一种高速工况自润滑织物衬垫复合材料的制备方法与流程

文档序号:20037711发布日期:2020-02-28 11:29阅读:394来源:国知局
一种高速工况自润滑织物衬垫复合材料的制备方法与流程

本发明涉及一种自润滑织物衬垫复合材料,尤其涉及一种用于高速工况的自润滑织物衬垫复合材料的制备方法,属于复合材料技术领域和自润滑技术领域。



背景技术:

随着我国国防工业的发展,关节轴承因其具有较大的承载能力和抗冲击能力及抗腐蚀、耐磨损、自调心等特点而广泛用于航空飞行器的旋翼系统、操纵系统、飞机起落架、方向舵、传动系统、航空发动机和高速工况车辆的转向机构等关键部位。由于对发动机功率和转速指标的要求越来越高,因而对应用于关节轴承的自润滑衬垫等耐磨组件的服役性能要求也越来越苛刻。实际应用工况往往需要高速工况轴承既要有一定承载能力来传递作用力,又要避免局部摩擦热聚集而引起自润滑关节轴承紧涩和顿阻,现有技术已无法满足应用需求。

玄武岩是一种富含si、al、fe、ca、mg、na、k、ti等元素氧化物的绿色无污染新型材料,具有适中的硬度、优异的模量、高的强度、良好的耐温、抗热衰退和耐腐蚀等性能。

由于生产工艺不同,作为一种新型的玄武岩衍生材料,玄武岩鳞片拥有不同于常见的玄武岩长纤和短纤的片层状微观形貌和潜在应用前景。申请号201910758523.5公开了一种界面消耗高速工况下摩擦热聚集的自润滑织物衬垫复合材料的制备方法,通过添加片层状玄武岩鳞片来制备高速工况自润滑织物衬垫的方法,但由于单独使用玄武岩鳞片情况下,自润滑衬垫磨损量对载荷增加比较敏感。与轻载工况(10-20mpa)不同,该类自润滑衬垫在重载工况(30-40mpa)下,耐磨损和润滑性能均发生了明显的降低,如何提高该类高速自润滑衬垫的性能面临很大的挑战。

氟化石墨(fgr)是另一种得到广泛应用的固体润滑剂,由于层状分子结构中f原子之间较强的电荷斥力,其不同分子层之间的作用力较弱,因而具有优异的润滑作用。在高速工况下,氟化石墨可降低平均摩擦系数起到减摩作用,来帮助自润滑轴承获得良好的运行性能,如磨合性、顺应性以及尽可能小的咬合倾向。而玄武岩中富含的sio2、al2o3、fe2o3和cao等功能组分可利用复杂界面反应消耗反应热,来降低高速工况对树脂组分的“烧蚀”作用。同时,两种片层状结构组分对聚集摩擦热还可发挥“屏蔽”效应。基于以上技术背景,本发明将氟化石墨和玄武岩鳞片复配,以获得良好耐磨性能和润滑性能的自润滑衬垫。



技术实现要素:

本发明的目的是针对现有自润滑衬垫复合材料存在的问题,提供一种高速工况自润滑织物衬垫复合材料的制备方法。

一、自润滑衬垫复合材料的制备

本发明以酚醛树脂为基体树脂,聚四氟乙烯-聚间苯二甲酰间苯二胺混纺织物为增强相,基于氟化石墨和片层状玄武岩鳞片的协同界面物理-化学效应,极大提升高速工况自润滑衬垫的承载能力,降低自润滑衬垫与摩擦对偶之间的摩擦系数,明显改善自润滑衬垫的耐磨损性能和润滑性能,使得对应自润滑关节轴承使用寿命大幅提高。其具体制备方如下:

(1)自润滑织物浸渍液的制备

将酚醛树脂分散于有机溶剂中,并将氟化石墨和片层状玄武岩鳞片超声分散于其中,得到自润滑织物浸渍液。

有机溶剂为乙醇、甲醇、丙酮、乙酸乙酯、四氢呋喃中的任选一种或几种。

酚醛树脂为线性酚醛树脂、支化酚醛树脂或酚醛-环氧树脂,外观呈棕红色液体,特性指标为:游离酚≤2.5%,粘度150~200(s/25oc),固含量≥75%。酚醛树脂以3~9g/ml均匀分散于有机溶剂中。

氟化石墨的直径在0.5~10µm,厚度小于10nm,f含量≥50wt%,c含量≥40wt%。图1是氟化石墨的扫描电镜(sem)照片,可见氟化石墨的片层状微观结构。氟化石墨的添加量为酚醛树脂质量的1~3%。

层状玄武岩鳞片的添加量为酚醛树脂质量的0.5~1.5%。为了进一步增强片层状玄武岩鳞片与酚醛树脂基体的结合,提高自润滑衬垫摩擦磨损性能,对片层状玄武岩鳞片采用硅烷偶联剂进行改性。具体改性工艺如下:将市售的玄武岩鳞片粉碎浸入质量百分数20~100%的硅烷偶联剂中,超声反应10~120min,再将该溶液以100~1000r/min的速度离心分离,于60~100oc烘干10~12h后,得到改性玄武岩鳞片,过325目筛备用。图2为改性玄武岩颗粒的扫描电镜(sem)照片。可见玄武岩鳞片的片层状微观结构。

上述硅烷偶联剂为3-氨丙基三乙氧基硅烷(kh-550)、3-环氧丙基三甲氧基硅烷(kh-560)、甲基丙烯酰氧基丙基三甲氧基硅烷(kh-570)、(3-巯基丙基)三甲氧基硅烷(a-189)中的一种或几种。

(2)自润滑衬垫复合材料的制备

混纺纤维布的处理:将混纺纤维布经等离子体预处理后浸渍于上述制备的自润滑织物浸渍液中15~30min,取出后移至70~80℃鼓风烘箱中干燥0.5~1.0h,并重复该浸渍过程至混纺纤维布增重5~35%;然后用酚醛树脂将上述烘干后的织物粘贴于金属基材表面,并施加0.03~0.3mpa的压力,于室温以1~8℃/min的速率升温至160~190℃下保温固化0.5~2h成型,得自润滑衬垫复合材料。

所述混纺纤维布为聚四氟乙烯(ptfe)纤维和聚间苯二甲酰间苯二胺(nomex)纤维按等重量混纺的混纺布,厚度为0.1~0.5mm。

所述混纺纤维布的等离子体预处理:将混纺纤维布置于氧气或氦气氛围下,在真空度20~60pa下采用等离子体装置预处理1~5min。

所述金属基材为17-4ph、cr9mo等钢材的任选一种,尺寸φ45mm,厚度8mm。

二、自润衬垫的热性能分析

1、热失重(tga)图谱分析

tga测试方法:空气氛围,升温速率:15oc/min,温度范围:0~700oc。

图3为自润滑衬垫复合材料的tga谱图,其中(a)复合材料a(compositea):未添加改性玄武岩鳞片和氟化石墨的衬垫复合物(b)复合材料b(compositeb):添加改性玄武岩鳞片的衬垫复合物(玄武岩鳞片添加量为树脂组分0.5wt%)(c)复合物c(compositec):添加改性玄武岩鳞片和氟化石墨的衬垫复合物(玄武岩鳞片添加量0.5%,氟化石墨添加量3%)。右图是100~400oc温度范围的局部tga图。由图3可知,在100~400oc空气氛围下,复合材料c的热稳定性略好于复合材料a和复合材料b。

2、示差扫描量热(dsc)图谱分析

dsc测试方法:氮气氛围,升温速率:15oc/min,温度范围:100~450oc,热效应由netzschproteus热分析软件计算得到。

图4为自润滑衬垫复合材料的dsc谱图,其中(a)复合材料a(compositea):未添加改性玄武岩鳞片和氟化石墨的衬垫复合物(b)复合材料b(compositeb):添加改性玄武岩鳞片的衬垫复合物(玄武岩鳞片添加量为树脂组分0.5wt%)(c)复合物c(compositec):添加改性玄武岩鳞片和氟化石墨的衬垫复合物(玄武岩鳞片添加量0.5%,氟化石墨添加量3%)。由图4可知,在同等温度环境下,复合材料a吸热流率大于复合材料b以及复合材料c,可见改性玄武岩颗粒和氟化石墨的“热屏蔽效应”。同时,这也意味着在同样的热环境中,复合材料c所含树脂组分所面临的热效应要小于复合材料b以及复合材料a。换言之,复合材料c中树脂组分所面临的热老化环境要比复合材料b以及复合材料a缓和。

3、动态热机械性能分析(dma)和热机械性能分析(tma)

为了进一步考察自润滑衬垫的热机械性能,模拟自润滑衬垫在高速工况下由聚集摩擦热烧蚀的过程,且考虑到自润滑织物经纬向力学性能的差异,分经向(ptfe方向)和纬向(nomex方向)分别检测了自润滑衬垫的动态热机械性能(dma)(升温速率为15oc/min)。

dma检测方法:拉伸模式,空气氛围,升温速率:15oc/min,温度范围:40~400oc,频率1hz。测量自润滑衬垫经向和纬向的介质损耗因数(tanδ),储能模量(storagemodulus)和损耗模量(lossmodulus)的变化。

图5为未改性衬垫和改性衬垫的损耗角dma谱图(经向)。由图5所示,经纱方向上,填料的增加限制了复合材料内部高分子链段的运动能力,tg有所下降。图6为未改性衬垫和改性衬垫的损耗角谱图(纬向)。由图6所示,经纱方向上,填料的增加提高了复合材料内部高分子链段的运动能力,tg有所上升。且复合材料的初级转变温度都有了提高。

图7、8分别为未改性衬垫和改性衬垫的经向、纬向的存储模量谱(表征复合材料的刚性)图。由图7和图8可知,在190oc左右,复合材料c经向、纬向的储能模量都要高于复合材料a和b。

图9、10分别为未改性衬垫和改性衬垫的经向、纬向损耗模量谱(表征复合材料的黏弹性,表示复合材料在外力作用下发生的黏性形变的大小。)图。由图9和图10可知,在高于100oc以后,复合材料c的损耗模量是优于复合材料a和b的。

复合材料c在高温段储能模量和损耗模量均优于复合材料a说明,添加两种填料后,复合材料的高温动态性能获得了提升。

尺寸稳定性对自润滑衬垫在轴承上的应用具有重要意义。图11未改性衬垫和改性衬垫的热机械性能谱图(插图为物理a谱图)(经向);图12未改性衬垫和改性衬垫的热机械性能谱图(纬向)。由图11、12可知,复合材料的静态热机械性能(tma)分析表明,添加填料以后,尤其在经向上,自润滑衬垫的物理膨胀系数(phys.alpha)有了极其明显的减小,说明复合填料极大的抑制了自润滑衬垫经向的尺寸收缩。这与之前图5所示的研究结论是一致的。

三、自润滑衬垫摩擦磨损性能测试

高速工况突出的特点是摩擦热聚集造成的“闪温”快速升高环境对自润滑衬垫各项性能的影响。用快速升温(15oc/min)的方法来验证考核自润滑衬垫的热性能可最大限度的模拟这一过程。测试方法:在玄武三号摩擦磨损试验机上,在确定载荷、线速度和试验时间下,以45钢材质,直径为2mm的不锈钢栓作为摩擦对偶,对未改性及改性自润滑衬垫复合材料进行摩擦磨损试验,平均摩擦系数和实时摩擦系数数据由设备测量,磨损量数据使用精度为0.001mm的千分表测量磨痕深度得到,磨损面表面温度由与摩擦对偶栓直接接触的温度传感器测得。磨损率计算方法:ω=v/(pl),式中v代表磨损体积(m3),p代表载荷(n),l是滑行距离(m)。

图13为未改性自润滑衬垫和改性自润滑衬垫(氟化石墨添加量为树脂组分的3wt%,命名为复合材料d—composite)在高速工况下的摩擦擦系数和表面温度谱图(35mpa,1.18m/s,2h),插图为摩擦磨损试验样块的表面温度监测曲线。由图3可知,未改性自润滑衬垫的平均摩擦系数最大(μ=0.1241),该自润滑衬垫需要20分钟左右才能进入稳定磨损阶段。复合材料b~d的磨损过程中,摩擦系数较a减小,进入稳定磨损过程的时间也逐步缩短。表现最好的复合材料c的磨损过程中平均摩擦系数降低至0.0964,进入稳定磨损阶段的时间缩短至5分钟左右。与仅添加改性玄武岩颗粒的复合材料b和仅添加氟化石墨的复合材料d相比,复合材料c的摩擦系数是两种填料耦合作用的结果。如插图所示,较复合材料a而言,表现最优的复合材料c表面温度下降10oc左右,再次验证了添加的两种填料之间的耦合作用。由于高速工况下的磨损与摩擦热聚集密切相关,且摩擦热聚集又和摩擦系数直接有关,所以复合材料c的配方在高速工况下具有较优异的摩擦磨损性能也就是自然而然的了。

图14为氟化石墨含量对衬垫摩擦系数的影响(35mpa,1.18m/s,2h),图15氟化石墨含量对衬垫磨损率影响(35mpa,1.18m/s,2h)。由图14,15可知,两种填料的耦合作用对自润滑衬垫的磨损量降低有较大贡献,单一填料无法达到这样的效果。

图16、17为速度对衬垫摩擦系数及磨损率的影响:(50mpa,2h,线速度0.98~1.57m/s)。由图16、17可见,复合材料c的耐磨损性能较未改性的复合材料a有了明显的改善。

图18、19载荷对衬垫摩擦系数及磨损率的影响(1.18m/s,2h,载荷35mpa,50mpa、65mpa)。由图18、19可见,复合材料c在载荷为35~65mpa时,耐磨损性能要优于未改性的复合材料a。

综上所述,本发明像是对现有技术具有以下特点:

1、在结构方面,氟化石墨和玄武岩鳞片尺寸小,比表面积大,表面暴露原子数多,原子之间配位不足,表面活性较大,可与功能树脂基体及织物通过氢键等次价键力形成很好的结合;

2、在物理作用方面,氟化石墨和改性片层状玄武岩鳞片可附着于织物纤维表面,起到分散载荷作用,更能减轻织物局部所受的摩擦应力。当载荷作用增大时,填料先于织物纤维接触摩擦对偶,可有效减轻磨损。特别地:氟化石墨层状分子结构在高速工况下的滑移效应,有效地降低了自润滑衬垫的摩擦系数,提高了自润滑衬垫的润滑性能;玄武岩鳞片中的sio2、al2o3和fe2o3等硬组分可在磨损过程中嵌入对偶表面不平整处,使对偶表面易于形成转移膜,适度抛光对偶表面,减轻摩擦对偶对自润滑衬垫基体织物和树脂的刨削磨损;

3、界面化学作用方面,在高速工况下,利用聚集摩擦热烧蚀造成的界面酚醛树脂碳化结构与改性玄武岩鳞片中的sio2、al2o3和fe2o3等组分的协同界面物理-化学联合效应,明显降低了自润滑衬垫在高速工况下的磨损,延长了相关自润滑关节轴承和机械设备苛刻工况下的使用寿命。

附图说明

图1为氟化石墨的sem照片;

图2为改性玄武岩鳞片的sem照片;

图3为自润滑衬垫复合材料的tga谱图;

图4为自润滑衬垫复合材料的dsc谱图;

图5为未改性衬垫和改性衬垫的经向损耗角谱图;

图6为未改性衬垫和改性衬垫的纬向损耗角谱图;

图7为未改性衬垫和改性衬垫的经向存储模量谱图;

图8为未改性衬垫和改性衬垫的纬向损耗角谱图;

图9未改性衬垫和改性衬垫的经向损耗模量谱图;

图10未改性衬垫和改性衬垫的纬向损耗模量谱图;

图11为未改性衬垫和改性衬垫的热机械性能谱图(插图为物理a谱图)(经向);

图12为自润滑衬垫纬向的tma谱图;

图13为未改性自润滑衬垫和改性自润滑衬垫的摩擦系数和表面温度谱图(35mpa,1.18m/s,2h);

图14氟化石墨含量对衬垫摩擦系数的影响(35mpa,1.18m/s,2h);

图15氟化石墨含量对衬垫磨损率影响(35mpa,1.18m/s,2h);

图16速度对衬垫摩擦系数的影响(50mpa,2h);

图17速度对衬垫磨损率的影响(50mpa,2h);

图18载荷对衬垫摩擦系数的影响(1.18m/s,2h);

图19载荷对衬垫磨损率的影响(1.18m/s,2h)。

具体实施方式

下面通过具体实施例对本发明高速工况自润滑织物衬垫复合材料的制备和性能作进一步说明。

实施例1

改性玄武岩鳞片的制备:将市售的由碱性玄武岩浸于质量分数为33%的硅烷偶联剂3-氨丙基三乙氧基硅烷(kh-550)中60min,1000r/min离心分离,80℃烘干,过325目筛,得到改性玄武岩鳞片;

自润滑织物浸渍液a:取100g酚醛树脂,分散到900ml的混合溶剂稀释(v乙醇:v丙酮=1:1)得到自润滑织物浸渍液,超声0.5h备用;

自润滑织物浸渍液b:取100g酚醛树脂,分散到900ml的混合溶剂稀释(v乙醇:v丙酮=1:1)得到自润滑织物浸渍液;取0.5g(酚醛树脂质量分数0.5%)的玄武岩鳞片分散于自润滑织物浸渍液中,超声0.5h备用;

自润滑织物浸渍液c:取100g酚醛树脂,分散到900ml的混合溶剂稀释(v乙醇:v丙酮=1:1)得到自润滑织物浸渍液;取0.5g(酚醛树脂质量分数0.5%)的玄武岩鳞片和3g氟化石墨(酚醛树脂质量分数3%)分散于自润滑织物浸渍液中,超声0.5h备用;

取三块nomex-ptfe织物置于等离子体装置中,在氧气氛围、真空度40pa下预处理时间3min;然后将经过等离子体装置预处理的nomex-ptfe织物,分别置入上述三种自润滑织物浸渍液a、b和c中浸渍20min;然后移至70℃鼓风烘箱中干燥1h;并重复该浸渍过程至混纺纤维布增重25%,在70℃烘箱烘干;

使用酚醛树脂胶粘剂将上述烘干后的织物粘贴于不锈钢(17-4ph,马氏体沉淀硬化型不锈钢)表面,施加0.3mpa压力,于室温以3℃/min的速率升温至180℃下保温固化2h成型,得自润滑衬垫复合材料a,b和c。

将上述制得的自润滑衬垫复合材料在玄武三号型摩擦磨损试验机上,于35mpa载荷和1.18m/s速度条件下,进行摩擦磨损考核120分钟。纯酚醛树脂浸渍对应织物制备的复合材料a的平均摩擦系数为0.0927,磨损率为0.7606×10-14m3(n.m)-1。仅添加改性玄武岩鳞片的复合材料b的平均摩擦系数为0.1026,磨损率为0.7110×10-14m3(n.m)-1。添加改性玄武岩鳞片和氟化石墨两种填料的复合材料c的平均摩擦系数为0.0930,磨损率为0.4836×10-14m3(n.m)-1

实施例2

改性玄武岩鳞片的制备:将市售的由碱性玄武岩浸于质量分数为33%的硅烷偶联剂3-氨丙基三乙氧基硅烷(kh-550)中60min,1000r/min离心分离,80℃烘干,过325目筛,得到改性玄武岩鳞片;

自润滑织物浸渍液a:取100g酚醛树脂,分散到900ml的混合溶剂稀释(v乙醇:v丙酮=1:1)得到自润滑织物浸渍液,超声0.5h备用;

自润滑织物浸渍液c:取100g酚醛树脂,分散到900ml的混合溶剂稀释(v乙醇:v丙酮=1:1)得到自润滑织物浸渍液;取0.5g(酚醛树脂质量分数0.5%)的玄武岩鳞片和3g氟化石墨(酚醛树脂质量分数3%)分散于自润滑织物浸渍液中,超声0.5h备用;

取三块nomex-ptfe织物置于等离子体装置中,在氧气氛围、真空度40pa下预处理时间3min;然后将经过等离子体装置预处理的nomex-ptfe织物分别置入上述三种自润滑织物浸渍液a和c中浸渍20min;然后移至70℃鼓风烘箱中干燥1h;并重复该浸渍过程至混纺纤维布增重25%,在70℃烘箱烘干;

使用酚醛树脂胶粘剂将上述烘干后的织物粘贴于不锈钢(17-4ph,马氏体沉淀硬化型不锈钢)表面,施加0.3mpa压力,于室温以3℃/min的速率升温至180℃下保温固化2h成型,得自润滑衬垫复合材料a和c。

将上述制得的自润滑衬垫复合材料在玄武三号型摩擦磨损试验机上,于50mpa载荷和不同线速度条件下,进行摩擦磨损考核120分钟。

纯酚醛树脂浸渍对应织物制备的复合材料a在0.98,1.18,1.57m/s时的平均摩擦系数分别为0.0734,0.0715和0.0647,磨损率分别为0.7847×10-14,0.5990×10-14,0.5263×10-14m3(n.m)-1。添加改性玄武岩鳞片和氟化石墨两种填料的复合材料c的平均摩擦系数为0.0684,0.0479,0.0455,磨损率为0.4931×10-14m3(n.m)-1,0.3168×10-14m3(n.m)-1,0.2431×10-14m3(n.m)-1

实施例3

将市售的由碱性玄武岩制备的玄武岩鳞片粉碎。将玄该武岩鳞片浸于质量分数为33%的硅烷偶联剂3-氨丙基三乙氧基硅烷(kh-550)中60min,1000r/min离心分离,80℃烘干,过325目筛,得到改性玄武岩鳞片。

自润滑织物浸渍液a:取100g酚醛树脂,分散到900ml的混合溶剂稀释(v乙醇:v丙酮=1:1)得到自润滑织物浸渍液,超声0.5h备用;

自润滑织物浸渍液c:取100g酚醛树脂,分散到900ml的混合溶剂稀释(v乙醇:v丙酮=1:1)得到自润滑织物浸渍液;取0.5g(酚醛树脂质量分数0.5%)的玄武岩鳞片和3g氟化石墨(酚醛树脂质量分数3%)分散于自润滑织物浸渍液中,超声0.5h备用;

取三块nomex-ptfe织物置于等离子体装置中,在氧气氛围、真空度40pa下预处理时间3min;然后将经过等离子体装置预处理的nomex-ptfe织物分别置入上述三种自润滑织物浸渍液a和c中浸渍20min;然后移至70℃鼓风烘箱中干燥1h;并重复该浸渍过程至混纺纤维布增重25%,在70℃烘箱烘干;

使用酚醛树脂胶粘剂将上述烘干后的织物粘贴于不锈钢(17-4ph,马氏体沉淀硬化型不锈钢)表面,施加0.3mpa压力,于室温以3℃/min的速率升温至180℃下保温固化2h成型,得自润滑衬垫复合材料a,b和c。

将上述制得的自润滑衬垫复合材料在玄武三号型摩擦磨损试验机上,于载荷为35,50和65mpa和1.18m/s速度条件下,进行摩擦磨损考核120分钟。纯酚醛树脂浸渍对应织物制备的复合材料a的平均摩擦系数分别为0.0927,0.0715,0.0637,磨损率为0.7606×10-14m3(n.m)-1,0.5990×10-14m3(n.m)-1,0.7256×10-14m3(n.m)-1。添加改性玄武岩鳞片和氟化石墨两种填料的复合材料c的平均摩擦系数为0.0930,0.0479,0.0573磨损率为0.4836×10-14m3(n.m)-1,0.3168×10-14m3(n.m)-1,0.6188×10-14m3(n.m)-1

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1