产生模仿火焰的设备和方法

文档序号:8164543阅读:389来源:国知局
专利名称:产生模仿火焰的设备和方法
技术领域
本发明涉及一种产生模仿火焰的设备,更具体而言,在所涉及的模仿火焰产生设备中,与适合造成谷粒状火焰有关的场变量的变化是用一种偶合映射格点计算的,这种格点与描绘火焰的空间相关。
背景技术
人们普遍知道,为了用电来模仿烛光闪烁,可以利用,例如,改变供给光源的电流来运作照明光源。有各种各样改变电流的方法。在大气-产生发光设备中采用的是一种最普通的方法,在这种方法中,由一种以某种周期随时间变化的电流向设备中的光源,例如,光-发射二极管,供电(请见,例如,专利文件1)。人们还知道一种电蜡烛,其中利用一种随机信号产生装置使发光元件闪烁,这样便能够得到一种无规变化的,而不是周期性的光(请见,例如,专利文件2)。还知道一种照明装置,在这种装置中,为了获得更舒适的光照环境,利用1/f波动性质的优点,采用1/f过滤器产生输出波形,并且将由风速传感器获取的变化信号赋予该输出波形(请见,例如,专利文件3)。
在另一个表示火焰闪烁的方法中,一种宗教式的装置使用了闪烁光元件。这个方法中,事先根据浑沌理论在计算机上对真实火焰进行浑沌分析,生成与火焰数据值相对接近的值,数据并被储存在存储器装置中。然后以重复不断的方式,利用这种储存的浑沌数据把LEDs接通(请见,例如,专利文件4)。在另外一个例子中,一种照明装置中包含一种以类似烛光火焰方式安排的多重光源。各个光源发射的光量根据预先储存在存储器装置中的多个数据块而变化,从而能够模拟火焰的闪烁(请见,例如,专利文件5)。
(专利文件1)JP Patent Publication(Kokai)No.2002-334606A(专利文件2)JP Patent Publication(Kokai)No.2000-21210A(专利文件3)JP Patent Publication(Kokai)No.8-180977A(1996)(专利文件4)JP Patent Publication(Kokai)No.2000-245617A(专利文件5)JP Patent Publication(Kokai)No.9-106890A(1997)发明内容用周期发光的发光设备产生的光很单调。随机发射的照明光与蜡烛燃烧所产生的真实的,闪烁的光也相当不一样。发射具有1/f波动光的发光设备只能以1/f周期运作光源,这是利用时间频率部件调整功率谱而获得的一种特性。所以,在这种设备中,不能够说准确描绘了真实的燃烧。还有,在这种包括多重光源、利用1/f波动的设备中,由于按照同一的定时控制这些光源接通,相互之间没有影响,还由于所表示的火焰是在虚拟空间中,而实际空间火焰的独特温热在虚拟空间是不能产生的,即使这些光源具有不同的光量。
在另外一个照明设备例子中,光源按照根据自然现象(例如火焰或声音的跳动)中物理性质变化的数据来运行。这种设备中,由于采用重复方式使用捕捉的数据,在长期运行中这种数据是周期性的,所以不能说,能够准确复制出这种无规的火焰闪烁。具体地说,在运用浑沌分析的地方,分析基于的是时间拓扑空间,这表示,用时间作为一种变量来把光源接通。这种情况下,只表示出时间的波动,而未表现出实际空间中的火焰。这样,当把一种多重光源接通时,虽然它们在时间上有变化,但是它们不能以一个光源影响另一个光源的方式接通。再有,为了准确模仿一种火焰,必须提供大容量的数据储存库,而这样将导致设备尺寸和制造成本增加。
考虑到现有技术的上述问题,本发明的目标是提供一种小巧而低廉的模仿火焰产生设备,这种设备复制出的火焰空间与真实火焰空间极其接近,从而能够发射暖光,即,复制的火焰时空图案不依赖时间周期。
为了达到这个目标,本发明提供的模仿火焰产生设备包括光源和控制装置,后者用于控制输送给光源的输出电流,控制装置包括计算装置和输出装置,计算装置利用耦合映射格点计算火焰的时空图案,输出装置按照计算出的火焰时空图案输出电流。
优选地,耦合映射格点可包括与适合造成谷粒状火焰有关的场变量,所说的计算装置包括一个程序,该程序利用控制参数计算有关火焰的场变量。
优选地,有关火焰的场变量可包括实物量,内能量,和动量,计算程序可包括计算燃烧的程序,计算膨胀的程序,和计算扩散的程序。
优选地,计算装置可根据燃烧计算程序,膨胀计算程序和扩散计算程序对火焰的时空图案进行计算。
计算装置能够输入和改变有关火焰的场变量和/或控制参数。
本发明还提供一种模仿火焰产生的方法,该方法用控制供给光源电流的方式来产生模仿火焰。该方法包括利用耦合映射格点计算火焰的时空图案来产生模仿火焰,并且按照这样计算出的火焰时空图案提供输出电流来把光源接通。
优选地,耦合映射格点可包括与适合造成谷粒状火焰有关的场变量,而所说的计算装置包括一个程序,该程序利用控制参数用于计算有关火焰的场变量。
优选地,有关火焰的场变量可包括实物量,内能量,和动量,该计算程序可包括计算燃烧的程序,计算膨胀的程序,和计算扩散的程序。
计算可包含利用燃烧计算程序,膨胀计算程序和扩散计算程序对火焰的时空图案进行计算。
有关火焰的场变量和/或控制参数,可以在计算过程中还能够对它们进行输入和改动。
按照本发明的模仿火焰产生设备,可以使复制的空间与真实火焰的状态极其相似,即,火焰时空图案的模仿与时间周期无关。相邻的光源可以由于相互影响而发射光,从而使单个光源以一种自然方式发光,并且,当把这些光源看作是一个整体时,它们可以发射出类似真实火焰的暖光。除此之外,由于本发明所依据的计算捕捉了热工水力动力学现象,所以光源可以发射出与真实火焰相似的光。
在计算过程中,可键入物理值作为初始值,它指出有关火焰的场变量的条件。可依据周围环境以实时方式描绘出各种火焰类型。此外,还可用实时方式对光源进行控制,以便提供一种类似由于微风或其它外部影响造成火焰闪烁的效果。
因为本发明可以不必燃烧实物而复制出火焰,所以本发明可提供一种有效的、安全的、对环境友好的发光源。


图1表示按照本发明一个实施方案的模仿火焰产生设备的透视图。
图2表示沿图1上II-II线的断面图。
图3表示按照本发明该实施方案,模仿火焰产生设备的控制方框图。
图4表示按照该实施方案,模仿火焰产生设备中CPU的结构。
图5表示按照该实施方案,模仿火焰产生设备中一个蜡烛火焰的耦合映射格点。
图6表示该实施方案中,模仿火焰产生设备和光源之间的位置关系。图6(a)表示的是划分为几个组的格点,图6(b)表示的是对应这些格点组的光源安排。
图7表示按照该实施方案,模仿火焰产生设备中由控制装置进行计算的控制流程图。图8表示的是示于图7中的膨胀计算,阐明在格点ij中实物量是如何划分的。
图9表示的是示于图7中的膨胀计算,阐明在一个区域中膨胀速度是如何计算的,该区域在格点ij的i-和j-的正方向。
图10表示的是示于图7中的膨胀计算,阐明跟随膨胀速度产生后,向周围格点的分布是如何发生的。
图11表示阐明膨胀计算细节的控制流程图。
图12表示阐明扩散计算细节的控制流程图。
具体实施例方式
现将参考附图对按照本发明实施方案的模仿火焰产生设备1进行描述。图1是本实施方案模仿火焰产生设备1的透视图,图2表示取自图1上沿II-II线的断面图。
参考图1和图2,模仿火焰产生设备1是一种用于复制点燃蜡烛的设备,该设备包括一个中空的圆柱形支撑筒20,和一个模仿火焰的部分30,其形状类似真实火焰,并具有米色内膛。支撑筒20用黏合剂或类似用品与模仿火焰部分30黏结在一起。用黏合剂或类似用品将一个圆形的光-源安装板23黏结在支撑筒20的一端。在光-源安装板23的表面,安装有,例如,5个使用LEDs的光源,其中一个置于中心,其余4个以相等间隔放置在中心光源的周围。用于接通光源10的光开关33以可旋转方式安装在支撑筒20的另一端。
支撑筒20还进一步包括一个用于内外通信的直通孔22,一个用于插入和取出电池31的滑动盖21,电池31在支撑筒里面设有的电池盒32内。支撑筒20里面除了电池31之外,还设有控制装置40,面向直通孔22的声音检测传感器36,以及一个输入终端44,用于将外部输入装置(图中未示)的数据通过线46输入到控制装置40。随着光开关的转动,终端34与固定在支撑筒20上的线35接触通电,从而将电池31提供的电源送达控制装置。声音检测传感器36和各个光源10与控制装置40相连接而通电,使得它们相互之间能够对信号进行发射和接收。
图3是本实施方案模仿火焰产生设备1内部结构的控制方框图,该设备包括光源10,电池31,光开关33,包含计算装置41和输出装置42的控制装置40,以及声音检测传感器36。当光开关接通后,电池31提供的电源被送达控制装置40。根据从声音检测传感器36和外部输入装置45输入的信号,控制装置40进行模仿火焰的计算,来对输出给已经接通的光源10的电流输出进行控制,其中外部输入装置45位于模仿火焰产生设备1的外部。本实施方案中,在模仿火焰产生设备1外面设有的外部输入装置45可以装备在模仿火焰产生设备1的内部。
计算装置41包括CPU 41a和存储器装置41b。输出装置42包括一个I/O端口42a和一个D/A转换器42b。为了模仿火焰,在存储器装置41b里储存有一些程序,用以控制参数对有关火焰的场变量进行计算。
明确地说,在存储器装置41b中,储存有燃烧计算程序,膨胀计算程序,和扩散计算程序。CPU 41a读取指示火焰状态的控制参数和有关火焰的场变量(后面将对此进行描述),它们都是从外部输入装置45通过输入端口44输入到存储器装置41b的。按照这些程序,CPU 41a反复进行计算,计算涉及有关造成谷粒状火焰场变量的变化。
外部输入装置在计算过程中,可以按照所要模仿火焰的具体类型,自由改变控制参数和有关火焰的场变量。CPU 41a可根据这样的变动进行计算,并以实-时方式改变各光源10的发光条件。
另外,在一次测量后,由声音检测传感器36测量的信号被输入到A/D转换器43,转换的测量数据储存在存储器装置41b中。声音检测传感器36是一种用于检测外部环境的传感器,适合用于检测某种高频区的声音,以至它能根据风声而检测出模仿火焰产生设备1周围的风速。在反复计算过程中,CPU 41a以适当的定时方式从存储器装置41b读取所获得的测量数据,然后将它们作为有关火焰的场变量一并引入计算(在本例中为速度场)。这样,恰当地检测外部环境,并将它以有关火焰的场变量的形式一并引入计算,可以在实-时基础上将所有外部改变一并引入。
控制装置40中的D/A转换器42b通过I/O端口42a将数字数据处理为模拟数据,然后控制装置40通过I/O端口42a向各个光源10供应输出电流,将它们接通。输出装置42可包括一种用于放大信号的运算放大器。由于输出电流是根据预先测量的电流值和光量之间的关系表格而确定的,所以光源发射的光量可以和烛光的光量接近。
图4表示本实施方案模仿火焰产生设备1中计算装置40的软件结构。计算装置40由燃烧计算装置401,热膨胀计算装置402,和扩散计算装置403组成。计算工作随着这些装置顺序运作而进行。合适地从外部输入装置45把有关火焰的场变量45a和确定火焰时空图案的控制参数45b输入到组成计算装置41的个别计算装置401-403。在接通光源后,由声音检测传感器36检测的风速数据36a被输入到计算装置,由风速数据组成与火焰相关的场变量(速度场)的数据。然后,计算装置输出温度数据10a,由该数据组成一个输出信号传送给各个光源10。在这个阐明的范例中,虽然把风数据输入到热-膨胀计算装置402,并从扩散计算装置402输出温度数据,但这仅是一个例子,也可以采用别的线路用于数据的输入和输出。
现将简要描述由各单个计算装置执行的计算。燃烧计算装置401对描绘实物燃烧的过程进行计算。明确地说,它要计算各个格点(对这些格点已经给出与适合造成谷粒状火焰有关的场变量)中的燃料在能量足够与空气中的氧发生化学反应,生成二氧化碳和水蒸气产生能量的过程,对此后面还将详细介绍。在本例中,具体地说,根据所涉及的燃料的化学反应,计算分子数目的增加或减少,并计算由此化学反应产生的能量。
膨胀计算装置402对表示实物分布的过程进行计算,这些实物出现在具有不同能量水平的区域。明确地说,它要计算这种过程,其中,各个格点中由于燃烧产生的能量,在有关火焰的场变量中产生了热膨胀速度(贡献给膨胀的速度),例如,各个格点中有些有关火焰的场变量移动到邻近的四周格点中。具体地说,要产生的热膨胀速度假定是从较大能量朝向较被低能量(在一个方向),而且计算中还考虑了由于重力造成的位能。
扩散计算装置403对于在具有不同分子密度的空间中,分子试图达到均匀分布的过程进行计算。即,该过程描绘了一些现象,其中由于后-燃烧膨胀,造成在单个格点中分布的分子密度不一致,邻近分子的密度将通过扩散变得均匀。
膨胀计算装置读取风速数据36a,这是外部数据,然后计算分子的运动,和/或由于风的影响在一个具体空间中它们的能量变化。
这样,为了表示火焰,重要的是要捕捉到由于燃烧在有关火焰的场变量中的变化,由于膨胀在有关火焰的场变量中的变化,以及由于扩散在有关火焰的场变量中的变化。通过计算这些变化,可以精确了解描绘火焰的物理现象,也就能够正确复制出该火焰。
借助输入适合的控制参数45b,各种类型的火焰,例如蜡烛或酒精灯(其中燃烧的是甲醇)的火焰都能被复制出来。这样,利用外部输入装置45通过输入终端44设置初始数据52,可对各种火焰图案进行复制。在计算过程中可以改动控制参数45b,这样做,可在实-时基础上动态地改变光源的输出条件。再有,通过适合检测外部环境,并将风速数据作为速度场一并引入到正在被计算的有关火焰的场变量中,就能够在实-时基础上把外部变化一并引入。
图5表示按照本实施方案,由模仿火焰产生设备1的控制装置计算的耦合映射格点。耦合映射格点的组成是,与适合造成谷粒状火焰有关的场变量,以及一些计算有关火焰场变量的程序。明确地说,为了计算与适合造成谷粒状火焰有关场变量的变化,将火焰所在的实际空间适当划分,并把适合造成谷粒状的物理量,例如存在于划分后的各空间的分子,能量,或动量(速度),作为与火焰有关的场量,提供给这些划分的空间。然后进行的计算要考虑随时间流逝,有关火焰的场变量和邻近有关火焰的场变量之间的相互作用。
更明确地说,图5中的虚线表明在二-维实际空间中,一个正在燃烧的真实蜡烛的火焰形状。为了描绘蜡烛火焰的细节,采用行和列为4×4的网眼将描绘燃烧火焰的空间划分为16个单元,每个单元位于一个格点。这些格点定义为16个有关火焰的场变量,分子藉助于这些变量在该空间造成谷粒状火焰。这些格点在网眼中代表适合造成谷粒状火焰的有关场变量。为了描绘网眼内的状态,与火焰有关的场变量都分配在格点内。虽然火焰形状是在二-维实际空间表描绘的,但是并不特别限定维数,比方,可以是三-维的。网眼中的单元数目也不特别限定。
处于行i和列j的格点称为为格点ij。有关火焰的场变量由氧分子的实物量,燃料分子的实物量,二氧化碳分子的实物量,水蒸气分子的实物量,氮分子的实物量,内能,i-方向速度,和j-方向速度组成。这些有关火焰的场变量相应称为x1,ij,x2,ij,x3,ij,x4, ij,x5,ij,eij,v1,ij,和v2,ij。图5中,指出了i=2和j=3的格点23所具有的物理量,即,有关火焰的场变量(x1,23,x2,23,x3,23,x4,23,x5,23,e23,v1,23,和v2,23)。根据这些有关火焰的场变量,可在实-时基础上计算各个格点中温度的变化,光源将按照这样计算出的温度hij接通。在本解说范例中,有关火焰的场变量由氧、燃料、二氧化碳、水蒸气、和氮这些实物量组成,其它实物量可按假定的燃烧环境给出。
从这些有关火焰的场变量出发,可以推导出一些变量,例如总实物量nij,质量mij,温度hij,和动量pij。即,存在于格点ij中的总实物量nij是各种分子的分子实物量总和的数值。存在于格点ij中的质量mij所具有的数值相应是上述5种分子实物量与每种分子量乘积的总和。本例中构成输出数据的格点ij的温度hij是由内能eij除以总实物量nij而得到的值。格点ij的动量pij是质量mij与速度v1,ij,v2,ij乘积的值。
现将参见图6来描述耦合映射格点与光源安排之间的关系。图6(a)表示将图5格点划分为5组。图6(b)表示相应于图6(a)的5组对5个光源的安排。关于图5所示的耦合映射格点,其中有关火焰的场变量已给出,格点ij的温度hij是利用与造成谷粒状火焰有关场变量的变化反复计算出来的,后面还将对此进行描述。图6(b)所示的光源11到15由计算出的16个温度hij所对应的输出电流接通。明确地说,如图6(a)所示,16个格点被划分为5组,即格点组51到54每组有3个格点,而格点组55有4个格点。组内每个格点所具有的温度hij被平均,并按照这些平均数据将成比例的输出电流供应给光源11到15(上述5个光源10)。以上-描述划分为组以及将单个温度取平均的方法仅仅作为举例,任何其它方法都可采用,只要它们能够将这些组和光源联系起来就可以。
上面已经提到,由于对与实际空间相联系的格点的温度hij是反复计算的,并且还在实时基础上将风速数据一并引入计算,所以描绘的蜡烛火焰在时间和空间图案方面能复制出非常逼真的火焰。
图7表示按照本实施方案,在模仿火焰产生设备1中,由CPU 41a进行计算的控制流程图。这个计算相应于图4中的计算装置401到403中每个装置所进行的计算,而且它包含前面提到的有关火焰的场变量(物理量)。假如需要,可更新有关火焰的场变量。在相关步骤中没有利用到的有关火焰的场变量将被引伸至相继的步骤中。
现简要描述步骤71到76。步骤71中,把示于图4中的有关火焰的场变量45a和控制参数45b键入CPU 41a,从而给出在下面步骤中进行计算的初始条件。步骤72中,对每个格点的氧和燃料的燃烧过程,以及因此而产生的水蒸气和二氧化碳的增加,热的产生以及温度的改变进行计算,继而将场变量予以更新。步骤73中,把从音检测传感器36测量的信号得到的风速数据41c键入,而键入的速度场(场变量)的增加值是作为干扰添加到相继的膨胀计算中。步骤74中,根据由步骤72内能增加发生变化而产生的膨胀速度,计算每个格点场变量的变化。步骤75中,计算每种实物从密到疏的扩散。步骤76中,适当定时地输出温度hij并继而转换为输出电流值,并用这个值接通光源。这一系列从步骤72到步骤76的计算是重复进行的,计算出的温度hij发生变化,响应于此变化,输出电流也发生变化,这就使得有可能以一种类似真实火焰的方式接通光源。虽然每个步骤的处理速率取决于CPU的性能,但是每个步骤的处理时间一般在1-100ms之间。
现在来描述图7所示步骤72中燃烧计算的细节。这个步骤中,燃烧事例的数目是用燃烧化学方程式计算的,并按照这样确定的燃烧事例数目对场变量进行更新。
开始,将概括地描述燃烧现象,下面将描述利用燃烧化学方程式计算燃烧事例数目的方法。燃烧是一种化学反应,其中碳氢化合物燃料分子与氧分子产生化学结合,从而产生二氧化碳分子和水蒸气分子,并产生热和光。例如,在蜡作为燃料时,属于脂肪族的石蜡碳氢化合物的化学分子式一般表示为CsH2s+2。当s=1时,是甲烷CH4,当s≥20是蜡(例如二十烷C20H42,四十烷C40Hs2,等等)。一般,CsH2s+2的燃烧由下面的化学方程式定义(1)这里把vc(c=1到4)称作为燃烧计算的控制变量,它表明燃烧化学方程式中所要求的燃料分子、氧分子、二氧化碳分子、水蒸气分子、以及氮分子的摩尔数。从方程式(1),表明是石蜡的二十烷C20H42的燃烧可用下面的化学方程式表示(2)按照方程式1(或2)的燃烧中,消耗了v1摩尔(2摩尔)燃料分子的v2摩尔(61摩尔)和氧分子,而生成v3摩尔(40摩尔)的二氧化碳分子和v4摩尔(42摩尔)的水蒸气分子。从格点ij的温度超过某个临界温度的时刻开始,这个反应过程将以链式-反应方式进行。该过程一直会持续到格点ij中或者是燃料分子实物量x1,ij,或者是氧分子实物量x2,ij全部消耗为止。当计算方程式(2)的反应时,可根据给出的燃料分子数量x1,ij和氧分子实物量x2,ij对发生这种反应的数目(燃烧事例的数目rij)进行计算。
明确地说,利用燃料分子数量x1,ij和化学方程式的系数v1,可确定x1,ij/v1,而利用氧分子实物量x2,ij和化学方程式的系数v2,可确定x2,ij/v2。然后,将上面两个值(完全燃烧事例总数)中较小的一个与该化学反应发生的几率相乘,可计算出燃烧事例数目rij。化学反应几率可根据基本方程式确定,该方程式可表示为格点ij温度tij的函数,其中,对链式-反应的特征参数和前面提到的临界温度都有所考虑。
根据燃烧事例数目,对有关火焰的场变量进行更新。明确地说,根据燃烧事例数目rij,和每个格点的场变量(实物量)可确定消耗的实物量,产生的实物量,以及生成的能量,就是说,燃料分子实物量x1,ij,氧分子实物量x2,ij,二氧化碳分子实物量x3,ij,水蒸气分子实物量x4,ij,以及内能eij都被调整,从而使得有关火焰的场变量得到更新。
在有关火焰的场变量中,氮分子实物量x5,ij,在i-方向的速度v1, ij,在j-方向的速度v2,ij,在这个燃烧计算中不发生变化。
现在参见图7来描述步骤74计算膨胀的细节。在这种膨胀计算中,完成下列计算的前提为,火焰是一种具有膨胀(或收缩)性质的压缩流体。即,格点ij中的实物量被划分到4个相等部分中,然后在进行计算时,要使得如此等分的4个实物量和它们相应的内能eij以及动量pij,根据动量守恒定律被分布(水平对流)到格点ij及其邻近的8个格点(i+1,ji+1j+1,ij+1,i-1j+1,i-1j,i-1j-1,ij-1,i+1j-1;Moore-近邻)里。
这种膨胀计算将分成4个子-过程来描述。首先划分每种实物量的质量,内能eij,和动量pij。然后,根据能量守恒定律,并利用如此划分的内能ed,,ij(d=1到4d表示一个具有正i-方向和正j-方向的区域,一个具有负i-方向和正j-方向的区域,一个具有负i-方向和负j-方向的区域,一个具有正i-方向和负j-方向的区域的各分量),计算膨胀动量(贡献给膨胀的动量)qd,ij(d=1到4)。然后根据动量守恒定律,利用划分的动量pd,ij(d=1到4)以及原先计算的膨胀动量qd,ij,计算膨胀速度ud,ij。下一步,根据下面将要讲述的用杠杆规则得出的分布法则,利用原先确定的膨胀速度ud,ij对分布权重进行计算,并对有关火焰的场变量进行更新。后面还将参考图8-10详细描述这些过程,并将参考图11描述相关计算的控制流程。
现在参考图8-10对上面的过程进行描述,这些过程都是膨胀计算的一部分。图8表示格点ij中实物量是如何划分的,以及它们是如何被膨胀动量qd,ij分布的。如图8所示,各种实物量均等地分配在4个部分里。假定在格点ij中,由于格点ij与4个邻近格点(i+1j,ij+1,i-1j,ij-1;Neumann-近邻)之间内能的差别,产生4个膨胀动量qd,ij(d=1到4)。进一步假定,这些划分的实物量朝向格点i j的一个具有正i和正j方向的区域,一个具有负i和正j方向的区域,一个具有正i和负j方向的区域,一个具有负i和负j方向的区域移动。然后在进行计算时,将这些被划分的实物量依据动量md,ijud,,ij(d=1到4)被分布(膨胀)到单个格点中,该动量包括原始格点的被划分的动量pd,ij(d =1到4)和膨胀动量qd,ij(d=1到4)。
现在来描述计算膨胀动量(贡献给膨胀的动量)的方法。图9表示在一个格点ij的正i和正j方向的区域中,计算膨胀速度的方法。一个前提是,各种实物量都是从具有较大内能的格点向具有较小内能的格点移动。明确地说,膨胀动量qd,ij的i-分量是依据格点各自的内能从格点ij朝向格点i+1j而产生的,可用k(eij-ei+1j)来描述(>0),它就是能量差乘以常数k。以同样的方式,可以对具有负i和正j方向的区域,具有正i和负j方向的区域,以及具有负i和负j方向的膨胀动量进行计算。
上面的计算对i-方向(在水平方向的格点),对j-方向(在垂直方向的格点)是适合的,与此同时,还必须考虑势能(重力做的功),因为每个分子都是有质重量的。即,当把格点ij与格点ij+1进行比较时,除了内能的差别外,还必须考虑势能,因为在垂直方向上格点ij+1的位置在上面。当考虑这一点后,根据能量守恒定律,可以加上势能Δe,来修正原先指出用于水平方向膨胀动量的计算公式,从而可表示为k(eij-ei+ij+Δep)。以同样的方式,可以对有关格点ij的具有负i和正j方向区域,具有正i和负j方向区域,以及具有负i和负j方向区域的膨胀动量进行计算。
从计算出的膨胀动量qd,ij,可对格点中要分布到邻近格点的分子膨胀速度u1,ij进行计算。明确地说,根据膨胀速度u1,ij和格点的本征速度,并利用动量守恒定律,可计算在i-方向的膨胀速度u11,ij和在j-方向的膨胀速度u12,ij。当所关注的格点中所有实物移动到邻近格点的速度大小为1时,这样计算出的在i-方向的膨胀速度u11,ij和在j-方向的膨胀速度u12,ij假定值在范围0≤|u11,ij|,|u12,ij|≤1之内。如果膨胀速度u11,ij和u12,ij没有落入这个范围,则将它们强行设置为1。
图10表示依据图9计算出的i-方向的膨胀速度u11,ij和j-方向的膨胀速度u12,ij,划分的有关火焰的场变量是如何分布到周围格点的。
如图10所示,在这个情况下,这样计算出的i-方向的膨胀速度u11,ij和j-方向的膨胀速度u12,ij的大小在范围0<|u11,ij|,|u12,ij|<1之内。这表明这些矢量的终点与各个格点并不对应。即,有关火焰的场变量必定依据膨胀速度的大小适合分布到原始格点ij和Moore-近邻的格点中,除了速度矢量|u11,ij|,|u12,ij|等于0的情况之外,即,实物量根本不移动(膨胀)到邻近的格点,以及除了速度矢量|u11,ij|,|u12,ij|等于1的情况之外,在这种情况下,实物量移动(膨胀)到所有的邻近格点。
根据图10所示101-104区域的面积,可计算出实物在格点中的分布。设区域101的面积为A,区域102的面积为B,区域103的面积为C和区域104的面积为D,且0≤A,B,C,D≤1。利用这些面积作为分子分布的权重(分布比例),C乘以格点ij的实物量(原先指出的实物量的四分之一)分布到格点ij中,D乘以格点ij的实物量分布到格点ij+1中,A乘以格点ij的实物量分布到格点i+1j+1中,B乘以格点ij的实物量分布到格点i+1j中。这种大家都很了解的分布方法被称作杠杆-规则分布法。
图11表示根据图8-10所示的膨胀计算技术作出的,膨胀计算的控制流程图。在步骤111中,每个格点有关火焰的场变量被划分。本例中如上所述,格点ij所有有关火焰的场变量都被分为4个部分。然后,在步骤112中,确定计算目标是否在垂直方向。假如它们是垂直展现的,例行程序进入步骤113,如上面提到的,在这里可依据能量守恒定律,对势能(由重力做的功)进行修正。跟着是步骤114。假如计算目标不是垂直的(当它们为水平时),例行程序不进行修正即进入步骤114。步骤114中,如图9所示,根据格点之间内能的差别计算膨胀动量,然后例行程序进入步骤115。
步骤115中,确定步骤114中计算的膨胀动量是不是不大于0。如上所述,这个确定用于描绘实物从较大内能的格点到从较小内能的格点的运动,这是表示膨胀的条件。假如膨胀动量不大于0,例行程序进入步骤116。由于实物不从较大内能的格点到从较小内能的格点移动,或者方向是相反的,确定出膨胀动量=0,且例行程序进入步骤117。另一方面,假如膨胀动量大于0,则例行程序从步骤115进入步骤117。
在步骤117中,如上所述,利用动量守恒定律计算膨胀速度ud1, ij和ud2,ij(d=1到4)。跟着是步骤118,在这里要确定膨胀速度的大小是否满足|ud1,ij|,|ud2,ij|≥1。假如满足这个条件,则例行程序进入步骤119,这里在例行程序进入步骤120之前,确定出膨胀速度的大小|ud1,ij|,|ud2,ij|=1。假如不满足这个条件,则例行程序进入步骤120。
在步骤120中,依据杠杆-规则分布方法,如图10所示,利用膨胀速度ud1,ij和ud2,ij计算权重,格点ij的有关火焰的场变量将根据该权重分布到邻近的格点。在步骤121中,根据步骤120计算的权重,提取出从邻近格点分布到格点ij的权重。步骤122中,利用这样提取出的权重,可对分布到每个格点的单个实物量求和并予以更新。步骤123中,根据能量守恒定律一并引入重力做的功,对内能求和并予以更新。步骤124中,根据动量守恒定律,也对分布在每个格点中的动量求和并予以更新。
现在参考图7来描述步骤75扩散计算的细节。扩散和前面指出的膨胀(或收缩)作用不同,应根据各种实物在分子运动水平上发生的现象来考虑。在分子密度呈现差别的空间中,这种现象描绘了试图达到均匀分布的分子扩散。明确地说,因为后-燃烧膨胀引起分布在各个格点分子密度不一致,进行的计算就是要捕捉邻近分子不一致的密度经过扩散变成一致的现象。
因此进行这样的扩散计算应把ij中有关火焰的场变量的某些量,以及它们相关的内能eij和动量pij从格点ij分布到Newmann-近邻的格点,不论它们内能的差别如何。
图12表示图7所示的步骤75计算扩散的控制流程图。步骤131中,计算所关注的格点周围格点的平均实物量。步骤132中,确定所关注的格点与平均实物量之间的偏离。这样做的目的是确定所关注的格点与周围的格点的分子密度比。偏离越大,扩散越容易发生。
然后例行程序进入步骤133,其中,根据偏离,对所关注的格点的有关火焰的场变量进行更新,要更新得使所关注的格点的实物量和周围格点的实物量变得均匀一致。步骤134中,利用和前面步骤131和133应用的同样方法,计算有温度作为变量的平均值的偏离,温度随同实物量一起分布。添加重力做的功之后,根据能量守恒定律,对偏离值进行更新。然后在步骤135中,利用和步骤135同样的方法,根据动量守恒定律,计算有速度作为变量的平均值的偏离,速度随同实物量一起分布。对偏离值,即更新i-方向速度v1,ij,和j-方向速度v2,ij。
这样的计算是根据热工水力动力学现象进行的,光源接通的方式更加接近实际火焰的情况。再有,因为计算是连续进行的,外部环境的变化可一并引入考虑。还有可能按照用户的喜爱,以实-时方式对火焰条件进行修改。
虽然相关一些优选的实施方案对本发明进行了具体的展示和描述,然而本技术领域的熟练人员都会理解,只要不偏离以下权利要求的构思和范围,可以进行各种变更。
例如,虽然利用声音检测传感器检测到外界-空气的变化,但是也可以个别应用或者结合应用各种其它传感器,例如气流传感器和温度传感器,只要它们能够测量环绕模仿火焰产生设备外面空气的情况。
虽然对用于计算有关火焰场变量变化的计算装置是参考图4进行的描述,但是也可以通过与所描述不同的途径进行有关的计算。例如,可以增加一种表现火焰其它现象的电路。例如,还可以部分修改图7流程图所示的计算过程顺序,并仍然能将火焰复制出来,而没有任何问题。再有,根据采用的燃烧实物,可以恰当选择燃料的化学反应公式。在扩散中应用了基于杠杆规则的分布方法,也可以应用几率分布来确定分布比例。这些计算可以提前在外部完成,储存在存储器装置中,然后再从中读取。
虽然在上述实施方案中,复制的是一根蜡烛的单个火焰,但也有可能利用单个控制装置表现一种多重火焰。通过选择所用光源的数目,它们的颜色和安排,以及/或者通过重新设置模型系数,可以表现,例如,在燃烧木材或建筑物着火情况下产生的多重火焰。本技术领域的熟练人员还将会理解,燃烧过程中产生的气流可以与复制火焰一同复制。
权利要求
1.一种模仿火焰产生设备包括一种光源和一种控制装置,该装置用于控制输出给所说的光源的电流,其中所说的控制装置包括采用耦合映射格点计算火焰的时空图案的计算装置,以及基于这样计算出的火焰时空图案输出所说电流的输出装置。
2.按照权利要求1的模仿火焰产生设备,其中所说的耦合映射格点包括一种与适合造成谷粒状火焰有关的场变量,且所说的计算装置包括一个程序,该程序利用控制参数对所说的有关该火焰的场变量进行计算。
3.按照权利要求2的模仿火焰产生设备,其中所说的有关该火焰的场变量包括实物量、内能量、和动量,而所说的计算程序包括一个计算燃烧的程序、一个计算膨胀的程序、和一个计算扩散的程序。
4.按照权利要求3的模仿火焰产生设备,其中所说的计算装置根据所说的燃烧计算程序,所说的膨胀计算程序和所说的扩散计算程序对该火焰的时空图案进行计算。
5.按照权利要求4的模仿火焰产生设备,其中所说的计算装置能够输入和改变该有关火焰的场变量和/或控制参数。
6.一种模仿火焰产生的方法,该方法用于通过控制供给光源的电流来产生模仿火焰。所说的方法包括利用耦合映射格点计算火焰的时空图案来产生模仿火焰,并且按照这样计算出的火焰时空图案提供输出电流来接通所说的光源。
7.按照权利要求6的模仿火焰产生方法,其中所说的耦合映射格点包括一种与适合造成谷粒状火焰有关的场变量,而所说的计算装置包括一个程序,该程序利用控制参数对所说的有关火焰的场变量进行计算。
8.按照权利要求7的模仿火焰产生方法,其中所说的有关火焰的场变量包括实物量、内能量、和动量,所说的计算程序包括一个计算燃烧的程序、一个计算膨胀的程序、和一个计算扩散的程序。
9.按照权利要求8的模仿火焰产生方法,其中所说的计算涉及利用所说的燃烧计算程序,所说的膨胀计算程序和所说的扩散计算程序对所说的火焰的时空图案进行计算。
10.按照权利要求9的模仿火焰产生方法,其中所说的有关火焰的场变量和/或控制参数,可在该计算过程中输入和改变。
全文摘要
复制出与真实火焰状态极为近似的空间,且没有时间周期的依赖。即,通过对火焰时空图案的复制,可使光源发射暖光,由此,可提供一种小巧而低廉的模仿火焰产生设备。模仿火焰产生设备1包括光源10和用于控制输出给光源10电流的控制装置40,控制装置40包括采用耦合映射格点计算火焰的时空图案的计算装置41,以及按照这样计算出的火焰时空图案输出电流的输出装置42。
文档编号H05B39/09GK1578573SQ200410062929
公开日2005年2月9日 申请日期2004年7月1日 优先权日2003年7月7日
发明者野泽浩, 松尾则之 申请人:有限会社混沌玩具工房, 本田通信工业株式会社, 合亚国际有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1