放电灯点灯装置及照明器具的制作方法

文档序号:8024308阅读:115来源:国知局
专利名称:放电灯点灯装置及照明器具的制作方法
技术领域
本发明是有关于一种具有调光机能的放电灯点灯装置及照明器具。
背景技术
为了对放电灯因经年变化所导致的光输出低下和因伴随长时间使用的脏污所导致的光输出低下进行修正,已知有一种从放电灯的更换后开始计测放电灯的累积点灯时间,并根据该累积点灯时间使调光电平增加的照明装置。而且,在每次更换放电灯时,使累积点灯时间复位。这里,提出有一种对放电灯的寿命末期进行检测并将累积点灯时间自动复位,或将累积点灯时间以手动复位的照明装置。(例如参照专利文献1)[专利文献1]日本专利早期公开的特开2001-15276号公报(第8页,第14图)专利文献1的照明装置在每次检测放电灯的寿命末期时,或每次进行放电灯的更换时,分别只进行放电灯的累积点灯时间的复位,所以无法计测放电灯用点灯装置(倒相装置)的寿命,有时会超出其寿命而使用。结果,有时在放电灯用点灯装置会产生问题,使放电灯无法发挥设定的电气特性。而且,无法把握实际的放电灯用点灯装置的寿命。

发明内容
本发明的目的是提供一种可取得高频点灯装置的累计动作时间,并可进行照度修正的放电灯点灯装置及照明器具。
本发明的第1项所述的放电灯点灯装置的特征在于,包括对放电灯付以能量的高频点灯装置;对高频点灯装置的动作时间进行累计计时的计时装置;将利用计时装置被累计计时的高频点灯装置的累计动作时间进行存储的非挥发性的存储装置;根据前述累计动作时间及最新的灯更换时的累计动作时间,生成调光信号的调光信号生成装置;以及依据前述调光信号对高频点灯装置进行控制的控制装置。
在本发明及以下的各发明中,只要没有特别说明,各构成如下所示。高频点灯装置的动作时间也可为放电灯的点灯时间。这是因为,高频点灯装置进行动作的时间,实质上可认为是放电灯进行点灯的时间。例如,当放电灯点灯装置的开关打开时,对灯丝预热时间、放电时间及点灯时间进行管理的定时电路进行动作,而使高频点灯装置动作。
在上述灯丝预热时间中,由于放电灯并未进行点灯,所以高频点灯装置的动作时间和放电灯的点灯时间严格上并不相同。但是,上述灯丝预热时间为数毫秒(millisecond),对例如放电灯的寿命时间(12,000小时)为一种可忽略的时间,在本发明中意味着如上所述的高频点灯装置的动作时间与放电灯的点灯时间实质上是相同的。另外,可认为含有高频点灯装置的放电灯点灯装置的动作时间,也实质上与上述高频点灯装置的动作时间及放电灯的点灯时间相同。
调光信号既可为例如矩形波电压,也可为直流电压。
,意味着根据最新的灯更换时的高频点灯装置的动作时间。从灯更换时开始的高频点灯装置的动作时间,可在例如最新灯更换时使内部时钟动作,并由该计时进行求取,也可计算高频点灯装置的累计动作时间及最新的灯更换时的累计动作时间的差分而求取。
如利用本发明,可利用计时装置将高频点灯装置的动作时间累计计时,并在非挥发性的存储装置中进行存储。而且,在每次灯更换时,生成根据高频点灯装置的累计动作时间及灯更换时的高频点灯装置的累计动作时间的调光信号,并依据该调光信号对高频点灯装置的输出进行控制。而且,利用该调光信号,使放电灯的调光电平进行变化。
本发明的第2项所述的放电灯点灯装置的特征在于,包括对放电灯付以能量的高频点灯装置;对高频点灯装置的动作时间进行累计计时的计时装置;将利用计时装置被累计计时的高频点灯装置的累计动作时间及最新的灯更换时的累计动作时间进行存储的非挥发性的存储装置;计算前述累计动作时间及最新的灯更换时的累计动作时间的差分,并根据该差分生成调光信号的调光信号生成装置;以及依据前述调光信号对高频点灯装置进行控制的控制装置。
如利用本发明,可利用计时装置将高频点灯装置的动作时间累计计时,并在非挥发性的存储装置中进行存储。而且,在每次高频点灯装置的动作时,计算高频点灯装置的累计动作时间及最新的灯更换时的累计动作时间的差分,并生成根据该差分的调光信号,且依据该调光信号对高频点灯装置的输出进行控制。而且,利用该调光信号,使放电灯的调光电平进行变化。
本发明的第3项所述的放电灯点灯装置的特征在于调光信号生成装置为了对依据放电灯的点灯时间而减少的光束进行补充,而根据前述差分生成调光信号,以使放电灯的调光电平从初始调光电平增加。
如利用本发明,可根据高频点灯装置的累计动作时间及最新的灯更换时的前述累计动作时间的差分生成调光信号,以使放电灯的调光电平从初始调光电平增加,所以高频点灯装置可依据从灯更换时开始的动作时间,使放电灯的调光电平从初始调光电平增加。结果,使对应放电灯的点灯时间而减少的光束得以补充。
本发明的第4项所述的放电灯点灯装置包括对高频点灯装置和放电灯的连接状态进行检测的灯连接检测装置,其特征在于当灯连接检测装置检测到高频点灯装置和放电灯的非连接时,使利用计时装置进行累计计时的高频点灯装置的累计动作时间设定为最新的灯更换时的累计动作时间。
所说的[灯连接检测装置对高频点灯装置和放电灯的非连接进行检测],除了对新放电灯的更换以外,也包括对放电灯及照明器具进行清扫。当对放电灯及照明器具进行清扫时,即使使放电灯的调光电平为初始调光电平,也可确保设定的明亮度。而且,藉由灯连接检测装置对高频点灯装置和放电灯的非连接进行检测,当然也可检测灯更换、灯清扫时的灯拆卸。
如利用本发明,则当灯连接检测装置检测到高频点灯装置和放电灯的非连接后,使放电灯和高频点灯装置进行连接时,而放电灯的调光电平依据该连接时的高频点灯装置的动作时间,从初期调光电平开始增加。
本发明的第5项所述的放电灯点灯装置的特征在于,包括对放电灯付以能量的高频点灯装置;对放电灯的动作时间进行累计计时的计时装置;将利用计时装置被累计计时的放电灯的累计点灯进行存储的非挥发性的存储装置;根据前述累计点灯时间及最新的灯更换时的累计点灯时间,生成调光信号的调光信号生成装置;以及依据前述调光信号对高频点灯装置进行控制的控制装置。
放电灯的累计点灯时间,是指连接在高频点灯装置上所有的放电灯的点灯时间。即,在放电灯进行了数次更换时等,形成各灯的点灯时间的累计值。
如利用本发明,是利用计时装置使放电灯的点灯时间被累计计时,且在非挥发性的存储装置中进行存储。而且,在每次进行灯更换时,生成根据放电灯的累计点灯时间及灯更换时的放电灯的累计点灯时间的调光信号,并依据该调光信号对高频点灯装置进行控制。而且,利用该调光信号,使放电灯的调光电平进行变化。
本发明的第6项所述的照明器具的特征在于,包括如发明的第1项至第5项中的任一项所述的放电灯点灯装置;以及配置有该放电灯点灯装置的照明器具主体。
如利用本发明,可提供一种能够取得高频点灯装置的累计动作时间,且在每次放电灯更换时对依据放电灯的点灯时间而减少的光束进行修正的照明器具。
如利用本发明的第1项,可藉由读出在非挥发性存储装置中所存储的高频点灯装置的累计动作时间,而取得高频点灯装置的累计动作时间。而且,高频点灯装置由于是依据基于自身的累计动作时间及最新的灯更换时的累计动作时间的调光信号进行控制,所以可依据从灯更换时开始的动作时间进行照度修正,能够从放电灯得到大致一定的光束。
如利用本发明的第2项,可藉由读出在非挥发性存储装置中所存储的高频点灯装置的累计动作时间,而取得高频点灯装置的累计动作时间。而且,由于生成根据高频点灯装置的累计动作时间及最新的灯更换时的前述累计动作时间的差分的调光信号,并依据该调光信号对高频点灯装置进行控制,所以高频点灯装置可依据从灯更换时开始的动作时间进行照度修正,能够从放电灯得到大致一定的光束。
如利用本发明的第3项,由于高频点灯装置依据从灯更换时开始的动作时间,使放电灯的调光电平从初期调光电平开始增加,所以可对依据放电灯的点灯时间而减少的光束进行补充,能够到放电灯的寿命或放电灯的更换为止,从放电灯得到大致一定的光束。
如利用本发明的第4项,当使放电灯与高频点灯装置进行连接时,放电灯的调光电平依据从该连接时开始的高频点灯装置的动作时间,而从初始调光电平被增加,所以能够对依据放电灯的点灯时间而减少的光束进行补充,可从放电灯得到大致一定的光束。
如利用本发明的第5项,可藉由读出在非挥发性存储装置中所存储的高频点灯装置的累计动作时间,而取得高频点灯装置的累计动作时间。而且,高频点灯装置由于依据基于放电灯的累计点灯时间及最新的灯更换时的累计点灯时间的调光信号进行控制,所以可依据从灯更换时开始的动作时间进行照度修正,能够从放电灯得到大致一定的光束。
如利用本发明的第6项,可提供一种能够取得高频点灯装置的累计动作时间,且能够对依据放电灯的点灯时间而减少的光束进行修正的照明器具。


图1是本发明的第1实施形态的放电灯点灯装置的含有部分电路图的框图。
图2是表示放电灯的调光电平的控制,(a)为对倒相电路的累计动作时间的调光电平的变化图,(b)为对倒相电路的累计动作时间的调光信号的变化图。
图3是表示另一放电灯的调光电平的控制,(a)为对倒相电路的累计动作时间的调光电平的变化图,(b)为对倒相电路的累计动作时间的调光信号的变化图。
图4是本发明的第2实施形态的放电灯点灯装置的含有部分电路图的框图。
图5是本发明的第3实施形态的照明器具的外观图1放电灯点灯装置2高频点灯装置3荧光灯3a、3b灯丝电极4灯连接检测电路5控制电路6计时部7非挥发性的存储部8调光信号生成部9主控制部10寿命检测电路 11整流平滑电路12有源滤波器电路 13倒相电路14a、14b、15a、15b输出终端 16驱动电路17照明器具 18照明器具主体19罩壳 19a反射面20灯插座 21放电灯用点灯装置A电阻R1及电阻R2的中点 B二极管D1及电阻R5的中点C1直流截止用电容器 C2起动及谐振用电容器C3、C4、C11电容器 CP1比较器D1~D3二极管 E基片接地FET1、FET2场效应晶体管 L1限流及谐振用电感器R1~R6、R10、R11、R12、R13电阻Tr1P型双极晶体管 Tr2N型双极晶体管Tr10双极晶体管 Vref1基准电源具体实施方式
下面,参照图示对本发明的一实施形态进行说明。首先,对本发明的第1实施形态进行说明。图1至图3所示为本发明的第1实施形态,图1所示为放电灯点灯装置的含有部分电路图的框图,图2所示为放电灯的调光电平的控制,图2(a)所示为对倒相电路的累计动作时间的调光电平的变化,图2(b)所示为对倒相电路的累计动作时间的调光信号的变化图,图3所示为另外的放电灯的调光电平的控制,图3(a)所示为对倒相电路的累计动作时间的调光电平的变化,图3(b)所示为对倒相电路的累计动作时间的调光信号的变化图。
放电灯点灯装置1的构成包括高频点灯装置2、作为放电灯的荧光灯3、作为灯连接检测装置的灯连接检测电路4及控制电路5。而且,控制电路5的构成包括作为计时装置的计时部6、作为非挥发性的存储装置的非挥发性的存储部7、作为调光信号生成装置的调光信号生成部8及作为控制装置的主控制部9。而且,设置有用于进行荧光灯3的寿命末期的检测的寿命检测电路10。
高频点灯装置2的构成包括整流平滑电路11、有源滤波器电路12及倒相电路13。整流平滑电路11将商用交流电源Vs的交流电压进行整流平滑,并将该直流电压输入到有源滤波器电路12。有源滤波器电路12为例如升压削波电路,其将输入的直流电压转换为设定的输出电压,并输入到倒相电路13。
倒相电路13为了将从有源滤波器电路12所输出的直流电压转换为高频电压并输出,而利用场效应晶体管FET1、FET2形成半桥形(half bridge)。即,场效应晶体管FET1及场效应晶体管FET2的串联电路连接在有源滤波器电路12的输出侧,并在场效应晶体管FET2的漏极、源极间串联连接限流及谐振用电感器L1、直流截止用电容器C1以及起动及谐振用电容器C2(绘示在灯连接检测电路4内)。起动及谐振用电容器C2连接在荧光灯3的非电源侧的灯丝电极3a、3b间。荧光灯3的灯丝电极3a、3b的两端分别与高频点灯装置2(倒相电路13)的输出终端14a、14b、15a、15b连接。起动及谐振用电容器C2连接于高频点灯装置2的输出终端14b、15b之间。
而且,场效应晶体管FET1及场效应晶体管FET2的栅极分别与驱动电路16连接,驱动电路16与控制电路5的主控制部9连接。驱动电路16依据主控制部9的控制信号,在荧光灯3的预热时、起动时及点灯时分别以设定的频率,使场效应晶体管FET1、FET2交互进行开关动作。
采用上述构成的高频点灯装置2利用场效应晶体管FET1、FET2的开关动作,向输出终端14a、14b、15a、15b输出高频电压。此时,根据从调光信号生成部8所输出的调光信号,主控制部9可将控制信号输出到驱动电路16,使荧光灯3调光点灯。而且,荧光灯3使灯丝电极3a、3b的两端分别通过未图示的灯插座(lamp socket)与输出终端14a、14b、15a、15b连接,并由高频点灯装置2付以能量。
而且,在高频点灯装置2的输出终端14a、15a间,连接有寿命检测电路10。寿命检测电路10的构成包括在输出终端14a、15a间连接的电阻R1及电阻R2的串联电路、比较器CP1及基准电源Verf1。电阻R1及电阻R2将荧光灯3的灯电压进行分压。
比较器CP1其反转输入终端与基准电源Vrefl连接,非反转输入终端与电阻R1及电阻R2的中点A连接。即,比较器CP1向反转输入终端输入基准电源Verf1的基准电压,并向非反转输入终端输入前述中点A的电压。而且,基准电源Verf1的负极侧与基片接地E连接。而且,基片接地E与场效应晶体管FET2的源极侧连接。而且,比较器CP1的输出终端与控制电路5的主控制部9连接。
比较器CP1在前述中点A的电压(电阻R2的两端电压)大于等于基准电源Vref1的基准电压时,向主控制部9输出许可信号。即,寿命检测电路10对荧光灯3达到寿命末期的灯电压和无负载电压(不接通)进行检测,并将检测信号输出到主控制部9。
而且,灯连接检测电路4的构成包括电阻R3~电阻R6、电容器C3,C4、二极管D1~D3、P型双极晶体管Tr1(P-type bipolar transistor)及N型双极晶体管Tr2(N-type bipolar transistor)。即,在场效应晶体管FET1的漏极及高频点灯装置2的输出终端14a间连接电阻R3,并在输出终端14a、14b间连接电容器C3,在输出终端14b、15b间连接电阻R4,在输出终端15a、15b间连接电容器C4,在输出终端15a及场效应晶体管FET2的源极间连接二极管D1及电阻R5的串联电路。而且,在输出终端14a及场效应晶体管FET2的源极间,连接电阻R6、双极晶体管Tr1的发射极(emitter)、集电极(collector)、二极管D2及双极晶体管Tr2的基极(base)、发射极的串联电路。而且,双极晶体管Tr1的基极通过二极管D3与二极管D1及电阻R5的中点B连接,双极晶体管Tr2的集电极与控制电路5的主控制部9连接。双极晶体管Tr2的集电极形成灯连接检测电路4的输出终端。
如荧光灯3的灯丝电极3a、3b与高频点灯装置2(倒相电路13)的输出终端14、14b、15a、15b连接,则在有源滤波器电路12的动作时,从倒相电路13的场效应晶体管FET1的漏极侧,沿电阻R3、荧光灯3的灯丝电极3a、电阻R4、荧光灯3的灯丝电极3b、二极管D1、电阻R5及场效应晶体管FET2的源极侧的路径,流过电流。此时,可预先设定电阻R3~电阻R6的各个电阻值等,以使二极管D1及电阻R5的中点B的电位变得较双极晶体管Tr1的发射极侧的电位高。结果,由于双极晶体管Tr1不接通,所以双极晶体管Tr2也不接通,使控制电路5的主控制部9不与基片接地连接。
而且,如荧光灯3的灯丝电极3a不与高频点灯装置2的输出终端14a、14b连接,则从场效应晶体管FET1的漏极通过电阻R3流通的直流电流,由电容器C3被截止。而且,如荧光灯3的灯丝电极3b不与输出终端15a、15b连接,则来自场效应晶体管FET1的漏极侧的直流电流,由电容器C4被截止。即,如荧光灯3的灯丝电极3a、3b的至少一个不与高频点灯装置2的输出终端14a、14b、15a、15b连接,则不会向电阻R5流过电流。此时,二极管D1及电阻R5的中点B的电位被设定得较双极晶极管Tr1的发射极侧的电位低。结果,从场效应晶体管FET1的漏极侧,沿电阻R3、电阻R6、双极晶体管Tr1的发射极、基极(base)、前述中点B、电阻R5及场效应晶体管FET2的源极侧的路径,流过电流,所以双极晶体管Tr1接通。
当双极晶极管Tr1接通时,倒相电路13的输入电压(有源滤波器电路12的输出电压)因电阻R3及电阻R6等而下降,其并被施加在双极晶体管Tr2的基极上,使双极晶体管Tr2接通。当双极晶体管Tr2接通时,控制电路5的主控制部9通过双极晶体管Tr2的集电极、发射极与基片接地E连接。这里,采用一种主控制部9在与基片接地连接后,使驱动电源停止的构成。即,主控制部9不能对倒相电路13的场效应晶体管FET1、FET2的开关动作进行控制,使倒相电路13的动作停止。
这样,灯连接检测电路4对高频点灯装置2(倒相电路13)及荧光灯3的连接状态进行检测。即,当双极晶体管Tr2接通时,对高频点灯装置2及荧光灯3的非连接进行检测,当双极晶体管Tr2断开时,对高频点灯装置2及荧光灯3的连接进行检测。而且,当灯连接检测电路4检测到高频点灯装置2及荧光灯3的非连接时,使利用控制电路5的主控制部9的场效应晶体管FET1、FET2的开关动作停止,不向输出终端14a、14b、15a、15b输出高频电压。
控制电路5的构成包括主控制部9。而且,主控制部9与计时部6、非挥发性的存储部7及调光信号生成部8连接。计时部6利用主控制部9的控制对倒相电路13的动作时间进行累计计时。即,在主控制部9向驱动电路16发送控制信号,并使场效应晶体管FET1、FET2进行开关动作时进行计时。而且,被累计计时的倒相电路13的动作时间,被写入非挥发性的存储部7中进行存储。计时部6及主控制部9形成计时装置。
非挥发性的存储部7将由计时部6被累计计时的倒相电路13的累计动作时间进行存储。而且,存储灯更换时的前述累计动作时间。另外,存储预先被设定的荧光灯3的寿命时间(例如12000小时)等。
调光信号生成部8采用根据倒相电路13(高频点灯装置2)的累计动作时间及最新的灯更换时的累计动作时间,生成使荧光灯3调光的调光信号,并将该调光信号输出到主控制部9的构成。例如,对倒相电路13的累计动作时间及最新的灯更换时的累计动作时间的差分进行运算,并根据该差分而生成调光信号。倒相电路13的累计动作时间在倒相电路13的动作时,依据该动作进行加法运算。而且,最新的灯更换时的前述累计动作时间是利用主控制部9而从非挥发性的存储部7读出。因此,在倒相电路13的动作时,倒相电路13的累计动作时间依据倒相电路13的动作而增加,且前述差分也增加。
而且,调光信号生成部8在灯连接检测电路检测到高频点灯装置2及荧光灯3的连接时,即在高频点灯装置2上连接有荧光灯3时,输出使荧光灯3以初始调光电平(例如70%)进行点灯的调光信号,然后依据前述差分而输出使荧光灯3的调光电平从初始调光电平开始增加的调光信号。而且,采用在预先设定的寿命时间(例如12000小时)之后,输出使荧光灯3的调光电平形成大致100%(全光)的调光信号的构成。即,调光信号部生成部8利用预先设定的函数,而依据前述差分将PWM调光信号进行运算并输出。例如,在初始调光电平(70%)时输出功程率30%(on duty)的PWM调光信号,并依据前述差分而减少功程率值,在达到荧光灯3的寿命时间的调光电平100%(全光)时,输出功程率0%的PWM调光信号。
而且,主控制部9依据来自调光信号生成部8的调光信号,使场效应晶体管FET1、FET2的开关频率变化。藉此,荧光灯3从初始调光电平(70%)开始,依据前述差分而增加调光电平,并在荧光灯3的寿命时间后大致以调光电平100%(全光)进行点灯。即,使因荧光灯3的经年变化所导致的光输出的低下和因伴随长时间使用的脏污所导致的光输出的低下得以修正,而从荧光灯3输出大致一定的光束。
这样,调光信号生成部8为了对依据荧光灯3的点灯时间而减少的光束进行补充,对主控制部9进行控制,以使荧光灯3的调光电平依据前述差分进行增加。另外,调光信号生成部8除了前述差分以外,也可根据倒相电路13(高频点灯装置2)的累计动作时间及最新的灯更换时的前述累计动作时间,生成调光信号。
主控制部9包括进行运算处理的CPU(中央处理装置)、存储程序(program)的ROM及存储各种数据的RAM,并根据程序进行各种控制。
而且,主控制部9与倒相电路13的驱动电路16进行连接,并依据从调光信号生成部8所输出的调光信号,发送使倒相电路13的场效应晶体管FET1、FET2的开关频率进行变化的控制信号。
而且,主控制部9与寿命检测电路10进行连接,并被输入对荧光灯3的寿命末期进行检测的检测信号(允许信号)。即,当荧光灯3的灯电压上升到设定值以上时,或荧光灯3变成不接通时,被输入荧光灯3的寿命检测信号(允许信号)。
而且,主控制部9与灯连接检测电路4连接,当高频点灯装置2及荧光灯3不连接时,使驱动电源停止。
而且,主控制部9在灯连接检测电路4检测到高频点灯装置2和荧光灯3的非连接后,检测到再次连接时,将利用计时部6被累计计时的高频点灯装置2的累计动作时间设定为最新的灯更换时的前述累计动作时间,并在非挥发性的存储部7中进行存储。
下面,对本发明第1实施形态的作用进行说明。在灯连接检测电路4对高频点灯装置2和荧光灯3的连接进行检测的状态下,即在高频点灯装置2的输出终端14a、14b、15a、15b上连接有荧光灯3的灯丝电极3a、3b的情况下,当商用交流电流Vs接通时,利用控制电路5的主控制部9的控制,倒相电路13的场效应晶体管FET1、FET2进行开关动作。然后,对输出终端14a、14b、15a、15b输出倒相电路13的高频电压,使荧光灯3点灯。
主控制部9在使场效应晶体管FET1、FET2进行开关动作时,使计时部6对倒相电路13(高频点灯装置2)的动作时间进行累计计时,且使该累计动作时间在非挥发性的存储部7中进行存储。而且,使灯更换时或灯再次连接时的前述累计动作时间在非挥发性的存储部7中进行存储。
而且,在高频点灯装置2上连接荧光灯3,当灯连接检测电路4检测出该连接时,调光信号生成部8如图2(b)所示那样,向主控制部9输出功程率30%的PWM调光信号。主控制部9依据该PWM调光信号,使场效应晶体管FET1、FET2的开关频率进行变化。藉此,被输出到输出终端14a、14b、15a、15b的倒相电路13的高频电压进行变化,并如图2(a)所示,使荧光灯3以初始调光电平70%进行点灯。
而且,调光信号生成部8经过预先所设定的荧光灯3的寿命周期(例如12000小时),并利用预先所设定的函数,而对前述差分使PWM调光信号的功程率值减少。主控制部9依据PWM调光信号,使场效应晶体管FET1、FET2的开关频率进行变化。藉此,使荧光灯3的调光电平从初始调光电平70%开始而依据前述差分进行增加。
而且,当荧光灯3达到寿命末期,且灯电压上升时,从寿命检测电路10向主控制部9输入荧光灯3的寿命的检测信号(允许信号)。此时,主控制部9使倒相电路13的场效应晶体管FET1、FET2的开关动作停止,并使荧光灯3熄灯。或者,主控制部9对调光信号生成部8,通知该检测信号的输入。调光信号生成部8如图2(b)所示,对主控制部9输出使荧光灯3形成初始调光电平(70%)的功程率(30%)的PWM调光信号。主控制部9如图2(a)所示,依据功程率(30%)的PWM调光信号,使荧光灯3以初始调光电平70%进行点灯。藉此,使从荧光灯3所射出的光束减少。
荧光灯3因经年久变化而导致光输出(光束)低下,而且因伴随长时间使用的脏污也导致光输出(光束)低下。但是,藉由如上述那样,使荧光灯3的调光电平依据高频点灯装置2的动作时间而增加,可使依据荧光灯3的点灯时间而减少的光束得以修正,并在荧光灯3的寿命时间范围内,从荧光灯3得到大致一定的光束。
而且,在荧光灯3的寿命时间(例如12000小时)的中间,如高频点灯装置2和荧光灯3变得不连接,并再次使高频点灯装置2和荧光灯3连接时,主控制部9如图2(b)所示对调光信号生成部8进行控制,以使荧光灯3返回初始调光电平(70%)。然后,调光信号生成部8利用主控制部9的控制,向主控制部9输出使荧光灯3形成初始调光电平(70%)的功程率(30%)的PWM调光信号。主控制部9如图2(a)所示,依据来自调光信号生成部8的PWM调光信号,使荧光灯3以初始调光电平70%进行点灯。
在荧光灯3的寿命时间的中间,高频点灯装置2和荧光灯3变得不连接的情形,例如为荧光灯3及照明器具的清扫。当对荧光灯3及照明器具进行清扫时,使荧光灯3的调光电平再次形成初始调光电平(70%),也可确保从照明器具得到设定的明亮度。而且,即使与上述同样地,依据前述差分使荧光灯3的调光电平增加,也可在达到荧光灯3的寿命时间(例如12000小时)之前,利用寿命检测电路10检测出寿命末期,所以该调光电平也可能达不到100%(全光)另外,寿命检测电路10除了检测荧光灯3的灯电压以外,也可附加对半波电压进行检测的检测电路。即,寿命检测电路10只要采用对荧光灯3的寿命末期进行检测的构成即可。
而且,当放电灯点灯装置1被更换时,或照明器具被更换时,藉由读出在非挥发性的存储部7中所存储的倒相电路13的累计动作时间,可取得倒相电路13的累计动作时间。而且,藉由读出灯交换时的倒相电路13的累计动作时间,可取得荧光灯3的历史记录。利用该历史记录,可把握各个荧光灯3的实际寿命时间。
另外,调光信号生成部8也可采用如图3(b)所示,在进行灯更换或灯再次连接,并使荧光灯3以初始调光电平(例如70%)进行点灯时,输出功程率70%的PWM调光信号,并依据倒相电路13的累计动作时间及最新的灯更换时的前述累计动作的差分,使功程率值增加,且在达到荧光灯3的寿命时间的调光电平100%(全光)时,输出功程率100%的PWM调光信号的构成。
而且,主控制部9也可采用如图3(a)所示,依据来自调光信号生成部8的调光信号,使荧光灯3的调光水平从初始调光电平(70%)到调光电平100%(全光),依据前述差分进行增加的构成。
从调光信号生成部8输出到主控制部9的PWM调光信号,为从荧光灯3的初始调光电平(70%)到调光电平100%(全光)逐次增加的输出电压,由于主控制部9形成使直流电压增加的控制信号,所以主控制部9及调光信号生成部8的连接电路可简洁化。即,如图2所示,对从荧光灯3的初始调光电平(70%)开始到调光电平100%(全光)逐次减少的输出电压的PWM调光信号,当在主控制部9形成直流电压增加的控制信号时,需要例如前述输出电压的反转电路,使电路构成变得复杂。
而且,主控制部9也可取代倒相电路13的累计动作时间,而使计时部6对与高频点灯装置2连接的所有的荧光灯3的累计点灯时间进行计时,并在非挥发性的存储部7中进行存储。荧光灯3的累计点灯时间的计时,可在例如主控制部9使场效应晶体管FET1、FET2进行开关动作时,且从寿命检测电路10不输出允许信号时进行。而且,可在由光传感器检测荧光灯3的光输出,并由光传感器检测荧光灯3的光输出时进行。
而且,调光信号生成部8也可依据荧光灯3的累计点灯时间及最新的灯更换时的前述累计点灯时间的差分而生成调光信号。在这种情况下,也可得到与对倒相电路13的累计动作时间时同样的作用、效果。
下面,对关于本发明的第2实施形态的放电灯点灯装置,参照图示进行说明。另外,对与第1实施形态相同或相当的构成要素,付以相同的符号并省略其说明。
图4所示为本发明的第2实施形态的放电灯点灯装置的含有部分电路图的框图。在图中,首先,灯连接检测电路4的构成包括电阻R3、限流及谐振用的电感器L1、荧光灯3的灯丝电极3a、电阻R4、灯丝电极3b、电阻R10、双极晶体管Tr10、电阻R11及主控制部9。
而且,如荧光灯3与高频点灯装置2的输出终端14a、14b、15a、15b连接,则在上述电路中流过电流,并在双极晶体管Tr10的基极产生电压,所以双极晶体管Trl0接通,而灯连接检测电路4可判断灯被连接。另一方面,如荧光灯3从高频点灯装置2的输出终端14a、14b、15a、15b的某一个上被拆下,则不会流过电流,所以双极晶体管Trl0断开,而灯连接检测电路可判断灯未被连接。
其次,寿命检测电路10的构成包括电阻R12、电容器C11、电阻R13及主控制部9。当荧光灯3进行半波放电时,通过电阻R12将电容器C11进行充电。利用半波放电的朝向,使电容器C11的电压上下动作。在主控制部9,观察该电压是否在设定的范围内,如从设定范围偏离,则判断为因半波放电等形成的荧光灯3的寿命。另外,包含其它的电路动作的控制内容,与第1实施形态的放电灯点灯装置相同,省略其说明。
下面,对本发明的第3实施形态进行说明。
图5所示为本发明的第3实施形态的照明器具的外观图。另外,对与图1相同的部分付以相同的符号并省略说明。
图5所示的照明器具17为在天花板等营造物上所设置的直接安装照明器具,且照明器具主体18被直接安装在营造物上。照明器具主体18设置有具有反射面19a的罩壳19,且在其两端设置有一对灯插座20、20。而且,照明器具主体18在罩壳19内设置有放电灯用点灯装置21。放电灯用点灯装置21是在图1所示的放电灯点灯装置1中除去了荧光灯3的点灯装置。而且,荧光灯3被安装在灯插座20、20上。
为了对因荧光灯3的经年变化所导致的光输出(光束)的低下和因伴随长期间使用的脏污所导致的光输出(光束)的低下,以及因罩壳19的脏污所导致的反射效率的低下进行修正,而使荧光灯3的调光电平在寿命时间(12000小时)的范围内,从初始调光电平(70%)到100%(全光),依据从灯更换时开始的倒相电路13的动作时间进行增加,所以照明器具17可以大致一定的明亮度进行照明。
而且,当荧光灯3达到寿命末期时,利用寿命检测电路10对荧光灯3的寿命进行检测,并使荧光灯熄灯或使荧光灯3被控制在初始调光电平(70%),所以使照明器具17熄灯,或使照明器具17所形成的光亮变暗,而报知荧光灯3的寿命。藉此,可迅速地更换荧光灯3。
而且,如在荧光灯3的寿命时间之前,进行荧光灯3和照明器具17的清扫等保养作业,则荧光灯3的调光电平被控制为初始调光电平(70%),所以照明器具17可得到设定的光亮,且可谋求省电力化。
而且,照明器具17在放电灯用点灯装置21进行更换时,或照明装置17自身被废弃时,可读出非挥发性的存储部7中所存储的倒相电路13(高频点灯装置2)的累计动作时间,并可藉此取得倒相电路13(高频点灯装置2)的寿命时间和实际使用时间。而且,藉由读出灯更换时的倒相电路13的累计动作时间,可取得荧光灯3的历史记录,能够把握各个荧光灯3的实际寿命时间。
权利要求
1.一种放电灯点灯装置,其特征在于其包括对放电灯付以能量的高频点灯装置;对高频点灯装置的动作时间进行累计计时的计时装置;将利用计时装置被累计计时的高频点灯装置的累计动作时间进行存储的非挥发性的存储装置;根据前述累计动作时间及最新的灯更换时的累计动作时间,生成调光信号的调光信号生成装置;以及依据前述调光信号对高频点灯装置进行控制的控制装置。
2.一种放电灯点灯装置,其特征在于其包括对放电灯付以能量的高频点灯装置;对高频点灯装置的动作时间进行累计计时的计时装置;将利用计时装置被累计计时的高频点灯装置的累计动作时间及最新的灯更换时的累计动作时间进行存储的非挥发性的存储装置;计算前述累计动作时间及最新的灯更换时的累计动作时间的差分,并根据该差分生成调光信号的调光信号生成装置;以及依据前述调光信号对高频点灯装置进行控制的控制装置。
3.根据权利要求2所述的放电灯点灯装置,其特征在于调光信号生成装置为了对依据放电灯的点灯时间而减少的光束进行补充,而根据前述差分生成调光信号,以使放电灯的调光电平从初始调光电平增加。
4.根据权利要求2所述的放电灯点灯装置,包括对高频点灯装置和放电灯的连接状态进行检测的灯连接检测装置,其特征在于当灯连接检测装置检测到高频点灯装置和放电灯的非连接时,使利用计时装置进行累计计时的高频点灯装置的累计动作时间设定为最新的灯更换时的累计动作时间。
5.一种放电灯点灯装置,其特征在于其包括对放电灯付以能量的高频点灯装置;对放电灯的动作时间进行累计计时的计时装置;将利用计时装置被累计计时的放电灯的累计点灯进行存储的非挥发性的存储装置;根据前述的累计点灯时间及最新的灯更换时的累计点灯时间,生成调光信号的调光信号生成装置;以及根据前述的调光信号对高频点灯装置进行控制的控制装置。
6.一种照明器具,其特征在于其包括利要求1至5中的任一项所述的放电灯点灯装置;以及设置有该放电灯点灯装置的照明器具主体。
全文摘要
本发明的目的提供一种可取得高频点灯装置的累计动作时间,并可进行照度修正的放电灯点灯装置及照明器具。本发明所述的放电灯点灯装置包括对放电灯付以能量的高频点灯装置;对高频点灯装置的动作时间进行累计计时的计时装置;将利用计时装置被累计计时的高频点灯装置的累计动作时间进行存储的非挥发性的存储装置;根据前述累计动作时间及最新的灯更换时的累计动作时间,生成调光信号的调光信号生成装置;以及依据前述调光信号对高频点灯装置进行控制的控制装置。
文档编号H05B41/392GK1767711SQ200510116629
公开日2006年5月3日 申请日期2005年10月26日 优先权日2004年10月28日
发明者岩井直子, 平冈敏行, 高桥浩司, 浦谷和幸, 北村纪之 申请人:东芝照明技术株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1