面热源的制作方法

文档序号:8121825阅读:255来源:国知局
专利名称:面热源的制作方法
技术领域
本发明涉及 一 种面热源,尤其涉及 一 种基于碳纳米管的面热源。
背景技术
热源在人们的生产、生活、科研中起着重要的作用。面热源是热源的一 种,其特点为面热源具有一平面结构,将待加热物体置于该平面结构的上方 对物体进行加热,因此,面热源可对待加热物体的各个部位同时加热,加热 面广、加热均匀且效率较高。面热源已成功用于工业领域、科研领域或生活 领域等,如电加热器、红外治疗仪、电暖器等。
现有面热源一般包括一加热层和至少两个电极,该至少两个电才及设置于 该加热层的表面,并与该加热层的表面电连接。当连接加热层上的电极通入 低电压电流时,热量立刻从加热层释i文出来。现在市售的面热源通常采用金 属制成的电热丝作为加热层进行电热转换。然而,电热丝的强度不高易于折 断,特别是弯曲或绕折成一定角度时,因此应用受到限制。另外,以金属制 成的电热丝所产生的热量是以普通波长向外辐射的,其电热转换效率不高不 利于节省能源。
非金属碳纤维导电材料的发明为面热源的发展带来了突破。采用碳纤维 的加热层通常在碳纤维外部涂覆一层防水的绝缘层用作电热转换的元件以代 替金属电热丝。由于与金属相比,碳纤维具有较好的韧性,这在一定程度上 解决了电热丝强度不高易折断的缺点。然而,由于碳纤维仍是以普通波长向 外散热,故并未解决电热转换率低的问题。为了解决上述问题,采用碳纤维 的加热层一般包括多根碳纤维热源线铺设而成。该碳纤维热源线为一外表包 裹有化纤或者棉线的导电芯线。该化纤或者棉线的外面浸涂一层防水阻燃绝 缘材料。所述导电芯线由多根碳纤维与多根表面粘涂有远红外涂料的棉线缠 绕而成。导电芯线中加入粘涂有远红外涂料的棉线, 一来可增强芯线的强度, 二来可使通电后碳导纤维发出的热量能以红外波长向外辐射。
然而,采用碳纤维纸作为加热层具有以下缺点第一,碳纤维强度不够度,限制了其应用范围;第二, 碳纤维本身的电热转换效率较低,需加入粘涂有远红外涂料的棉线提高电热
转换效率,不利于节能环保;第三,需先制成碳纤维热源线再制成加热层, 不利于大面积制作,不利于均匀性的要求,同时,不利于微型面热源的制作。 有鉴于此,确有必要提供一种面热源,该面热源强度大,电热转换效率 较高,有利于节省能源且发热均匀,面热源的大小可控,可制成大面积面热 源或者微型面热源。

发明内容
一种面热源,包括一基底; 一加热层,所述加热层设置于该基底的表面; 至少两电极,该两电极间隔设置并分别与该加热层电接触,其特征在于,所 述加热层包括多个碳纳米管长线结构。
与现有技术相比较,所述的面热源具有以下优点第一,由于碳纳米管 具有较好的强度及韧性,碳纳米管长线结构的强度较大,柔性较好,不易破 裂,使其具有较长的使用寿命。第二,碳纳米管长线结构中的碳纳米管均匀 分布,因此具有均匀的厚度及电阻,发热均匀,碳纳米管的电热转换效率高, 所以该面热源具有升温迅速、热滞后小、热交换速度快的特点。第三,碳纳 米管的直径较小,使得碳纳米管长线结构具有较小的厚度,可以制备微型面 热源,应用于微型器件的加热。


图1是本技术方案实施例的面热源的结构示意图。 图2是图1的II-II剖面示意图。
图3是本技术方案实施例束状结构的碳纳米管长线结构的结构示意图。 图4是本技术方案实施例绞线状结构的碳纳米管长线结构的结构示意图。
图5是本技术方案实施例束状结构的碳纳米管长线的扫描电镜照片。 图6是本技术方案实施例绞线状结构的碳纳米管长线的扫描电镜照片。
具体实施方式
以下将结合附图详细说明本技术方案面热源。
请参阅图1及图2,本技术方案实施例提供一种面热源10,该面热源 10包括一基底18、 一反射层17、 一加热层16、 一第一电极12、 一第二电极 14和一绝缘保护层15。所述反射层17设置于基底18的表面。所述加热层 16设置于所述反射层17的表面。所述第一电极12和第二电极14间隔设置, 并与该加热层16电接触,用于使所述加热层16中流过电流。所述绝缘保护 层15设置于所述加热层16的表面,并将所述第一电极12和第二电极14覆 盖,用于避免所述加热层16吸附外界杂质。
所述基底18形状不限,其具有一表面用于支撑加热层16或者反射层 17。优选地,所述基底18为一板状基底,其材料可为硬性材料,如陶资、 玻璃、树脂、石英等,亦可以选择柔性材料,如塑料或柔性纤维等。当为 柔性材料时,该面热源10在使用时可根据需要弯折成任意形状。其中,基 底18的大小不限,可依据实际需要进行改变。本实施例优选的基底18为一 陶瓷基板。
所述反射层17的设置用来反射加热层16所发的热量,从而控制加热的 方向,用于单面加热,并进一步提高加热的效率。所述反射层17的材料为 一白色绝缘材料,如金属氧化物、金属盐或陶瓷等。本实施例中,反射层 17为三氧化二铝层,其厚度为10(H鼓米 0.5毫米。该反射层17可通过'践射 或其他方法形成于该基底18表面。可以理解,所述反射层17也可设置在基 底18远离加热层16的表面,即所述基底18设置于所述加热层16和所述反 射层17之间,进一步加强反射层17反射热量的作用。所述反射层17为一 可选择的结构。所述加热层16可直接设置在基底18的表面,此时面热源10 的加热方向不限,可用于双面加热。
所述加热层16包括多个碳纳米管长线结构160。所述多个碳纳米管长 线结构160平行铺设,或者交叉铺设于所述基底18表面Z其中,碳纳米管 长线结构160之间交叉的角度不限。所述相邻两个平行的碳纳米管长线结构 160之间的距离为0微米~30微米。本实施例中,优选相邻两个平行的碳纳 米管长线结构160间隔的距离为20微米。可以理解,所述多个碳纳米管长 线结构160排列或者铺设的方式不限,只需确保形成一均匀的加热层16即 可。进一步地,所述加热层16中至少部分碳纳米管长线结构160沿从所述第一电极22向第二电极24延伸的方向铺设于所述基底18表面,以确保流 经碳纳米管长线结构160的电流最大。所述加热层16的厚度为3毫米 25 毫米。
所述碳纳米管长线结构160包括至少一根碳纳米管长线161。请参阅图 3及图4,优选地所述碳纳米管长线结构160是由多根碳纳米管长线161组 成的束状结构或者由多根碳纳米管长线161组成的绞线结构。所述碳纳米管 长线结构160的直径为20微米 2毫米,其大小由碳纳米管长线161的根数 及直径大小决定,碳纳米管长线161的直径越大,根数越多,碳纳米管长线 结构160的直径越大,反之,碳纳米管长线结构160的直径越小。所述碳纳 米管长线结构160的长度大小由碳纳米管长线161的长度大小决定。本实施 例中所述碳纳米管长线结构160是由多根碳纳米管长线161组成的束状结 构,直径为50孩支米。
请参阅图5及图6,所述碳纳米管长线161是由多个首尾相连的碳纳米 管束组成的束状结构或者绞线结构。所述碳纳米管长线包括多个沿碳纳米管 长线161的轴向方向择优取向排列的碳纳米管。具体地,所述束状结构的碳 纳米管长线161可通过有机溶剂处理所述碳纳米管薄膜,或者通过直接拉取 碳纳米管阵列获得。该碳纳米管长线161中碳纳米管沿碳纳米管长线的轴向 方向平行排列。所述绞线结构碳纳米管长线161可通过对束状结构的碳纳米 管长线161施加机械外力扭转获得。扭转后该碳纳米管长线161中碳纳米管 沿碳纳米管长线的轴向方向螺旋排列。
所述碳纳米管长线161的直径与长度和碳纳米管阵列所生长的基底的尺 寸有关。可根据实际需求制得。本实施例中,采用气相沉积法在4英寸的基 底生长超顺排碳纳米管阵列。所述碳纳米管长线161的直径为1微米-100 孩吏米,长度为50毫米~100毫米。
所述碳纳米管长线结构160中的碳纳米管为单壁碳纳米管、双壁碳纳米 管或者多壁碳纳米管。当所述碳纳米管长线结构160中的碳纳米管为单壁碳 纳米管时,该单壁碳纳米管的直径为0.5纳米~50纳米。当所述碳纳米管长 线结构160中的碳纳米管为双壁碳纳米管时,该双壁碳纳米管的直径为1.0 纳米 50纳米。当所述碳纳米管长线结构160中的碳纳米管为多壁碳纳米管 时,该多壁^ 友纳米管的直径为1.5纳米 50纳米。所述第一电极12和第二电极14由导电材料组成,该第一电极12和第 二电极14的形状不限,可为导电薄膜、金属片或者金属引线。优选地,第 一电极12和第二电极14均为一层导电薄膜。该导电薄膜的厚度为0.5纳米 ~100微米。该导电薄膜的材料可以为金属、合金、铟锡氧化物(ITO)、锑 锡氧化物(ATO)、导电银胶、导电聚合物或导电性碳纳米管等。该金属或 合金材料可以为铝、铜、钨、钼、金、钛、钕、钇、铯或其任意组合的合金。 本实施例中,所述第一电极12和第二电极14的材料为金属钯膜,厚度为5 纳米。所述金属钯与碳纳米管具有较好的润湿效果,有利于所述第一电极12 及第二电极14与所述加热层16之间形成良好的电接触,减少欧姆接触电阻。
所述的第一电4及12和第二电极14可以设置在加热层16的同一表面上 也可以设置在加热层16的不同表面上。其中,第一电极12和第二电极14 间隔i殳置,以使加热层16应用于面热源10时接入一定的阻值避免短;洛现象 产生。所述第一电极12和第二电极14的设置位置与碳纳米管长线结构160 的排列相关,至少部分碳纳米管长线结构160的两端分别与所述第一电极12 和第二电极14电连接。
另外,所述的第一电极12和第二电极14也可通过一导电粘结剂(图未 示)设置于该加热层16的表面上,导电粘结剂在实现第一电极12和第二电 极14与加热层16电接触的同时,还可以将所述第一电极12和第二电极14 更好地固定于加热层16的表面上。本实施例优选的导电粘结剂为银胶。
可以理解,第一电极12和第二电极14的结构和材料均不限,其设置目 的是为了使所述加热层16中流过电流。因此,所述第一电极12和第二电极 14只需要导电,并与所述加热层16之间形成电接触都在本发明的保护范围 内。
所述绝缘保护层15为一可选择结构,其材料为一绝缘材料,如橡胶、 树脂等。所述绝缘保护层15厚度不限,可以根据实际情况选择。所述绝缘 保护层15覆盖于所述第一电极12、第二电才及14和加热层16之上,可以4吏 该面热源IO在绝缘状态下使用,同时还可以避免所述加热层16中的碳纳米 管吸附外界杂质。本实施例中,该绝缘保护层15的材料为橡胶,其厚度为 0.5~2毫米。
本技术方案实施例的面热源IO在使用时,可先将面热源IO的第一电极12和第二电极14连接导线后接入电源。在接入电源后热源10中的碳纳米管 长线结构160即可辐射出一定波长范围的电磁波。所述面热源20可以与待 加热物体的表面直接接触。或者,由于本实施例中作为加热层16的碳纳米 管长线结构160中的碳纳米管具有良好的导电性能,且该碳纳米管长线结构 160本身已经具有一定的自支撑性及稳定性,所述面热源20可以与待加热物 体相隔一定的距离i殳置。
本技术方案实施例中的面热源IO在碳纳米管长线结构160的面积大小 一定时,可以通过调节电源电压大小和加热层16的厚度,可以辐射出不同 波长范围的电》兹波。电源电压的大d、一定时,加热层16的厚度和面热源10 辐出电磁波的波长的变化趋势相反。即当电源电压大小一定时,加热层16 的厚度越厚,面热源10辐出电》兹波的波长越短,该面热源10可以产生一可 见光热辐射;加热层16的厚度越薄,面热源IO辐出电磁波的波长越长,该 面热源10可以产生一红外线热辐射。加热层16的厚度一定时,电源电压的 大小和面热源10辐出电》兹波的波长成反比。即当加热层16的厚度一定时, 电源电压越大,面热源10辐出电》兹波的波长越短,该面热源10可以产生一 可见光热辐射;电源电压越小,面热源10辐出电》兹波的波长越长,该面热 源IO可以产生一红外热辐射。
碳纳米管具有良好的导电性能以及热稳定性,且作为一理想的黑体结 构,具有比较高的热辐射效率。将该面热源10暴露在氧化性气体或者大气 的环境中,其中碳纳米管长线结构的厚度为5毫米,通过在10伏 30伏调节 电源电压,该面热源10可以辐射出波长较长的电磁波。通过温度测量仪发 现该面热源IO的温度为50°C~500°C。对于具有黑体结构的物体来说,其所 对应的温度为200。C 450。C时就能发出人眼看不见的热辐射(红外线),此时 的热辐射最稳定、效率最高。应用该碳纳米管长线结构制成的发热元件,可 应用于电加热器、红外治疗仪、电暖器等领域。
进一步地,将本技术方案实施例中的面热源IO放入一真空装置中,通 过在80伏~150伏调节电源电压,该面热源10可以辐射出波长较短的电^f兹波。 当电源电压大于150伏时,该面热源10陆续会发出红光、黄光等可见光。 通过温度测量仪发现该面热源IO的温度可达到150(TC以上,此时会产生一 普通热辐射。随着电源电压的进一步增大,该面热源IO还能产生杀死细菌的人眼看不见的射线(紫外光),可应用于光源、显示器件等领域。
所述的面热源具有以下优点第一,由于碳纳米管具有较好的强度及韧 性,碳纳米管长线结构的强度较大,柔性较好,不易破裂,使其具有较长的 使用寿命。第二,碳纳米管长线结构中的碳纳米管均匀分布,因此具有均匀 的厚度及电阻,发热均匀,碳纳米管的电热转换效率高,所以该面热源具有 升温迅速、热滞后小、热交换速度快、辐射效率高的特点。第三,碳纳米管 的直径较小,使得碳纳米管长线结构具有较小的厚度,可以制备微型面热源, 应用于微型器件的加热。第四,多个碳纳米管长线结构交叉形成一多层结构 以提供一定的支撑作用,使碳纳米管复合结构具有更好的韧性。第五,碳纳 米管长线结构可通过从碳纳米管阵列中拉取后作进一步处理得到,方法简单 且有利于大面积面热源的制作。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依
据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。
权利要求
1.一种面热源,其包括一基底;一加热层,所述加热层设置于该基底的表面;至少两电极,该至少两个电极间隔设置且分别与该加热层电接触;其特征在于,所述加热层包括多个碳纳米管长线结构。
1. 一种面热源,其包括 一基底;一加热层,所述加热层设置于该基底的表面;至少两电极,该至少两个电极间隔设置且分别与该加热层电接触;其特征在于,所述加热层包括多个碳纳米管长线结构。
2. 如权利要求1所述的面热源,其特征在于,所述多个碳纳米管长线结构平行 设置形成一单层结构。
3. 如权利要求2所述的面热源 之间的距离小于30微米。
4. 如权利要求1所述的面热源 设置形成一多层结构。
5. 如纟又利要求1所述的面热源 一碳纳米管长线。
6. 如权利要求5所述的面热源,其特征在于,所述碳纳米管长线结构为由多根 ^暖纳米管长线组成的束状结构或者绞线结构。
7. 如权利要求6所述的面热源,其特征在于,所述^f灰纳米管长线包括多个首尾 相连且择优取向排列的碳纳米管。
8. 如权利要求7所述的面热源,其特征在于,所述碳纳米管长线中的^ 友纳米管 沿碳纳米管长线的轴向方向平行排列或螺旋排列。
9. 如权利要求1所述的面热源,其特征在于,所述至少两电极的材料为金属、 合金、铟锡氧化物、锑锡氧化物、导电银胶、导电聚合物或导电性碳纳米管。
10. 如权利要求1所述的面热源,其特征在于,所述至少两电极设置在碳纳米管 长线结构的同一表面或者不同表面。
11. 如权利要求l所述的面热源,其特征在于,所述基底的材料为柔性材料或硬 性材料,且所述柔性材料为塑料或柔性纤维,所述硬性材料为陶瓷、玻璃、 树脂或石英。
12. 如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一反射层,该反射层设置于加热层表面,所述反射层的材料为金属氧化物、金属盐或陶瓷,厚度为100微米 0.5毫米。
13. 如权利要求12所述的面热源,其特征在于,所述反射层设置在所述加热层 与基底之间或者设置在所述基底远离加热层的表面。
14. 如权利要求1所述的面热源,其特征在于,所述面热源进一步包括一绝缘保 护层设置于所述加热层表面,所述绝缘保护层的材料包括橡胶或树脂。
全文摘要
一种面热源,包括一基底;一加热层,所述加热层设置于该基底的表面;至少两电极间隔设置且分别与该加热层电接触,其特征在于,所述加热层包括多个碳纳米管长线结构。
文档编号H05B3/20GK101636005SQ20081014252
公开日2010年1月27日 申请日期2008年7月25日 优先权日2008年7月25日
发明者辰 冯, 锴 刘, 姜开利, 范守善 申请人:清华大学;鸿富锦精密工业(深圳)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1