面热源的制作方法

文档序号:8121824阅读:259来源:国知局
专利名称:面热源的制作方法
技术领域
本发明涉及一种面热源,尤其涉及一种基于碳纳米管的面热源。
背景技术
热源在人们的生产、生活、科研中起着重要的作用。面热源是热源的一种,其特点为面热源具有一平面结构,将待加热物体置于该平面结构的上方对物体进行加热,因此,面热源可对待加热物体的各个部位同时加热,加热面广、加热均匀且效率较高。面热源已成功用于工业领域、科研领域或生活领域等,如电加热器、红外治疗仪、电暖器等。
现有面热源一般包括一加热层和至少两个电极,该至少两个电核/没置于该加热层的表面,并与该加热层的表面电连接。当连接加热层上的电极通入#^电压电流时,热量立刻^^人加热层释^L出来。现在市售的面热源通常采用金属制成的电热丝作为加热层进行电热转换。然而,电热丝的强度不高易于折断,特别是弯曲或绕折成一定角度时,因此应用受到限制。另外,以金属制成的电热丝所产生的热量是以普通波长向外辐射的,其电热转换效率不高不利于节省能源。
非金属碳纤维导电材料的发明为面热源的发展带来了突破。采用碳纤维的加热层通常在碳纤维外部涂覆一层防水的绝缘层用作电热转换的元件以代替金属电热丝。由于碳纤维具有较好的韧性,这在一定程度上解决了电热丝强度不高易折断的缺点。然而,由于碳纤维仍是以普通波长向外散热,故并未解决电热转换率低的问题。为了解决上述问题,采用碳纤维的加热层一般包括多根碳纤维热源线铺设而成。该碳纤维热源线为一外表包裹有化纤或者棉线的导电芯线。该化纤或者棉线的外面浸涂一层防水阻燃绝缘材料。所述导电芯线由多根碳纤维与多根表面粘涂有远红外涂料的棉线缠绕而成。导电芯线中加入粘涂有远红外涂料的棉线, 一来可增强芯线的强度,二来可使通电后碳导纤维发出的热量能以红外波长向外辐射。
然而,采用碳纤维纸作为加热层具有以下缺点第一,碳纤维强度不够大,柔性不够好,容易破裂,需要加入棉线提高碳纤维的强度,限制了其应
有范围;第二,碳纤维本身的电热转换效率较低,需加入粘涂有远红外涂料的棉线提高电热转换效率,不利于节能环保;第三,需先制成碳纤维热源线再制成加热层,不利于大面积制作,不利于均匀性的要求,同时,不利于微型面热源的制作。
有鉴于此,确有必要提供一种面热源,该面热源强度大,电热转换效率较高,有利于节省能源且发热均匀,面热源的大小可控,可制成大面积面热源或者微型面热源。

发明内容
一种面热源,包括一加热层;至少两电极,该至少两个电极间隔设置且分别与该加热层电接触,其中,所述加热层包括至少一碳纳米管薄膜,且该碳纳米管薄膜包括多个首尾相连且择优取向排列的碳纳米管。
与现有技术相比较,所述面热源具有以下优点第一,碳纳米管的直径较小,使得碳纳米管层具有较小的厚度,可以制备微型面热源,应用于微型器件的加热。第二,碳纳米管比碳纤维具有更小的密度,所以,采用碳纳米管层的面热源具有更轻的重量,使用方便。第三,所述的碳纳米管层包括至少一碳纳米管薄膜,同一碳纳米管薄膜中的碳纳米管沿同一方向排列,具有较低的电阻,且碳纳米管的电热转换效率高,热阻率低,所以该面热源具有升温迅速、热滞后小、热交换速度快的特点。


图1是本技术方案实施例的面热源的结构示意图。图2是图1的II-II剖面示意图。
图3为本技术方案实施例的碳纳米管薄膜的扫描电镜照片。
图4为本技术方案实施例的面热源的表面温度与加热功率的关系图。
具体实施例方式
以下将结合附图及具体实施例详细说明本技术方案所提供的面热源。请参阅图1及图2,本技术方案实施例提供一种面热源10,该面热源10包括一基底18、 一反射层17、 一加热层16、 一第一电极12、 一第二电极14和一绝缘保护层15。所述反射层17设置于基底18的表面。所述加热层16设置于所述反射层17的表面。所述第一电极12和第二电极14间隔设置于所述加热层16的表面,并与该加热层16电接触,用于〗吏所述加热层16中流过电流。所述绝缘保护层15设置于所述加热层16的表面,并将所述第一电极12和第二电极14覆盖,用于避免所述加热层16吸附外界杂质。
所述基底18形状不限,其具有一表面用于支撑加热层16或者反射层17。优选地,所述基底18为一板状基底,其材料可为硬性材料,如陶瓷、玻璃、树脂、石英等,亦可以选择柔性材料,如塑料或柔性纤维等。当为柔性材料时,该面热源10在使用时可根据需要弯折成任意形状。其中,基底18的大小不限,可依据实际需要进行改变。本实施例优选的基底18为一陶瓷基板。另外,当加热层16具有一定的自支撑性及稳定性时,所述面热源10中的基底18为一可选择的结构。
所述反射层17的设置用来反射加热层16所发的热量,从而控制加热的方向,用于单面加热,并进一步提高加热的效率。所述反射层17的材料为一白色绝缘材料,如金属氧化物、金属盐或陶瓷等。本实施例中,反射层17为三氧化二铝层,其厚度为100微米 0.5毫米。该反射层17可通过'践射或其他方法形成于该基底18表面。可以理解,所述反射层17也可设置在基底18远离加热层16的表面,即所述基底18设置于所述加热层16和所述反射层17之间,进一步加强反射层17反射热量的作用。当面热源IO不包括基底18时,所述加热层16可直接设置于所述反射层17的表面。所述反射层17为一可选择的结构。所述加热层16可直接设置在基底18的表面,此时面热源10的加热方向不限,可用于双面加热。
所述加热层16包括一碳纳米管层,该碳纳米管层本身具有一定的粘性,可以利用本身的粘性设置于基底18的表面,也可以通过粘结剂设置于基底18的表面。所述的粘结剂为硅胶。该碳纳米管层的长度、宽度和厚度不限,可根据实际需要选择。本技术方案所提供的碳纳米管层的厚度为l微米-l毫米。
所述碳纳米管层包括至少一碳纳米管薄膜。请参阅图3,该碳纳米管薄膜可通过直接拉伸一碳纳米管阵列获得。该碳纳米管薄膜包括多个首尾相连且沿拉伸方向择优取向排列的碳纳米管。所述碳纳米管均匀分布,且平行于碳纳米管薄膜表面。所述碳纳米管薄膜中的碳纳米管之间通过范德华力连接。 一方面,首尾相连的碳纳米管之间通过范德华力连接,另一方面,平行的碳纳米管之间部分亦通过范德华力结合,故,该碳纳米管薄膜具有一定的柔韧性,可以弯曲折叠成任意形状而不破裂,且采用该碳纳米管薄膜的面热
源10具有较长的使用寿命。
所述碳纳米管薄膜中的碳纳米管包括单壁碳纳米管、双壁碳纳米管及多
壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5纳米-10纳米,双壁碳纳米管的直径为1.0纳米-15纳米,多壁碳纳米管的直径为1.5纳米-50纳米。该碳纳米管的长度大于100樣史米。优选为200-卯0樣£米。
所述碳纳米管薄膜是由碳纳米管阵列经进一步处理得到的,故其长度不限,宽度和碳纳米管阵列所生长的基底的尺寸有关,可根据实际需求制得。本实施例中,采用气相沉积法在4英寸的基底生长超顺排碳纳米管阵列。所述碳纳米管薄膜的宽度可为0.01厘米-10厘米,厚度为1纳米-100微米。碳纳米管薄膜的厚度优选为0.1微米-10微米。
所述碳纳米管层包括至少两层重叠设置的碳纳米管薄膜时,相邻的碳纳米管薄膜之间通过范德华力紧密结合。进一步,该碳纳米管层中的碳纳米管薄膜的层数不限,且相邻两层碳纳米管薄膜中的碳纳米管的排列方向之间形成一夹角a, 0So^90度,具体可依据实际需求制备。可以理解,通过控制碳纳米管薄膜的层数可以控制碳纳米管层的厚度。碳纳米管层的热响应速度与其厚度有关。在相同面积的情况下,碳纳米管层的厚度越大,热响应速度越慢;反之,碳纳米管层的厚度越小,热响应速度越快。本实施例中,所述碳纳米管层的厚度为l微米-l毫米,碳纳米管层在小于l秒的时间内就可以达到最高温度。本实施例中,单层碳纳米管薄膜在0.1毫秒时间内就可以达到最高温度。所以,该面热源IO适用于对物体快速加热。
本实施例中,加热层16采用重叠且交叉设置的100层碳纳米管薄膜,相邻两层碳纳米管薄膜之间交叉的角度为90度。该碳纳米管层中碳纳米管薄膜的长度为5厘米,碳纳米管薄膜的宽度为3厘米,碳纳米管薄膜的厚度为50微米。利用碳纳米管层本身的粘性,将该碳纳米管层设置于反射层17的表面。所述第一电极12和第二电极14由导电材料组成,该第一电极12和第 二电极14的形状不限,可为导电薄膜、金属片或者金属引线。优选地,第 一电极12和第二电极14均为一层导电薄膜。该导电薄膜的厚度为0.5纳米 ~100微米。该导电薄膜的材料可以为金属、合金、铟锡氧化物(ITO)、锑 锡氧化物(ATO)、导电银胶、导电聚合物或导电性碳纳米管等。该金属或 合金材料可以为铝、铜、鴒、钼、金、钛、钕、钯、铯或其任意组合的合金。 本实施例中,所述第一电极12和第二电极14的材料为金属钯膜,厚度为5 纳米。所述金属钯与碳纳米管具有较好的润湿效果,有利于所述第一电极12 及第二电极14与所述加热层16之间形成良好的电接触,减少欧姆接触电阻。
所述的第一电极12和第二电极14可以设置在加热层16的同一表面上 也可以设置在加热层16的不同表面上。或者,当所述面热源10中未包括基 底18时,也可将加热层16固定在间隔的第一电极12和第二电极14表面, 该第一电极12和第二电极14用于支撑加热层16。其中,第一电极12和第 二电极14间隔设置,以〗吏加热层16应用于面热源10时接入一定的阻值避 免短路现象产生。由于作为加热层16的碳纳米管层本身有很好的粘附性, 故第一电极12和第二电极14直接就可以与碳纳米管层之间形成很好的电接 触。
另外,所述的第一电极12和第二电极14也可通过一导电粘结剂(图未 示)设置于该加热层16的表面上,导电粘结剂在实现第一电极12和第二电 极14与加热层16电接触的同时,还可以将所述第一电极12和第二电极14 更好地固定于加热层16的表面上。本实施例优选的导电粘结剂为银胶。
可以理解,第一电极12和第二电极14的结构和材料均不限,其设置目 的是为了使所述加热层16中流过电流。因此,所述第一电极12和第二电极 14只需要导电,并与所述加热层16之间形成电接触都在本发明的保护范围 内。
所述绝缘保护层15为一可选择结构,其材料为一绝缘材料,如橡胶、 树脂等。所述绝缘保护层15厚度不限,可以根据实际情况选择。所述绝缘 保护层15覆盖于所述第一电极12、第二电极14和加热层16之上,可以使 该面热源IO在绝缘状态下使用,同时还可以避免所述加热层16中的石友纳米 管吸附外界杂质。本实施例中,该绝缘保护层15的材料为橡胶,其厚度为0.5-2毫米。
本技术方案实施例的面热源IO在使用时,可先将面热源IO的第一电极 12和第二电极14连接导线后接入电源。在接入电源后热源10中的碳纳米管 层即可辐射出一定波长范围的电磁波。所述面热源10可以与待加热物体的 表面直接接触。或者,由于本实施例中作为加热层16的碳纳米管层中的碳 纳米管具有良好的导电性能,且该碳纳米管层本身已经具有一定的自支撑性 及稳定性,所述面热源IO可以与待加热物体相隔一定的距离设置。
碳纳米管具有良好的导电性能以及热稳定性,作为一理想的黑体结构, 且具有比较高的热辐射效率。本实施例中,对由100层碳纳米管交叉膜组成 的碳纳米管层进行了电热性能测量。该碳纳米管层长5厘米,宽3厘米。将 该碳纳米管层包裹于一外部直径为1厘米的基底18上,且其位于第一电极 110和第二电极112之间的长度为3厘米。电流沿着基底18的长度方向流入。 测量仪器分别为红外测温4义RAYTEK RAYNER IP-M与红外测温仪测量4义 器,型号为AZ-8859。请参见图4,当加热功率为36瓦时,其表面温度已经 达到37(TC。可见,该碳纳米管层具有较高的电热转换效率。
本技术方案实施例中的面热源10在碳纳米管层的面积大小一定时,可 以通过调节电源电压大小和碳纳米管层的厚度,可以辐射出不同波长范围的 电磁波。电源电压的大小一定时,碳纳米管层的厚度和面热源IO辐出电磁 波的波长成反比。即当电源电压大d、一定时,碳纳米管层的厚度越厚,面热 源10辐出电i兹波的波长越短,该面热源IO可以产生一可见光热辐射;碳纳 米管层的厚度越薄,面热源10辐出电i兹波的波长越长,该面热源10可以产 生一红外线热辐射。碳纳米管层的厚度一定时,电源电压的大小和面热源10 辐出电磁波的波长成反比。即当碳纳米管层的厚度一定时,电源电压越大, 面热源IO辐出电石兹波的波长越短,该面热源IO可以产生一可见光热辐射; 电源电压越小,面热源IO辐出电磁波的波长越长,该面热源10可以产生一 红外热辐射。
碳纳米管具有良好的导电性能以及热稳定性,且作为 一理想的黑体结 构,具有比较高的热辐射效率。将该面热源10暴露在氧化性气体或者大气 的环境中,其中碳纳米管层的厚度为5毫米,通过在10伏 30 调节电源电 压,该面热源10可以辐射出波长较长的电》兹波。通过温度测量仪发现该面热源10的温度为5(TC 500。C。对于具有黑体结构的物体来说,其所对应的 温度为200。C 450。C时就能发出人眼看不见的热辐射(红外线),此时的热辐 射最稳定、效率最高。应用该碳纳米管层制成的发热元件,可应用于电加热 器、红外治疗仪、电暖器等领域。
进一步地,将本技术方案实施例中的面热源IO放入一真空装置中,通 过在80伏~150伏调节电源电压,该面热源10可以辐射出波长较短的电》兹波。 当电源电压大于150伏时,该面热源10陆续会发出红光、黄光等可见光。 通过温度测量仪发现该面热源IO的温度可达到150(TC以上,此时会产生一 普通热辐射。随着电源电压的进一步增大,该面热源10还能产生杀死细菌 的人眼看不见的射线(紫外光),可应用于光源、显示器件等领域。
所述的面热源具有以下优点第一,由于碳纳米管具有较好的强度及韧 性,碳纳米管层的强度较大,碳纳米管层的柔性好,不易破裂,使其具有较 长的使用寿命。第二,碳纳米管层中的碳纳米管均匀分布,碳纳米管层具有 均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源 具有升温迅速、热滞后小、热交换速度快、辐射效率高的特点。第三,碳纳 米管的直径较小,使得碳纳米管层具有较小的厚度,可以制备微型面热源, 应用于微型器件的加热。第四,碳纳米管层可通过从碳纳米管阵列中拉取后 作进一步处理得到,方法简单且有利于大面积面热源的制作。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依 据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
权利要求
1.一种面热源,其包括一加热层;至少两电极,该至少两个电极间隔设置且分别与该加热层电接触;其特征在于,所述加热层包括至少一碳纳米管薄膜,且该碳纳米管薄膜包括多个首尾相连且择优取向排列的碳纳米管。
2. 如权利要求1所述的面热源,其特征在于,所述碳纳米管薄膜中的碳纳米管之间通过范德华力连接。
3. 如权利要求1所述的面热源,其特征在于,所述碳纳米管的长度大于100微米,直径小于50纳米。
4. 如权利要求1所述的面热源,其特征在于,所述加热层包括至少两个重叠设置的^f友纳米管薄膜,且相邻两个^ 友纳米管薄膜之间通过范德华力紧密连接。
5. 如权利要求4所述的面热源,其特征在于,所述加热层中相邻碳纳米管薄膜中的碳纳米管的排列方向之间形成一夹角a, 0Sc^90度。
6. 如权利要求1所述的面热源,其特征在于,所述碳纳米管薄膜的厚度为1纳米-100樣t米。
7. 如权利要求1所述的面热源,其特征在于,所述加热层的厚度为1微米-1毫米。
8. 如权利要求1所述的面热源,其特征在于,所述至少两电极的材料为金属、合金、铟锡氧化物、锑锡氧化物、导电银胶、导电聚合物或导电性碳纳米管。
9. 如权利要求1所述的面热源,其特征在于,所述至少两电极设置在^f灰纳米管层的同一表面或者不同表面。
10. 如权利要求1所述的面热源,其特征在于,所述碳纳米管层包括至少一碳纳米管薄膜和至少一碳纳米管长线互相重叠形成的碳纳米管复合结构。
11. 如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一板状基底,所述碳纳米管层设置在该板状基底表面。
12. 如权利要求11所述的面热源,其特征在于,所述基底的材料为柔性材料或硬性材料,且所述柔性材料为塑料或柔性纤维,所述硬性材料为陶资、玻璃、树脂或石英。
13. 如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一反射层,该反射层设置于加热层表面,所述反射层的材料为金属氧化物、金属盐或陶瓷,厚度为100微米 0.5毫米。
14. 如权利要求13所述的面热源,其特征在于,所述反射层设置在所述加热层与基底之间或者设置在所述基底远离加热层的表面。
15. 如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一绝缘保护层设置于所述加热层表面,所述绝缘保护层的材料包括橡胶或树脂。
全文摘要
一种面热源,包括一加热层;至少两电极,该至少两个电极间隔设置且分别与该加热层电接触,其中,所述加热层包括至少一碳纳米管薄膜,且该碳纳米管薄膜包括多个首尾相连且择优取向排列的碳纳米管。
文档编号H05B3/20GK101636004SQ20081014252
公开日2010年1月27日 申请日期2008年7月25日 优先权日2008年7月25日
发明者辰 冯, 锴 刘, 姜开利, 范守善 申请人:清华大学;鸿富锦精密工业(深圳)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1