层叠体及层叠体的制造方法与流程

文档序号:14955562发布日期:2018-07-17 23:29阅读:117来源:国知局

本发明涉及将金属被膜层叠在基材上而形成的层叠体以及层叠体的制造方法。



背景技术:

目前,功率模块(powermodule)作为在从工业用、汽车用等的电力控制到马达控制的广泛的领域中使用的节能化的关键部件而为人所知。功率模块是在作为基材的绝缘基材(例如陶瓷基材)的一侧的表面经由用金属被膜形成的电路图案来配设芯片(晶体管)、在另一侧的表面经由金属被膜配设冷却部的装置(例如参见专利文献1)。作为冷却部,例如使用在金属或者合金的部件上设置用于冷却的热媒介的移动路径的装置。在这样的功率模块中,通过使由芯片产生的热量经由金属被膜移动至冷却部再释放到外部,能够进行冷却。

作为在绝缘基材上形成金属被膜的层叠体的制作方法,例如可以举出热喷涂法或冷喷涂法。热喷涂法是通过将被加热至熔融状态或接近熔融的状态的材料(热喷涂材料)喷射到基材上来形成被膜的方法。

另一方面,冷喷涂法是使材料的粉末与处于熔点或软化点以下的状态的不活泼气体一同从渐扩型(拉瓦尔)喷管喷射出,保持固相状态地撞击到基材上,由此在基材的表面形成被膜的方法(例如参见专利文献2)。在冷喷涂法中,由于与热喷涂法相比是在较低的温度下进行加工,因此热应力的影响得以缓和。因此,能够获得未产生相变且抑制了氧化的金属被膜。特别是,在基材及形成被膜的材料均为金属的情况下,金属材料的粉末撞击到基材(或者在先形成的被膜)上时,在粉末与基材之间会产生塑性变形而获得锚固效应(anchoringeffect),并且各自的氧化被膜被破坏而在新生面彼此之间产生金属键结合,因此能够获得附着强度高的层叠体。

专利文献1:日本特开2011-108999号公报

专利文献2:日本专利5548167号公报



技术实现要素:

在如上所述的功率模块中,若芯片的容量为大容量则产热量也大,因此使产生的热量经由金属被膜等迅速地传导至冷却部而释放就很重要。为了提高导热效率,金属被膜的厚度越厚则越能够降低热阻,因此较为理想。然而,若将金属被膜加厚,则向功率模块施加热负荷的情况下,由于金属被膜与绝缘基材的热膨胀系数不同,因此产生金属被膜从绝缘基材上剥离、或绝缘基材的破裂等问题的可能性就会增高。

本发明是鉴于上述问题而完成的,其目的在于提供一种散热效果好、被施加热负荷时也不会产生绝缘基材破裂等问题,并且不会产生金属被膜空洞(void)等的层叠体及层叠体的制造方法。

为了解决上述问题,实现目的,本发明涉及一种层叠体,其包括:基材,其具有绝缘性;中间层,其形成于上述基材的表面,以金属或者合金为主成分;以及金属被膜,其由含氢量为0.002质量%以下的铜粉末构成,在上述中间层上层叠而形成,其中,上述中间层与上述金属被膜之间的界面产生塑性变形。

此外,本发明涉及一种层叠体,其包括:基材,其由金属或者合金制成;以及金属被膜,其由含氢量为0.002质量%以下的铜粉末制成,在上述基材上层叠而形成,其中,上述基材与上述金属被膜之间的界面产生塑性变形。

此外,本发明涉及的层叠体,是在上述发明中,上述铜粉末的含氧量为0.03质量%以上0.15质量%以下。

此外,本发明涉及的层叠体,是在上述发明中,上述铜粉末的含磷量为0.002质量%以上0.028质量%以下。

此外,本发明涉及一种层叠体的制造方法,其包括:被膜形成工序,在形成有以金属或者合金为主成分的中间层的具有绝缘性的基材的表面,通过使含氢量为0.002质量%以下的铜粉末与气体一同加速、保持固相状态地喷射到上述中间层的表面并堆积来形成金属被膜层。

此外,本发明涉及一种层叠体的制造方法,其包括:被膜形成工序,在由金属或者合金制成的基材的表面,通过使含氢量为0.002质量%以下的铜粉末与气体一同加速、保持固相状态地喷射到上述基材的表面并堆积来形成金属被膜层。

此外,本发明涉及的层叠体的制造方法,是在上述发明中,上述铜粉末的含氧量为0.03质量%以上0.07质量%以下。

此外,本发明涉及的层叠体的制造方法,是在上述发明中,包括:铜粉末形成工序,对熔融的铜以0.002质量%以上0.028质量%以下的比例添加磷或者磷铜合金,进行雾化来形成铜粉末。

此外,本发明涉及的层叠体的制造方法,是在上述发明中,上述铜粉末形成工序不包括在氢气环境下的铜粉末的还原热处理。

此外,本发明涉及的层叠体的制造方法,是在上述发明中,在上述铜粉末形成工序中,通过水雾化法来形成铜粉末。

此外,本发明涉及的层叠体的制造方法,是在上述发明中,在上述铜粉末形成工序中,对粉末化而成的铜粉末,在真空环境下进行热处理。

此外,本发明涉及的层叠体的制造方法,是在上述发明中,上述中间层是通过将板状的金属或者合金部件硬焊接合在上述基材上而形成的。

根据本发明,具有散热效果好、被施加热负荷时也不会产生绝缘基材破裂等问题、并且能够获得没有金属被膜空洞等的层叠体的效果。

附图说明

图1为表示作为本发明的实施方式涉及的层叠体的功率模块的结构的示意图。

图2为将图1所示的层叠体的主要部分放大表示的截面图。

图3为表示冷喷涂装置的概要的示意图。

图4为表示作为本发明的实施方式的变形例1涉及的层叠体的功率模块的结构的示意图。

图5为说明本发明的实施例及比较例涉及的层叠体的制造工序的图。

图6为表示本发明的实施例及比较例涉及的层叠体的被施加热负荷时的热膨胀特性的图。

具体实施方式

以下,结合附图对用于实施本发明的方式进行详细说明。另外,本发明并不限于以下的实施方式。此外,在以下的说明中参照的各附图,仅以能够理解本发明的程度来概略地表示形状、大小及位置关系。即,本发明并不仅仅限定于由各附图所例示的形状、大小及位置关系。

图1为表示作为本发明的实施方式涉及的层叠体的功率模块的结构的示意图。此外,图2为将图1所示的层叠体的主要部分放大表示的截面图。图1所示的功率模块1包括:作为绝缘基板的陶瓷基材10、形成于陶瓷基材10的一侧的表面的电路层20、通过软焊料c1接合于电路层20上的芯片30、以及设置于陶瓷基材10的与电路层20相反的一侧的表面的散热片40。

基材10是由绝缘性材料制成的大致呈板状的部件。作为绝缘性材料,例如可使用:氮化铝、氮化硅等氮化物类的陶瓷、或者氧化铝、氧化镁、氧化锆、滑石、镁橄榄石、莫来石、二氧化钛、二氧化硅、塞隆等氧化物类的陶瓷、或者配合有无机填料的树脂层等。

电路层20是由后述的冷喷涂法形成的金属被膜层,由含氢量为0.002质量%以下的铜制成。在该电路层20形成有用于对芯片30等传送电信号的电路图案。通过使由铜制成的金属被膜的含氢量为0.002质量%以下,能够防止在施加热负荷时随着氢从金属被膜释放而产生的金属被膜的特异性热膨胀。

芯片30可由二极管、晶体管、igbt(insulatedgatebipolartransistor,绝缘栅双极型晶体管)等半导体元件而实现。另外,芯片30根据使用的目的,可以在基材10上设置多个。

散热片40除了由铜、铜合金、铝、铝合金、银、银合金等具有良好的导热性的金属或者合金制成,通过铸造、机械加工等制造而成的产品以外,也可以使用由后述的冷喷涂法形成的产品。经由这样的散热片40,由芯片30产生的热量通过基材10被释放到外部。

如图2所示,在基材10与电路层20之间、以及基材10与散热片40之间,设有以金属或合金为主成分的中间层50。该中间层50是通过用硬焊剂将板状的金属或者合金部件(以下将这些统称为金属部件)接合于基材10上而形成的。

硬焊剂的种类可以根据基材10的种类或板状的金属部件的种类进行选择。本实施方式中,可以使用以铝作为主成分、含有锗、镁、硅、铜中的至少一种的铝硬焊剂、或是以银作为主成分、含有铜、锡中的至少一种且含有活性金属钛的银硬焊剂。

此外,作为板状的金属部件,可使用能够通过硬焊接合于基材的、且具有能够通过冷喷涂法形成被膜这种程度的硬度的金属或者合金。该硬度的范围根据冷喷涂法的成膜条件等而有所不同,因此不能一概而论地确定,但大致上,维氏硬度为100hv以下的金属部件即可适用。具体地,可以举出铝、银、金、铜或者含有这些金属的合金等。

本实施方式中,形成于中间层50表面的电路层20,由含氢量为0.002质量%以下的铜制成。为了使形成电路层20的铜的含氢量为0.002质量%以下,使用含氢量为0.002质量%以下的铜粉末来形成电路层20即可。作为含氢量为0.002质量%以下的铜粉末,使用通过雾化法、优选为水雾化法而粉末化的、没有进行氢气环境下的还原热处理的铜粉末即可。

一般地,通过雾化法制造的铜粉末与湿式还原法相比,能够降低所获得的粉末中的杂质浓度,因此广泛地作为导电性材料使用。作为导电性材料使用的铜粉末,如果通过在氢气环境下进行还原热处理来降低粉末中含氧量,则其导电性会进一步提高。然而,在采用这样的铜粉末,通过冷喷涂法将金属被膜即电路层20隔着中间层50形成于基材10上,并由于利用软焊料c1的芯片30的连接等被施加热负荷的情况下,出现了电路层20从基材10剥离、基材10的破裂、或者金属被膜(电路层20)产生空洞等问题。本发明的发明人对基材10的破裂等的原因进行了调查,发现金属被膜即电路层20会由于热量而产生特异性热膨胀,而电路层20的特异性热膨胀,是由于铜粉末在氢气环境下的还原热处理而增加的粉末中的氢由于热量从电路层20中挥发时所引发的。本实施方式中,由于使用没有进行在氢气环境下的还原热处理的铜粉末来形成电路层20,因此能够防止由热负荷导致的电路层20从基材10上的剥离或者基材10的破裂、金属被膜(电路层20)空洞的产生。

此外,由于电路层20是通过冷喷涂法在较低温度下进行成膜的,因而热应力的影响得以缓和。因此,能够获得未产生相变且抑制了氧化的金属被膜。特别是,铜粉末撞击到中间层50上时,在铜粉末与作为中间层50的材料的金属或者合金部件之间产生塑性变形而获得锚固效应,并且各自的氧化被膜被破坏而在新生面彼此之间产生金属键结合,因此能够获得附着强度高的层叠体。

本实施方式中,形成电路层20的铜粉末的含氧量优选为0.03质量%以上0.15质量%以下。通过使铜粉末的含氧量在上述范围内,能够提高电路层20的导电性,并能够防止因热负荷而导致的电路层20的特异性膨胀。

在铜粉末的含氧量比0.07质量%多的情况下,优选在真空环境下对铜粉末进行热处理。热处理优选在400℃以上800℃以下进行1~2小时左右。或者,可以通过在真空熔炼炉中进行雾化处理等,来降低铜粉末的含氧量。另外,本实施方式中使用的铜粉末优选是没有在氢气环境下进行还原热处理的,但也可以使用将进行了在氢气环境下的还原热处理后的铜粉末在真空环境下进行热处理而使得含氢量为0.002质量%以下、含氧量为0.03质量%以上0.07质量%以下的铜粉末。

此外,出于提高熔液的流动性以及脱氧的目的,有时会向熔融的铜中添加磷或者磷铜合金。通过添加磷,能够降低含氧量、提高熔液的流动性,但若磷的添加量增加,则热负荷后的残余伸长也变大。因此,向铜粉末中添加磷的情况下,优选为使铜粉末中的含磷量为0.002质量%以上0.028质量%以下。通过使铜粉末中的含磷量处于上述范围内,能够抑制对电路层20施加热负荷时的残余伸长。此外,通过使含磷量处于上述范围内,由于采用冷喷涂法进行成膜时产生的热量,使得在电路层20中发生重结晶而减少位错(dislocation),从而能够获得导热性、导电性优异的电路层20。铜粉末中的含磷量特别优选为0.005质量%以上0.018质量%以下。

铜粉末可以使用平均粒径为5μm~80μm的粉末。平均粒径为20μm~50μm的粉末从可处理性及电路层20的致密性的观点来看是特别优选的。

接下来对功率模块1的制作方法进行说明。图3为表示冷喷涂装置的概要的示意图。

首先,准备表面上形成有中间层50的基材10。中间层50可以在基材10的表面配置铝(al)系硬焊剂以及铝(al)等金属箔、或者设置银系硬焊剂以及铜等金属箔之后,在真空中施加热处理而形成。

在基材10,通过图3所示的冷喷涂装置60,使含氢量为0.002质量%以下的铜粉末与气体一同加速,保持固相状态地喷射到中间层50的表面并堆积,来形成作为电路层20的金属被膜层。

冷喷涂装置60包括:加热压缩气体的气体加热器61、容纳电路层20的材料的铜粉末并将其供给到喷枪63的粉末供给装置62、将已加热的压缩气体及被供给来的材料粉末向基材喷射的气体喷管64、分别调节对气体加热器61及粉末供给装置62供给的压缩气体的供给量的阀65及阀66。

作为压缩气体,可使用氦气、氮气、空气等。被供给到气体加热器61的压缩气体,例如被加热到50℃以上且在比电路层20的材料即铜粉末的熔点低的范围内的温度后,被供给到喷枪63。压缩气体的加热温度优选为300~900℃。另一方面,被供给到粉末供给装置62的压缩气体,将粉末供给装置62内的铜粉末以规定的排出量供给到喷枪63。

加热后的压缩气体通过渐扩形状的气体喷管64成为超声速流(约340m/s以上)。优选使此时压缩气体的气体压力为1~5mpa左右。理由是通过将压缩气体的压力调整至这个程度,能够实现电路层20对中间层50的附着强度的提高。更优选地,是以2~4mpa左右的压力来进行处理。被供给到喷枪63的铜粉末,由于被投入到该压缩气体的超声速流中而被加速,保持固相状态地高速撞击到基材10上的中间层50上并堆积而形成金属被膜。另外,只要是能够使材料粉末以固相状态撞击至基材10来形成被膜的装置即可,并不限定于图3所示的冷喷涂装置60。关于电路层20,在中间层50的上层配置形成有电路图案的金属掩模等来进行被膜形成即可。

散热片40,可以是将已切削加工成所需形状的产品通过导热片或润滑脂等粘附在基材10的与形成有电路层20的面相反的一侧的表面,也可以是例如采用铝的粉末,通过冷喷涂装置60形成所需厚度的被膜(堆积层),然后对该被膜(堆积层)通过激光切削等形成所需的流路图案。

根据上述实施方式,由于使用含氢量为0.002质量%以下的铜粉末,通过冷喷涂法制作电路层20,因此在施加热负荷时也不会出现由于特异性热膨胀导致的基材10的破裂等问题,并且能够获得电路层20没有空洞等的功率模块1。此外,由于电路层20是隔着中间层50形成于基材10的表面,因此能够获得密合性优异的电路层20。

另外,本发明的实施方式的层叠体也可以应用于图4所示的功率模块。图4为表示本发明的实施方式的变形例1涉及的功率模块的结构的示意图。

图4所示的变形例1涉及的功率模块1a包括:基材10、形成于基材10的一侧的表面的中间层50a、形成于基材10的另一侧的表面的中间层50a’、形成于中间层50a’的表面的缓冲层60、形成于中间层50a的表面的热扩散层70、在热扩散层70上通过软焊料c1配设的芯片30、以及在缓冲层60上隔着未图示的导热片配设的散热片40。

中间层50a例如由铜等具有良好导电性的金属制成,通过硬焊剂与基材10接合。中间层50a还具有作为电路层的功能,中间层50a的电路图案通过蚀刻等形成。

中间层50a’例如由铜等具有良好导电性的金属制成,通过硬焊剂与基材10接合。中间层50a’将在芯片30及中间层50a中产生的热量传导至缓冲层60及散热片40。

热扩散层70是采用含氢量为0.002质量%以下的铜粉末、通过冷喷涂法直接形成于中间层50a上的金属被膜。热扩散层70使芯片30中产生的热量不仅在基材10的厚度方向扩散,在与该厚度方向正交的面内也扩散,由此能够降低热阻。

缓冲层60由热传导率高、热膨胀系数处于基材10与散热片40所用的材料中间的材料形成。例如,是包含铜与:铁镍合金、钛、铬、钨及钼中的任意的金属(以下称为添加材料)的复合材料;或者是包含铝与:铜、镍、铁镍合金、钛、铬、钨及钼中的任意的金属(以下称为添加材料)的复合材料,通过冷喷涂法直接形成于中间层50a’的表面。

缓冲层60具有:良好的导热性,以将在芯片30及中间层50a中产生的热量高效率地传导至散热片40;以及低热膨胀系数,以缓和基材10中的热应力。具体地,缓冲层60的热传导率优选为75w/mk以上220w/mk以下,热膨胀系数(cte,coefficientofthermalexpansion)为7.1×10-6/k以上11×10-6/k以下。

热扩散层70的厚度根据芯片30安装的区域的面积而定,但优选为0.5mm~1.5mm左右。此外,在与缓冲层60的关系的方面,热扩散层70的厚度可以设定为缓冲层60的厚度的1/2以上1倍以下。

根据本发明的实施方式的变形例1,由于在中间层50a与芯片30之间,采用含氢量为0.002质量%以下的铜粉末、通过冷喷涂法设置有热扩散层70,因此在能够降低中间层50a及基材10中的热阻的同时,还能够缓和基材10中产生的热应力。此外,由于通过冷喷涂法在中间层50a’的表面上形成缓冲层60,因此能够进一步缓和基材10中产生的热应力。进而,通过调整构成缓冲层60的材料,能够维持缓冲层60的良好的导热性。因此,能够将在芯片30及中间层50a中产生的热量经由散热片40高效率地释放到外部,并且能够实现耐用性优异的功率模块1a。

另外,上述实施方式中以功率模块为例进行了说明,但本发明的实施方式也能适用于在由金属或者合金制成的基材上直接形成金属被膜的情况。在由金属或者合金制成的基材上、通过冷喷涂装置60使含氢量为0.002质量%以下的铜粉末与气体一同加速、保持固相状态地喷射到基材的表面并堆积来形成金属被膜的层叠体,由于构成金属被膜的铜粉末的含氢量低,因此金属被膜空洞很少,且热传导率、导电率及强度优异。

实施例

通过本实施方式涉及的层叠体的制造方法,制作了在基材上形成有含氢量为规定值以下的铜被膜的层叠体,并对热处理后的铜被膜的热膨胀收缩特性及空洞、以及层叠体的破裂等进行了评价。作为基材,使用的是在由氮化硅制成的基材的两面通过硬焊剂将作为中间层的金属箔贴附而成的amc(activemetalbrazedcopper,活性金属钎焊铜)基板。

实施例1

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为实施例1的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,通过水雾化法制成平均粒径为约35μm的铜粉末,并在真空环境下以600℃热处理2小时后得到的。该铜粉末的含氢量为0.002质量%以下。金属被膜是通过冷喷涂装置60,在以下条件下将制备的铜粉末喷射到amc基板上而制成的:工作气体:氮气;工作气体温度:800℃;工作气体压力:3mpa;工作距离(wd,workingdistance):25mm;遍历速度:200mm/s;经过次数:1次。

实施例2

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为实施例2的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,通过水雾化法制成的平均粒径为约35μm的铜粉末。该铜粉末的含氢量为0.002质量%以下。金属被膜由冷喷涂装置60进行喷射的条件与实施例1相同。

实施例3

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为实施例3的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,添加磷以使其为0.006质量%,通过水雾化法制成平均粒径为约35μm的铜粉末,在真空环境下以600℃热处理2小时后得到的。该铜粉末的含氢量为0.002质量%以下。金属被膜由冷喷涂装置60进行喷射的条件与实施例1相同。

实施例4

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为实施例4的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,添加磷以使其为0.006质量%,通过水雾化法制成的平均粒径为约35μm的铜粉末。该铜粉末的含氢量为0.002质量%以下。金属被膜由冷喷涂装置60进行喷射的条件与实施例1相同。

比较例1

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为比较例1的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,添加磷以使其为0.01质量%,通过水雾化法制成平均粒径为约35μm的铜粉末,在氢气环境下以400℃还原热处理1小时后得到的。该铜粉末的含氢量为0.01质量%、含氧量为0.07质量%。金属被膜由冷喷涂装置60进行喷射的条件与实施例1相同。

比较例2

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为比较例2的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,不添加磷而通过水雾化法制成平均粒径为约35μm的铜粉末,在氢气环境下以400℃还原热处理1小时后,再以700℃还原热处理1小时得到的。该铜粉末的含氢量为0.005质量%、含氧量为0.07质量%。金属被膜由冷喷涂装置60进行喷射的条件与实施例1相同。

比较例3

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为比较例3的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,添加磷以使其为0.01质量%,通过水雾化法制成平均粒径为约35μm的铜粉末,在氢气环境下以400℃还原热处理1小时后得到的。该铜粉末的含氢量为0.01质量%、含氧量为0.07质量%。比较例3中,采用该铜粉末,与实施例1同样地用冷喷涂装置60形成金属被膜后,在真空环境下以600℃热处理2小时。

比较例4

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为比较例4的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,不添加磷而通过水雾化法制成平均粒径为约35μm的铜粉末,在氢气环境下以400℃还原热处理1小时后,再以700℃还原热处理1小时得到的。该铜粉末的含氢量为0.005质量%、含氧量为0.07质量%。比较例4中,采用该铜粉末,与实施例1同样地用冷喷涂装置60形成金属被膜后,在真空环境下以600℃热处理2小时。

比较例5

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为比较例5的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,添加磷以使其为0.01质量%,通过水雾化法制成的平均粒径为约35μm的铜粉末。该铜粉末的含氢量为0.001质量%、含氧量为0.14质量%。比较例5中,采用该铜粉末,与实施例1同样地用冷喷涂装置60形成金属被膜后,在真空环境下以600℃热处理2小时。

比较例6

在amc基板(绝缘基材:氮化硅(厚度0.32mm)、中间层:纯铜(厚度0.5mm))上,通过图5中表示为比较例6的工序,形成金属被膜。铜粉末是将铜熔融成熔液后,不添加磷而通过水雾化法制成的平均粒径为约35μm的铜粉末。该铜粉末的含氢量为0.001质量%、含氧量为0.15质量%。比较例6中,采用该铜粉末,与实施例1同样地用冷喷涂装置60形成金属被膜后,在真空环境下以600℃热处理2小时。

在表1中,对实施例1~4及比较例1~6的层叠体的金属被膜的特征、热处理后的金属被膜的热膨胀收缩特性和空洞、以及基材的破裂或被膜的剥离等进行了总结。此外,在图6中,针对实施例1~4及比较例1的层叠体,对其进行热处理的时间与金属被膜的伸长(tma,thermomechanicalanalysis,热机械分析)之间的相关关系进行表示。图6的图中,左侧的刻度为金属被膜的伸长(tma,单位μm),右侧的刻度为温度(℃),图中表示的实线为热处理条件。热处理为:使温度以每分钟10℃上升至800℃,在800℃保温120分后,以每分钟5℃冷却至75℃。另外,tma是从层叠体切取5mm×5mm×15mm的金属被膜,使用rigaku公司的tma测定装置thermoplustg8120进行测定的。

表1

如表1所示,没有进行氢气环境下的还原热处理的实施例1~4、比较例5、6、以及由在氢气环境下进行了还原热处理的铜粉末形成金属被膜而在成膜后在真空环境下进行了热处理的比较例3及4,其金属被膜中的氢含量低。若对层叠体进行热处理,则实施例1~4由于金属被膜中的氢含量低,因此不会有特异性热膨胀收缩,不会产生金属被膜的剥离或基材的破裂。没有添加磷的实施例1及2几乎没有金属被膜空洞,添加了磷的实施例3及4产生了少量空洞,并且金属被膜的热膨胀比实施例1及2大,冷却后的残余伸长也较大。

对铜粉末在氢气环境下进行了还原热处理的比较例1及2,由于金属被膜的氢含量高,因此产生了特异性热膨胀收缩(图6的比较例1中在60分到90分之间产生的金属被膜的膨胀与收缩),由于该特异性膨胀收缩,层叠体的基材产生了破裂。

比较例3及4是由在氢气环境下进行了还原热处理的铜粉末形成金属被膜,但由于在金属被膜形成后在真空环境下进行了热处理,因而金属被膜中的氢含量低;但是由于成膜后的热处理氢从金属被膜释放时产生较多的空洞,且是在成为层叠体后进行热处理,因此容易产生基材的破裂。

如上所述,本发明涉及的层叠体及层叠体的制造方法,为获得不会产生绝缘基材的破裂等且没有金属被膜空洞的层叠体是有用的。

符号说明

1、1a功率模块

10基材

20电路层

30芯片

40散热片

50、50a、50a’中间层

60缓冲层

70热扩散层

60冷喷涂装置

61气体加热器

62粉末供给装置

63喷枪

64气体喷管

65、66阀

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1