不稳定放电状态所造成的超前相电流流过开关元件31、32时,超前相检测器310检测该超前相电流,并且确定放电灯异常,然后限制或停止直流电源20和逆变器电路30的输出。
灯连接检测器320检测放电灯是否正确地连接于灯座,如果检测到放电灯未正确连接时,则灯连接检测器限制或停止直流电源20和逆变器电路30的输出。
当异常负载检测器300、超前相检测器310和灯连接检测器320发出到直流电源20和逆变器电路30用以限制它们的操作的指令之后,提供用以释放对直流电源20和逆变器电路30的限制的释放信号时,延迟电路330延迟用以释放对直流电源20和逆变器电路30的限制的操作,以便在该延迟的时间期间再次检测放电灯的异常状态。因此,即使由于检测的障碍意外地发出释放信号,放电灯的状态可在电路部件几乎不遭受压力的情况下被鉴别出来。这时优选地,第二控制单元131首先被激活,然后第一控制单元被激活。
虽然在上述实施例中描述半桥逆变器电路作为逆变器电路30,但是逆变器电路30并不限于此,还可使用具有两对的四个开关元件的全桥逆变器电路。此外,如果对逆变器电路的开关元件的开关频率进行校正,该校正为按照环境温度改变开关频率,则逆变器电路的输出功率可按照环境温度来正确地控制。例如,如果确定开关元件频率的振荡器的振荡频率具有一正温度特性,也就是说,对振荡频率进行校正,该校正为随着环境温度的上升而提高频率,则当温度低时逆变器电路30的输出增大,当温度高时输出下降,因此,用以将光输出保持在恒定值的一输出功率可被提供给放电灯。
而且,直流电源20的开关频率具有一负温度特性也是有用的,也就是说,直流电源20的输出在温度低时增加,直流电源的输出在温度高时减少,并且直流电源由按照环境温度的反馈控制来控制,以防备环境温度的变化。
虽然为便于理解,每个实施例解释了本发明的典型特征,但是本发明并不限于这些实施例,应当涵盖单个特征的任意组合。
权利要求
1.一种用于放电灯的镇流器,包括一直流电源,该直流电源接收一输入电压并提供一已调节的直流输出电压,所述直流电源包括一开关元件,该开关元件以一受控方式被驱动开启和关闭,以提供所述直流输出电压;一逆变器电路,该逆变器电路将所述直流输出电压转换为一高频电压,所述逆变器电路包括至少一对的两个开关元件,所述开关元件串联地跨接在所述直流输出电压的两端,并且被控制为交替地开启和关闭,以提供所述高频电压;一负载电路,该负载电路接收所述高频电压,以将其作用于放电灯,用以驱动所述放电灯;一集成控制电路,该集成控制电路控制所述直流电源和所述逆变器电路的所述开关元件;其中,所述集成控制电路包括一第一控制单元,该第一控制单元产生一第一控制信号,用于控制所述直流电源的所述开关元件;一第二控制单元,该第二控制单元产生一第二控制信号,用于控制所述逆变器电路的开关元件;一驱动电路,该驱动电路提供驱动信号,用以按照所述第一控制信号和所述第二控制信号,驱动所述直流电源和所述逆变器电路的每个开关元件。
2.如权利要求1所述的电子镇流器,其中所述直流电源是一升压斩波电路,用以将所述输入电压升压到所述直流输出电压;所述负载电路包括相互配合而形成一共振电路的一电感和一电容,所述高频电压经过该共振电路作用于所述放电灯;所述集成控制电路包括一启动器电路,该启动器电路提供一受控功率,用以激励所述第一控制单元、所述第二控制单元和所述驱动电路;一第一定时器,一旦激励所述第一控制单元、所述第二控制单元和所述驱动电路,该第一定时器开始计时,用以限定一预热时间期间,在该预热时间期间内该放电灯的灯丝被加热,并且用以限定一后续的灯启动时间期间,在该灯启动时间期间内一启动电压作用于该放电灯;一选择器,该选择器响应于所述第一定时器的输出,改变所述逆变器电路的开关元件的占空率和开关频率中的至少一个,所述逆变器电路用以在所述预热时间期间内提供一预热电流到所述灯丝,并且用以在所述灯启动时间期间内提供所述启动电压。
3.如权利要求1所述的镇流器,其中所述集成控制电路包括一调光器控制单元,该调光器控制单元接收一外部调光信号,并且将其转换为一内部调光信号,供应至所述第二控制单元,用以改变所述放电灯的灯输出。
4.如权利要求3所述的镇流器,其中所述逆变器电路包括一灯监测器,该灯监测器监测该放电灯的灯工作状态,并且提供一标示该工作状态的检测信号;所述调光器控制单元包括一信号转换器,该信号转换器将所述外部调光信号转换为所述内部调光信号;以及一比较器单元,该比较器单元比较所述内部调光信号与所述检测信号,并且将反映一比较结果的一校正信号提供到所述第二控制单元;所述第二控制单元响应于所述校正信号,改变所述逆变器电路的开关元件的占空率和开关频率中的至少一个,用以调节该放电灯。
5.如权利要求4所述的镇流器,其中所述调光器控制单元保持禁能,直至所述第一控制单元、所述第二控制单元和所述驱动电路被激励,以激活所述直流电源和所述逆变器电路的开关元件为止。
6.如权利要求4所述的镇流器,其中所述调光器控制单元保持禁能,直至所述灯启动时间期间结束为止。
7.如权利要求1所述的镇流器,还包括一灯监测器,该灯监测器监测该放电灯的工作状态,并且提供一标示所监测的灯的工作状态的监测器信号;所述集成控制电路包括一故障鉴别器,该故障鉴别器分析所述监测器信号,以确定它是否标示该放电灯的异常状态,并且在所述异常状态已持续了一预定临界时间期间时提供一故障信号;一第一输出限制器,该第一输出限制器响应于所述故障信号,提供一第一限制信号到所述第一和第二控制单元中的至少一个,由此所述第一和第二控制单元中的至少一个进行动作,以减少或停止提供该输出。
8.如权利要求7所述的镇流器,其中所述集成控制电路包括一第三定时器,该第三定时器限定一受限时间期间,在该受限时间期间,所述第一输出限制器被使能,以保持提供所述第一限制信号,所述受限时间期间从出现所述第一限制信号开始;所述第三定时器进行工作,以在所述受限时间期间过去之后激活所述第一定时器,以便再次给出用以重启该放电灯的所述预热时间期间和所述灯启动时间期间。
9.如权利要求8所述的镇流器,其中均由所述第一定时器限定的所述预热时间期间以及所述灯启动时间期间与一环境温度成正比例地变化;由所述故障鉴别器限定的所述临界时间期间与所述环境温度成反比例地变化;以及由所述第三定时器限定的所述受限时间期间与所述环境温度成正比例地变化。
10.如权利要求7所述的镇流器,其中所述故障鉴别器分析流过所述逆变器电路和负载电路中之一的一共振电流的波形的相位,以确定该放电灯的异常状态;所述集成控制电路还包括一检测所述直流电源的输出电压的功率输出检测器单元;只要所述直流电源的输出电压小于一预定电平时,所述功率输出检测器提供一第一禁止信号,该第一禁止信号阻止所述第一输出限制器发出所述第一限制信号。
11.如权利要求7所述的镇流器,其中阻止所述第一输出限制器提供所述第一限制信号,直至由所述第一定时器限定的所述预热时间期间已过去为止。
12.如权利要求7所述的镇流器,其中阻止所述第一输出限制器在一时间区间提供所述第一限制信号,该时间区间从所述预热时间区间的末尾开始,在所述灯启动时间期间过去之时或之前结束。
13.如权利要求2所述的镇流器,还包括一功率输入监测器,该功率输入监测器监测一供应至所述直流电源的输入电压,并且提供一标示所监测的输入电压的输出;所述集成控制电路包括一比较器,该比较器比较所述输入电压与一第一阈值,并且在所述输入电压超过所述阈值时,将所述第一定时器、所述第一控制单元和所述第二控制单元使能。
14.如权利要求13所述的镇流器,其中所述比较器比较所述输入电压与一小于所述第一阈值的第二阈值,并且提供一低压标示信号,直至所述输入电压在下降到所述第二阈值以下之后又上升到所述第一阈值以上为止;一第二禁止器,该第二禁止器在所述低压标示信号持续一预定参考时间期间时,将所述直流电源和所述逆变器电路禁能。
15.如权利要求13所述的镇流器,还包括一功率输出检测器单元,该功率输出检测单元检测所述直流电源的所述直流输出电压;所述第一控制单元进行工作,以按照所测得的直流输出电压和所监测的输入电压,控制所述直流电源的开关元件的占空率,用以调节所述直流输出电压。
16.如权利要求14所述的镇流器,其中所述集成控制电路包括一第二输出限制器,该第二输出限制器在所测得的输出电压下降到一阈值以下时提供一第二限制信号,所述第二限制信号使得所述第二控制单元降低所述逆变器电路的输出;来自所述第二输出限制器的所述第二限制信号在一时间期间被无效,该时间期间从所述灯启动时间期间的起始开始,在一等于或早于所述灯启动时间期间的末尾的时间结束。
17.如权利要求1所述的镇流器,其中所述集成控制电路包括故障检测装置,该故障检测装置检测所述放电灯的一故障状态,并且提供一输出限制信号到所述第一和第二控制单元,用以限制所述直流电源和所述逆变器电路的输出,所述故障检测装置在所述故障状态已消除时,提供一释放信号到所述第一和第二控制单元,由此恢复所述直流电源和所述逆变器电路;所述集成控制电路还包括一延迟电路,该延迟电路响应于所述释放信号,将提供到所述第一和第二控制单元的用以释放所述输出限制的所述释放信号延迟一预定时间,并且首先提供所述释放信号到所述第二控制单元,然后提供到所述第一控制单元。
18.如权利要求14所述的镇流器,其中所述集成控制电路包括产生一时钟信号的振荡器;所述第一定时器和所述第一禁止器包括计数器,所述计数器对分别分配给所述第一定时器和所述第二禁止器的时钟信号的数量计数,以限定所述预热时间期间、所述灯启动时间期间和所述参考时间期间。
19.如权利要求1所述的镇流器,其中所述第一控制单元提供所述第一控制信号,该第一控制信号与一环境温度成反比例地改变该直流电源的该输出直流电压,以及所述第二控制单元提供所述第二控制信号,该第二控制信号与所述环境温度成正比例地改变来自所述直流电源的一高频输出电压。
20.如权利要求1所述的镇流器,其中所述直流电源、所述逆变器电路和所述集成控制电路安装于单个印刷电路板上;所述直流电源的开关元件排列在所述驱动电路的输出端附近,该驱动电路响应于所述第一控制单元的第一控制信号而输出所述驱动信号,所述逆变器电路的开关元件排列在所述驱动电路的输出端附近,该驱动电路响应于所述第二控制单元的第二控制信号而输出所述驱动信号;该直流电源和所述逆变器电路的开关元件以并排关系排列。
21.如权利要求1所述的镇流器,其中所述直流电源、所述逆变器电路和所述集成控制电路安装于单个印刷电路板上;所述集成控制电路被装入一具有一长度的矩形封装中,所述封装在其相对的横向侧面上具有引线,用以连接所述印刷电路板上的信号线,所述封装在其相对的纵向端附近的部分,分别提供有功率输入端和信号输出端;所述直流电源、所述集成控制单元、所述逆变器电路单元和所述负载电路沿着所述封装的长度方向顺序排列;所述直流电源的开关元件排列在所述驱动电路的端附近,该驱动电路响应于所述第一控制单元的第一控制信号而输出所述驱动信号,所述逆变器电路的开关元件排列在所述驱动电路的端附近,该驱动电路响应于所述第二控制单元的第二控制信号而输出所述驱动信号,该直流电源和所述逆变器电路的开关元件以并排关系排列。
全文摘要
本发明的镇流器包括一直流电源、一逆变器电路、一负载电路和一集成控制电路。该集成控制电路控制直流电源和逆变器电路的开关元件。该集成控制电路包括一第一控制单元、一第二控制单元和一驱动电路。该第一控制单元产生一第一控制信号,用于控制直流电源的开关元件。该第二控制单元产生一第二控制信号,用于控制逆变器电路的开关元件。该驱动电路提供驱动信号,用以按照第一控制信号和第二控制信号,驱动直流电源和逆变器电路的每个开关元件。如上所述,用以控制直流电源和逆变器电路的控制电路被集成到单个部件中,从而减少了安装于印刷电路板上的部件的数目。
文档编号H05B41/282GK1615675SQ0282715
公开日2005年5月11日 申请日期2002年12月26日 优先权日2001年12月28日
发明者光安启, 佐藤胜己, 滨本胜信, 山中正弘, 黑木芳文 申请人:松下电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1