通过水注射回收油中的控制生物杀灭的制作方法

文档序号:152604阅读:330来源:国知局
专利名称:通过水注射回收油中的控制生物杀灭的制作方法
技术领域
本发明涉及新的改进的通过注射水、特别是海水进入井以置换接近生产地点的油,进行杀生物活性的方法。本发明同样涉及新的改进的海水组合物,所述的组合物提供在这样的油回收操作中有效的杀生物活性。
背景技术
注水系统通常用于二次油田回收作业。如US 4,507,212表明,自注水作为二次石油开采技术出现以来,在含油地层中不希望的微生物生长困扰石油生产商。例如,细菌繁殖导致油层中原油的变酸,这是由于无机硫酸盐化合物被某些细菌还原为硫化物引起的。如果这样的生长相当可观,将发生油层、井和相关设备堵塞。另外,如果金属接触微生物代谢作用的副产物特别是硫化氢,设备将迅速侵蚀。
上述专利进一步指出尽管几种类型的微生物有可能损害石油开采,但主要问题由厌氧的硫酸盐还原细菌所引起,特别是去磺弧菌属的那些。对于进一步讨论本主题,专利参考如下″The Role of Bacteria inthe Corrosion of Oil Field Equipment″,National Association of CorrosionEngineers,Technical Practices Committee,Pub.No.3(1976);Smith,R.S.,and Thurlow,M.T.,Guidelines Help Counter SRB Activity inInjection Water,The Oil and Gas Journal,Dec.4,1978,(pp 87-91);andRuseska,I,et al.,″Biocide Testing Against Corrosion-Causing Oil-fieldBacteria Helps Control Plugging″,Oil and Gas Journal,Mar.8,1982,(pp253-64)。根据该专利,这些材料通常推荐利用化学杀菌剂作为部分方案以限制油田或者注射水中细菌的生长。
上述专利进一步表明,在油田或者注射水中的微生物通常由它们的影响分类。硫酸盐还原细菌、粘土形成细菌、铁氧化细菌、各种各样的有机体比如藻类、硫化物氧化细菌、酵母、霉和原生虫在要消毒的油田水中会遇到。
如在US 4,507,212中指出,如果发现它们在油层温度和压力下得以存活,所有这样的微生物能够阻塞过滤器和注水井,某些导致岩层的堵塞。另外,某些有机体可逸出导致油变酸和侵蚀井管及其他设备的硫化物化合物。除非采取预防措施阻止微生物生长,否则注水严重减少剩余原油的量。
在US 4,620,595中,解决二次开采油中注海水的若干相当早期的参考资料讨论如下″如′How to Treat Seawater for Injection Projects′byD.L.Carlberg in World Oil,July 1979,page 67中表明,“在仔细处理的情况下,对于近海的或者近岸压力保持注水工程,实质上无限供应的容易可得到的海水能被成功作为注入流体的来源。”该论文提到在海水中从细菌到海藻、附着甲壳和鱼的有机物生长,表明对于要用作注入介质的海水而言,基本的处理方案包括海水加入杀生物剂、过滤海水和使海水脱氧,及可能的使海水阻垢。”R.W.Mitchell的发表在Journal of Petroleum Technology,June1978,page 887的论文,题目为″The Forties Field Seawater InjectionSystem″.该论文推荐类似的基本的海水处理。它同样描述了使用氯或者次氯酸盐作为杀生物剂与通过用生产气体和加入亚硫酸氢铵汽提的脱氧作用结合的特别优点,其中最后的水pH是7.5~9。论文提到尽管少数清除剂可将氧减少到小于50ppm,但这只有当该体系没有氯时才可通过亚硫酸氢盐实现。
C.C.McCune发表在Journal of Petroleum Technology,October1982,at page 2265的论文,题目是″Seawater Injection ExperienceAnOverview″。它提到海水正在越来越多作为注射水进入地下油层,推荐基本上相同的海水的基本处理。同样表明加入氯作为杀生物剂及SO2作为除氧剂往往易于将海水pH从标准的8减少到5.8。
近海石油回收系统因此对硫酸盐还原细菌的生长极其敏感。这样的细菌的存在和由于它们的存在引起的许多的问题通常在这样的油回收系统中不同的位置发生。其中硫酸盐还原细菌繁殖产生有害后果的油回收系统的部分位于(i)脱氧器的上游,(ii)从脱氧器到井头和(iii)井头的下游。某些硫酸盐还原细菌物种比如去磺弧菌在油回收系统这些部分内生长为生物膜的能力使情况更加糟糕。
尽管现有的杀生物剂组合物可在注海水系统与操作中提供杀生物的活性,但希望性能进一步改进。例如,使用较小量生物杀伤剂提供持久的残余物杀生物活性的方式具有相当大的优点。该方法将是特别有利的如果生物杀伤剂与其他用于这样操作的组份相容时,如果该生物杀伤剂对于金属相对地非腐蚀,如果该生物杀伤剂刚一到达微生物被攻击的不同的地点就能够提供迅速的杀微生物活性,如果该生物杀伤剂能有效地阻止包括产生硫化氢结果“变酸”的硫酸盐还原物种的多种有氧的和厌氧的细菌物种。
本发明简述本发明能够以极其成本效益的方式实现,如果不是全部,大多数的上述希望的优点。
本发明提供一种注水系统或者注水方法的改进,其中改进包括在该体系和用于所述体系的水中实现杀生物活性,所述的方法包括将杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂与水共混。优选,该杀生物剂从(A)卤素源,其是(i)氯化溴,(ii)溴和氯,(iii)溴或者(iv)(i)、(ii)和(iii)任何两个或多个的混合物,(B)氨基磺酸盐阴离子源,(C)碱金属碱和(D)水得到的,其量为该杀生物剂组合物的活性溴含量至少为50,000ppm,由(A)和(B)得到的氮与活性溴的原子比例大于0.93。代替使用这样的液态母料作为生物杀伤剂,按照本发明杀生物有效量的通过从氨基磺酸盐稳定的溴基杀生物剂中除去水形成的固态杀生物组合物可被加入到或者掺和水中或者与水混和。同样如本发明的液态母料(1)和如本发明描述的固态生物杀伤剂(2)的组合物可以在给定的注水系统或者在给定注水方法中用作氨基磺酸盐稳定的溴基杀生物剂。在注水系统或者在水喷射法中使用的水可以是普通水(例如地下水或者来自湖泊、河流或者水流的地表水)或者是海水,取决于二次采油系统或者装置的地点。因为海水包含细菌营养物,这些营养物使细菌比在普通水情形时更显著的快速增长,优选的是在海水中利用本发明的杀生物组合物以控制这样的细菌。
同样本发明提供一种用于注海水的组合物,所述的组合物由混和了杀生物有效量的含水氨基磺酸盐稳定的溴基杀生物剂的海水组成。在本发明优选的组合物中,该杀生物剂从(A)卤素源,其是(i)氯化溴,(ii)溴和氯,(iii)溴或者(iv)(i)、(ii)和(iii)任何两个或多个的混合物,(B)氨基磺酸盐阴离子源,(C)碱金属碱和(D)水得到的,其量为该杀生物剂组合物的活性溴含量至少为100,000ppm,由(A)和(B)得到的氮与活性溴的原子比例大于0.93,优选大于1。在另外的优选实施方式中,该组合物由已经混和了杀生物有效量的固态杀生物组合物的海水组成,所述的固态杀生物组合物通过从这样的氨基磺酸盐稳定的溴基杀生物剂中除去水形成。在其他优选实施方式中,该组合物由已经混和了杀生物有效量的两种这样的组份的海水组成,即,(1)如本发明描述的含水的氨基磺酸盐稳定的溴基杀生物剂,和(2)从这样含水的氨基磺酸盐稳定的溴基杀生物剂中除去水形成的固态杀生物组合物,单独的(1)和(2)的量的总量构成杀生物的有效量。如上述指出,包含营养物的海水引起生长和细菌的快速增长,因此海水构成一种使在以海水操作的注水系统中存在的细菌引起的问题进一步加剧的介质。本发明提供和使用海水组合物因此形成有效的和卓有成效的使这样严重的问题减至最少的方法。
优选的杀生物剂是其中卤素源是氯化溴、溴和氯或者氯化溴和溴混合物,碱金属碱是钠或者钾碱的那些。更优选,杀生物剂是那些杀生物剂,其中卤素源基本上由氯化溴组成,其中碱金属碱是钠碱,其中杀生物剂组合物活性的溴含量至少为100,000ppm,从(a)和(B)得到的上述的氮与活性溴的原子比例至少为1,该杀生物剂组合物的pH至少为12。特别优选,杀生物剂是那些杀生物剂,其中卤素源基本上由氯化溴组成,其中碱金属碱是氢氧化钠,其中杀生物剂组合物活性的溴含量至少为140,000ppm,从(a)和(B)得到的上述的氮与活性溴的原子比例至少为1.1,该杀生物剂组合物的pH至少为13。
同样更优选的用于本发明含水的杀生物剂是高度浓缩的含水氨基磺酸盐稳定的活性溴组合物,所述的是没有固体的水溶液或者如上形成的含固体的浆料,其中溶解活性溴含量大于160,000ppm。在该类型优选的水溶液中,在这些优选的液态杀生物剂中活性溴在室温下(例如23℃)全部为溶液形式。在一个特别优选实施方式中,在这样的含水杀生物的溶液(无论使用(a)BrCl、或者(b)Br2或者(c)BrCl及Br2形成,还是由(d)Br2和Cl2或者(e)BrCl、Br2和Cl2形成)中活性溴的含量为176,000ppm~190,000ppm(wt/wt)。在另外的特别优选实施方式中,在这样的含水杀生物的溶液(无论使用(a)BrCl、或者(b)Br2或者(c)BrCl及Br2形成,还是由(d)Br2和Cl2或者(e)BrCl、Br2和Cl2形成)中活性溴的含量为201,000ppm~215,000ppm(wt/wt)。
同样优选的用于本发明的是固态含溴杀生物组合物,所述的组合物通过从水溶液或者在水中形成的浆料产物中除去水形成的,所述的水溶液或者浆料由(I)卤素源和和(II)高碱性的氨基磺酸盐源形成,所述的卤素源是(I)溴、(II)氯化溴、(III)氯化溴和溴的混合物、(IV)Br2与Cl2摩尔比至少为1的溴和氯,或者(V)按比例Br2总量与Cl2摩尔比至少为1的氯化溴、溴和氯;所述的氨基磺酸盐源是(I)氨基磺酸的碱金属盐/或者氨基磺酸,和(II)碱金属碱,其中所述的水溶液或者浆料的pH至少为7,优选10以上,更优选12以上,由(I)和(II)得到的氮与活性溴的原子比例大于0.93。用于形成固态含溴杀生物组合物的从(I)和(II)在水中形成的产物浓度不关键;在初始的水溶液或者浆料中可含有任何浓度。通常,当制备固态含溴杀生物组合物时,希望开始更浓的溶液因为这可减少必须除去的水量。
本发明的固态含溴杀生物组合物优选通过喷雾干燥从以上(I)和(II)形成的水溶液或者浆料产品得到。喷雾直接进入的环境温度(例如干空气或者氮)通常为20~100℃,优选为20~60℃,特别当该方法在减压下进行时。当使用喷雾干燥时,优选的使用从(I)和(II)形成的溶液产品,而非浆料产品,因为这可能使喷口内径最小化。另一方面,如果水被从由(I)和(II)形成的产品溶液或者浆料中闪蒸掉或者相反蒸馏,优选的使用从(1)和(II)形成的产品作为浆料而非作为溶液,因为这可使要除去的水量最小化。这样的闪蒸或者蒸馏优选在减压下进行以降低在干燥期间从(I)和(II)形成的产品所处的温度。
本发明固态含溴杀生物组合物通常为粉末或者相对小的粒子形式。然而,本发明固态含溴杀生物组合物可通过利用已知的方法压制成为较大的形式比如小块、颗粒、片剂、小片和圆盘。这样压实的产品可以使用使粒子彼此粘合的粘合剂或者其他材料形成。如果使用的粘结剂不容易溶于水,重要的是不要使在实际利用条件下保持原样的这样粘结剂的不渗水涂层完全包封产品,因为这防止包封的含溴杀生物组合物和要用该杀生物组合物处理的水之间的接触。如果该包封产品用于在足够高可熔融掉涂层和粘合物温度下的水中,因此水可与上述包起来的杀生物组合物本身接触时,低熔点蜡等可用于结合并且甚至包封含溴杀生物组合物。然而,使用水可溶的粘合物质或者使用能提供有效粘合作用但程度不足以包封被粘合在一起的粒子的粘合物质是优选的。使用的粘合剂应该与本发明固态含溴杀生物组合物相容。
从随后的说明书和附加权利要求中本发明的其他方面和实施方式更进一步清晰可见。
附图简述


图1是通常的说明不同位置的注水系统的方块流程图,其中按照本发明,该杀生物剂可加入该系统。
词汇如本发明使用的以下术语具有以下含义活性-该术语描述微生物控制有效的氧化剂量;该术语通常用于描述在给定制剂中以百分数(或者ppm)为基准的活性物质量。因此,例如,包含15%特定杀生物物种的溶液称为含有15%活性成分或者15%活性或者150,000ppm活性成分。
活性溴-该术语表示微生物控制有效的溴基杀生物剂制剂的有效氧化剂量,相对于Br2表示。活性溴通过几种方法例如通过以下描述的总量溴方法确定。
杀生物活性-该术语是指可识别的微生物寿命的破坏。
杀生物有效量-该术语表示用于控制、杀死、或者相反减少该细菌或者所讨论的水流体的微生物含量的用量,所述的减少量是与相同的水流体在用本发明杀生物剂处理之前相比统计上有显著意义的量。
溴嗡离子-该术语用于描述在水溶液中的溴物种,所述的物种具有形式正电荷具有微生物活性。这与溴化物离子相反,所述的溴化物离子具有形式负电荷没有微生物活性。
游离溴-该术语用于描述存在于水溶液中自由或者相对快速反应形式的溴氧化剂。它通常通过使用游离残余氯的DPD方法确定,得到的结果乘以换算系数2.25。
ppm-该缩写是指百万分之一(wt/wt),除非本发明具体地另外声明。
残余物-在给定时间氧化剂与流体反应性杂质或组分起反应以后流体中含有的氧化剂量。
总溴-该术语用于描述水溶液中存在的结合溴(相对缓慢反应形式)和游离(相对快速反应)溴氧化剂。它通常通过使用总残余氯的DPD方法确定,得到的结果乘以换算系数2.25。该试验可用于确定如上所述的“活性”或者“活性溴”。
海水-任何来源于海或者其他天然的盐水贮水池的盐水溶液,其用于任何的无论近海或者陆地上进行的回收地下油或者气体系统的注水操作中。
本发明的详细说明本发明显著的优点之中尤其是在其中使用杀生物剂,特别由如下溴源制造的那些,(i)氯化溴,(ii)氯化溴和溴的混合物,(iii)溴∶氯摩尔比大于1的溴和氯,或者(iv)任何(i)、(ii)和(iii)的两个或多个的组合物,可有效地用于包括系统上游的部件脱氧器、从脱氧器到井头及下游的井头所有的相关的位置,解决水注入系统和方法中的细菌问题,特别是注海水的系统和方法。
因此,按照本发明用杀生物剂处理的海水可用于有效地攻击在这样的系统上游部件如扬水泵、粗滤器和热交换器中的细菌和生物薄膜。在扬水泵处适宜于注入这样处理的海水。在系统的这些部件处聚集的包括硫酸盐还原细菌的有氧和厌氧细菌,因此可被有效地控制。这样累积的细菌变得很严重,因为海水中通常存在过剩的营养物。如果在这些注海水系统的上游部件中细菌繁殖变得广泛,通常会在总的注海水系统的其余部分发生污染。而且,热交换器中温度升高增强了脱氧器上游中存在的细菌的生长,因此使问题严重化。
在从脱氧器到井头的注海水系统的部件中,有许多有可能性的细菌繁殖和伴随问题的容易出故障处。这些部件包括脱氧塔、滞留罐、细滤器和供水管路。在该脱氧塔本身中,其中从海水中除去氧,使用除氧剂参与该操作,通常破坏上游引入的残余杀生物剂。因此按照本发明,如本发明描述的一种有效杀生物量的氨基磺酸盐稳定的溴基杀生物剂被引入到该脱氧塔下游的脱气海水中。对于这样的杀生物剂的加入位置应邻近该脱氧塔的出口。细菌也可以聚集在滞留罐中,所述的滞留罐位于适宜发生这样聚集的位置。因为海水通常用除氧剂处理已经被脱气,在该滞留罐中的条件是厌氧的,因此极其有助于硫酸盐还原细菌的形成和生长。在滞留罐中增强细菌繁殖的另外的因素是罐内的高温条件。因此,按照本发明,要使用足够量的生物杀伤剂以存在于进入该滞留罐的海水中。以这种方法,包括硫酸盐还原细菌的细菌形成和生长可被有效地控制。通常位于脱氧器和井头之间的细滤器具有收集的倾向,因此在它们的表面增强了细菌的生长。因此,按照本发明用杀生物剂处理的海水当通过细滤器接触过滤器表面时,可有效地控制在这样的表面上这样的细菌浓度和生长。尽管注射的海水通过该供水管路,但供水管路的内壁形成细菌繁殖和附着的另外的位置。生物膜形成熟知的是在这些内壁上变得过多。然而按照本发明,通过这样的供水管路的海水包含足够量的杀生物剂,因此这样的生长和附着要不是消除也基本上减少。在这方面,按照本发明使用的杀生物剂发挥的强大的杀生物作用是特别有效地控制生物膜的生长发育。
在井头下游的注水系统的部件中细菌污染同样是关心的,按照本发明进行有效地控制。井头下游细菌的存在和聚集通常是从邻近井头系统的低流动或静止部件的细菌累积中获得而引起的,比如井下安全阀和井内装管的分支区。按照本发明来自使用的杀生物剂的存在于系统海水中活性杀生物含量有效地控制通常往往在井头下游注入系统中形成的细菌累积,包括生物膜。
因此根据本发明,通常由注水系统不同的部件以及井本身形成中细菌繁殖和聚集引起的问题,按照本发明通过在用于系统的水中使用杀生物有效量的氨基磺酸盐稳定的活性溴组合物可有效地控制。通过本发明要不是消除也有效地减少的问题尤其是(A)注入系统中过多的侵蚀,特别是低碳钢,这至少部分归结于硫酸盐还原细菌形成的酸性条件,(B)由于在阀或者在过滤器中细菌和/或生物膜的聚集引起的注入系统的塞规,和(C)损害油层本身比如(i)至少部分由于侵蚀或者用于系统表面活性剂的作用产生的颗粒物质的沉积引起的地层塞规,和/或至少部分归属于硫酸盐还原细菌作用的地层变酸。
用于实施本发明的一些杀生物剂组合物是已知的。制备已知组合物的方法例如在US3,558,503、6,068,861、6,110,387、6,299,909、6,306,441和6,322,822中给出。以上提及的固态含溴杀生物组合物和某些高度浓缩水溶液或者浆料是新颖的组合物,也详细地描述在共有共同未决申请No.10/282,290中,2002年10月28日申请,其所有的公开引入本发明作为参考。这样的高浓度溶液和浆料包括以下A)一种包括水溶液或者浆料的含水杀生物剂组合物,所述的水溶液或者浆料是其中具有如下组分的溶液(i)来源于(a)氯化溴、(b)溴、(c)氯化溴和溴、(d)溴和氯或者(e)氯化溴、溴和氯活性溴含量大于160,000ppm(wt/wt),和(ii)一种高碱性的氨基磺酸碱金属盐(大多数优选钠盐)和任选含但是优选含--(iii)一种碱金属卤化物(优选氯化钠或者溴化钠或者两个),其中(i)和(ii)相对的比例要使氮与活性溴的原子比例大于0.93,优选大于1(例如为1以上~1.5),其中组合物的pH至少为7(例如为10~13.5,优选为12.5~13.5,乃至高达14)。在这些方案中活性溴含量通常为160,000ppm以上~215,000ppm。优选,在这些浓缩液态的杀生物溶液(无论使用(a)BrCl、或者(b)Br2或者(c)BrCl及Br2形成,还是由(d)Br2和Cl2或者(e)BrCl、Br2和Cl2形成)中活性溴的含量为165,000ppm(wt/wt)~215,000ppm(wt/wt),更优选为170,000ppm(wt/wt)~215,000ppm(wt/wt),更优选为176,000ppm(wt/wt)~215,000ppm(wt/wt)。
B)如紧接着以上A)中的组合物,其中在浓缩液态的杀生物组合物(无论使用(a)BrCl、或者(b)Br2或者(c)BrCl及Br2形成,还是由(d)Br2和Cl2或者(e)BrCl、Br2和Cl2形成)中活性溴的含量为176,000ppm~190,000ppm(wt/wt)。
C)如紧接着以上A)中的组合物,其中在液态的杀生物组合物(无论使用(a)BrCl、或者(b)Br2或者(c)BrCl及Br2形成,还是由(d)Br2和Cl2或者(e)BrCl、Br2和Cl2形成)中活性溴的含量为201,000ppm~215,000ppm(wt/wt)。
尽管使用溴制备的杀生物剂(例如US 3,558,503)能被用作本发明的氨基磺酸盐稳定的溴基杀生物剂,但优选的本发明杀生物剂考虑它们的有效性和稳定性由氯化溴、溴和氯,或者氯化溴和直至50摩尔%溴的混合物组成。用于实施本发明该类型特别优选的杀生物剂是商业可获得来自Albemarle Corporation、商标为WELLGUARDTM7030的杀生物剂。用于生产这样的杀生物剂产品的氨基磺酸盐可长效稳定的活性溴物种,特别当产品的pH至少为12、优选至少13时。例如,WELLGUARDTMJ7030杀生物剂如果避光稳定一年以上。为容易参考,用于实施本发明的这些优选高效和极其稳定的含水的杀生物剂由氯化溴、溴和氯,或者氯化溴和直至50摩尔%溴的混合物、氨基磺酸盐源比如氨基磺酸或者氨基磺酸钠、钠碱通常为NaOH和水形成,通常以下集合称为“优选的含水的杀生物剂”或者“优选的含水的杀生物剂”,和以单数形式“优选的含水的杀生物剂”或者“优选的含水的杀生物剂”。
另外商业可以得到的含氨基磺酸盐稳定剂的杀生物剂溶液,在实施本发明中能用作氨基磺酸盐稳定的溴基杀生物剂,是StabrexTMbiocide(Nalco Chemical Company)。
该共混操作可以任何传统的用于将添加剂共混进入用于注水系统中水的方式进行。因为许多杀生物剂包括优选的杀生物剂,无论现场形成或者来源于厂商,都是流动水溶液,共混是迅速和容易的。如果希望,因此可使用简单的计量表或者测量装置,和用于混合或者搅拌杀生物剂与要用于该系统的水的装置。单一批量的这样的水通常海水定期用使用的该杀生物剂处理,因此将杀生物剂间歇地提供到灌注的井中,即水特别海水正在注射进入到该井中。然而优选在给定操作中所有使用的水用本发明杀生物剂处理,因此杀生物剂连续被提供的灌注的井中。
以上提及的固态含溴杀生物组合物是可溶性粉剂或者固体粒子,容易与用于注水系统的水混和。例如,固体可在一个或多个距适当的点适当的上游位置处倒入水中或计量加入,所述的适当的点是经过如此处理的水进入该注入系统的点。
通常杀生物剂的用量应该在混和水中提供1~10ppm,优选为2~6ppm的活性溴物种,之后注射进入系统。只要认为必要或者希望偏离所述的范围是可允许的,在本发明范围之内。
在含水的注入流体中或者含水的注入流体通常遇到的某些组份或者杂质是可与本发明使用的杀生物剂起反应的。正如所指出的那样这样的杂质是硫化氢。另外这样的杂质是油,特别含烃的油。这样的组份认为是在含水介质中可与一溴碱金属氨基磺酸盐、二溴碱金属氨基磺酸盐或者溴嗡离子反应的物质。当存在这样的组份时,只要这样组份的量可通过利用本发明牺牲量的杀生物剂消除,则它们存在的问题可被解决。在最近钻探或者使用的那些井中,会遇到残余量的瓜尔胶、聚丙烯酰胺、防垢剂和不同的其他添加剂或用于钻探或者保养的井液组分。许多这样的普通井流体组份与用于实施本发明的杀生物剂和组合物相容。另一方面,淀粉是测压井流体组份的一个例子,其不必与本发明的杀生物剂相容。然而在井中淀粉及类似组份的存在可使用牺牲量的杀生物剂消除。
使用优选的杀生物剂的一个优点是它们与用于井下作业的其他组份显著的相容性。例如,不像HOBr和次溴酸盐,优选的杀生物剂不氧化或者破坏通常用作腐蚀抑制剂和防垢剂的有机膦酸酯。事实上,优选的杀生物剂与残余组分凝胶类型和减水阻类型油井压裂液相容,只要它们没有或者基本上没有硫化氢。按照本发明硫化氢与使用的杀生物剂,包括优选的杀生物剂迅速反应。因此,如果有一些硫化氢存在于该水基井液中,优选的是分析确定存在于该井内溶液中的硫化氢量。如果量足够的小,不需要过量的杀生物剂以消耗那些量的硫化氢,存在于注射进入井海水中杀生物剂的量应该足够不仅消耗所述的硫化氢,而且在该井中提供适当残留量的活性溴。因为至少优选的杀生物剂是极其成本效益的,它经济上可行以牺牲一些杀生物剂作为破坏该硫化氢的手段,因此残余注射的杀生物剂可在灌注井中提供适当的残余活性溴。当然如果硫化氢的量是如此的高以致于使得使用该杀生物剂破坏该硫化氢经济上不可行,在这样的井中不推荐使用本发明的组合物。如在多少硫化氢之间是可容忍的,按照本发明可用额外的杀生物剂消耗,及多少硫化氢使这样做不可行的分界线,是变化的取决于许多变化的经济因素以及工业因素。例如,这样的因素如生产费用、钻孔位置、使用的特定杀生物剂、细菌侵扰程度和需要或者希望的残余活性溴量,显著影响在任何给定位置多少硫化氢是可容忍的。因此,按照本发明在井内水流体中可容忍的及可消除的硫化氢量有相当大的范围,不能一般定量。只要处理的井应该或者没有硫化氢,或者在井内水流体中包含“可消耗量”的硫化氢就可以。所述的“可消耗量”的硫化氢是可容忍的,能够而且应该小规模试验确定之后进行全面实施。作为通用的指南,已经发现施加50ppm的WELLGUARD7030杀生物剂溶液(因此理论产生7.5ppm残余Br2)去井内提供2ppm残余Br2。在5ppm硫化氢存在下,将消耗约300ppm的WELLGUARD7030杀生物剂溶液,即约45ppm的杀生物剂(100%活性基准)以与该硫化氢反应。为形成适当的可计量的残余物,应该加入另外量的10~200ppm,例如约50ppm的WELLGUARD 7030杀生物剂溶液。因此5ppm硫化氢的存在使WELLGUARD 7030杀生物剂溶液施用量从50ppm增加到350ppm。基于目前经济条件,据估计在该水流体中最大可消耗量的硫化氢大约为10ppm。因此在将来所述的估计值应该逐步向上或者向下变化与消费者物价指数变化相一致。
如本领域熟知的,含水井液包含不同的添加组分比如粘土、皂土及其他胶质材料;填充剂比如硫酸钡、无定形硅石、碳酸钙和赤铁矿;防腐剂比如甲醛、三氯酚钠和五氯酚钠;滤失控制剂比如羧甲基纤维素、玉米粉、石英粉或者淀粉;粘度改性剂比如铁铬合金木质素磺酸盐、木素磺酸钙或者木质素磺酸钠;乳化剂;和表面活性剂。
在水基凝胶类型油井压裂液情况下,使用不同的凝胶化试剂和交联剂。凝胶化试剂的例子包括胍尔豆胶、衍生的胍尔豆胶比如羟丙基瓜尔胶、黄原胶、纤维素质比如羧甲基羟乙基纤维素和羟乙基纤维素和类似的材料。胍尔豆胶是通常使用凝胶化试剂。通常使用的交联剂包括硼酸盐、铬酸盐、钛酸盐、锆酸盐、铝酸盐和锑交联剂。减水阻类型油井压裂液通常包含粘度改性或者降低粘度的试剂。常常低分子量水可溶的聚合材料在减水阻流体中作为降低粘度的试剂。该类型的添加剂尤其是聚丙烯酰胺、丙烯酸均聚物、马来酸和磺酸酯苯乙烯的共聚物、丙烯酸或者甲基丙烯酸和烯丙基或者甲代烯丙基磺酸水可溶盐的共聚物等等。通常使用聚丙烯酰胺类型的光滑添加剂。
除提供持续持久的残余物杀生物的活性以外,例如在注射进入该井海水中提供可计量的残余物持续至少一个小时、通常至少2小时,优选的杀生物剂也提供刚一接触该井内的微生物非常迅速的杀生物活性。通常在一小时或者二小时之内大量的细菌被“击倒”。因此,按照本发明用杀生物剂处理的海水注入之后的二~三小时之内测量有效的残余杀生物的活性,因此以保证足够量的杀生物有效的物种已经注射进入该探井。因此,按照本发明使用处理的海水可缩短和简化注水和油的回收操作。
考虑到杀生物剂是借助于它们的氨基磺酸盐含量的稳定组合物这一事实,令人惊讶的是通过实施本发明而实现迅速的细菌“击倒”(例如,在一小时中1或更高的对数减少)活性。简而言之,不管它们显著的稳定性,优选的杀生物剂发挥了迅速的料想不到的作用。
该优选的杀生物剂的另一个优点是它们高效地阻止各式各样的有氧的和厌氧型异养细菌。而且,通过利用优选的杀生物剂硫酸盐还原细菌物种被有效地控制或者杀死。随后这可除去或者至少极大地减少硫化氢的产生,所述的硫化氢通常作为硫酸盐细菌还原作用的产品而生产,因此防止油井变酸。
本发明的另一个优点是优选的杀生物剂对金属极低的腐蚀性,特别铁类金属。这是优选的杀生物剂低氧化还原电位的结果。
本发明又一个优点是至少在高温优选的杀生物剂的稳定性。因此,不像HOBr或者次溴酸盐溶液,它们在高温具有相对地差的热稳定性,优选的杀生物剂可被用于很深的油井中,其中遇到极其高温而不过早分解。这反过来提供用于有效地抗击位于如此深处位置耐热细菌的手段。
标准分析试验方法可获得存在于水溶液中的“总溴”和“游离的溴”相当准确的近似值。由于历史的和习惯熟悉的原因,这些方法实际表示测定的结果为“游离氯”和“总氯”,所述的结果随后算术转变为“总溴”和“游离的溴”。该方法以由佩林在1974年设计的试验方法为基准。见A.T.Palin,″Analytical Control of Water DisinfectionWith Special Reference to Differential DPD Methods For Chlorine.Chlorine Dioxide,Bromine,Iodine and Ozone″,J Inst.Water Eng.,1974,28,139。尽管有不同的现代版本的佩林方法,但用于“游离氯”和“总氯”的试验版本本发明推荐使用如在Hach Water AnalysisHandbook,3rd edition,copyright 1997中充分描述的方法。用于“游离氯”的方法在所述的出版物中确认在335页上的方法8021,而用于“总氯”的方法是379页上的方法8167。简而言之,该“游离氯”试验包括将包括DPD指示剂粉末的粉末和缓冲液引入到卤化水中。存在于水中的“游离氯”与DPD指示剂反应产生红到粉红色着色。着色强度取决于存在于样品中“游离氯”物种的浓度。所述的强度通过色度计校准测定使强度读数转换为以mg/LCl2计的“游离氯”值。类似的,“总氯”试验也包括使用DPD指示剂和缓冲液。在这种情况下,KI与DPD和缓冲液存在,由此该存在的卤素物种包括结合氮的卤素与KI反应产生碘物种,所述的碘物种使DPD指示剂变红/粉红色。着色强度取决于存在于样品中“游离氯”物种与所有其他卤素物种的总和。因此,通过色度计测定的色率转换为以mg/LCl2计的“总氯”值。
更详细地,这些方法如下1.为确定存在于含水井液水中物种量,相应于“游离氯”和“总氯”试验,应该在取样几分钟之内分析样品,优选取样后立即分析。
2.对应于“游离氯”试验的测试存在于样品中物种量的Hach方法8021包括使用Hach Model DR 2010色度计或等效物。用于氯测定的存贮程序数字通过在键盘上键入“80”被记忆,随后通过旋转仪表一面上的刻度盘将吸收波长设定为530纳米。两个相同的样品池用研究中的含水试样填充到10mL刻度。任意选择一个样品池用作空白。使用10mL样品池提升器,所述的提升器可进入Hach Model DR 2010的样品隔室,关闭保护罩以防止散射光影响。然后压下零点键。在几秒以后,显示器记录0.00mg/LCl2。向第二测定池加入DPD游离氯粉末枕垫内容物。振动10-20秒以混合,当形成粉红色-红颜色时表明样品中存在物种,所述的物种正响应于DPD试验试剂。在一分钟之内将DPD“游离氯”试剂加入到10mL样品测定池的含水试样中,从HachModel DR 2010的测定池隔室中移去用于使仪表调零的空白测定池,用试验样品取代,向该试验样品中加入DPD“游离氯”试验试剂。然后如空白时一样关闭遮光罩,压下读数键。以mg/LCl2表示的结果在几秒之内显示于显示器上。这是在研究中水样的“游离氯”含量。
3.对应于“总氯”试验的测试存在于含水试样中物种量的Hach方法8167包括使用Hach Model DR 2010色度计或等效物。用于氯测定的存贮程序数字通过在键盘上键入C80C被记忆,随后通过旋转仪表一面上的刻度盘将吸收波长设定为530纳米。两个相同的样品池用研究中的水填充到10mL刻度。任意选定测定池之一为空白。向第二测定池加入DPD总氯粉末枕垫内容物。振动10-20秒以混合,当形成粉红色-红颜色时表明在水中存在物种,所述的物种正响应于“总氯”试验试剂。在小键盘上,压下SHIFT TIMER键以开始三分钟反应时间。在三分钟以后,仪表嘟嘟响以通知反应完全进行。使用10mL样品池提升器,空白试样可进入Hach Model DR 2010的样品隔室,关闭保护罩以防止散射光影响。然后压下“零点”键。在几秒以后,显示器记录0.00mg/LCl2。然后从Hach Model DR 2010的测定池隔室中移去用于仪表调零的空白试样测定池,用试验样品取代,向该试验样品中加入DPD”总氯”试验试剂。如空白一样然后关闭遮光罩,压下READ键。以mg/LCl2表示的结果在几秒之内显示于显示器上。这是在研究中水样的“总氯”含量。
4.使读数转变为溴读数,该“游离氯”和该“总氯”值应该乘以2.25以得到“游离溴”和“总溴”值。
附1用示意图说明用于二次开采油和/或气的通常的注水系统的流程。预期系统中可有不止一个在描述系统中提及的单元,在描述系统中提及的一个或多个单元可被省略或者由同等的设备取代,而且示意流程的适当的变化可用于给定的系统。现在参考该附图,在该系统中描述的提升泵15从水源10通常为海水取水,并将该水传输到过滤器20,所述的过滤器通常是设计从该水中除去沙子及其他固体碎片的粗滤器。净化的水从过滤器20然后通入通过热交换器25,所述的热交换器用于将水温度调整到适当的温度,通常为10~40℃、优选为20~30℃,由此进入脱氧器设备30比如一个或多个脱氧塔。从水中除去空气之后,然后通入滞留槽35。来自滞留槽35的水通过过滤器40,所述的过滤器设计从该水中除去悬浮夹带的细粒。在系统中,其中会发生侵蚀,这样的微粒可能包括锈粒子和/或其他腐蚀产物,而且微粒最初存在于水源10中。机泵45将过滤水在压力下传输进入注入井50中。按照本发明,本发明提及的一个或多个杀生物组合物可不同位置上注入该系统。因此,适当的杀生物量的杀生物剂,如箭头12示意,可被引入到从源10取出在进入机泵15之前的水中。作为替代,或者另外,杀生物剂或者另外的杀生物剂可如箭头17所示在机泵15与过滤器20之间加入。其他说明性的进料或者追加的进料位置显示为箭头22、37、42和47。不必在描述的每一个位置进料,也不必在一个位置进料杀生物剂的浓度与另外位置的浓度相同。在给定系统中不同进料位置的本发明的杀生物剂不需要相同。例如,本发明的更加浓缩的杀生物剂可在一个位置加入,在另外的位置加入不太浓缩的本发明杀生物剂。类似的,本发明的杀生物剂溶液可在一个位置加入,在另外的位置加入本发明固态杀生物剂。因为本发明杀生物剂的有效性,这些是在操作员判断之内的事情,在某种程度上取决于在给定系统中在不同位置上发生微生物生长的倾向,及在任何给定系统在用于该系统主要操作条件下遇到的微生物生长的类型。一般说来,希望保证在任何可能发生不希望的微生物生长和聚集的位置上游加入杀生物量的杀生物剂进料,因此至少如在12或者17的进料是优选的以使与引入水接触的管道和设备中侵蚀、微生物生长和聚集减至最少。在海水情况下这是特别重要的,因为海水通常有增强整个系统微生物生长和聚集的大量的营养成分。将另外的杀生物剂引入脱氧器的下游,特别在37也是优选的,因此微生物生长和聚集不能阻塞过滤器40或者导致与水接触系统下游部件过多的侵蚀。同样,杀生物剂的降解可能在脱氧器之内发生。为控制井内的细菌比如硫酸盐-还原细菌,通常希望在42或者47加入另外的杀生物剂进料,因此可以使用新鲜的杀生物剂以提供井内的杀生物活性。
能够看出
图1中描述的系统包括脱氧器30;由提升泵15、过滤器20、热交换器25和管线组成的脱氧器上游段,用于通过所述的上游段水流从水源10到达脱氧器30;和由滞留槽35、过滤器40、机泵45和管线组成的脱氧器段,用于通过该下游区段水流从脱氧器到达井头。尽管没有描述,井头的下游段由本领域普通技术人员熟知的设备组成。
以下例子是为了举例说明,并非意欲过分地限制本发明的范围。例子1-5用来说明除了注水系统或操作以外的井下操作,使用本发明杀生物组合物有利的特性。
例子1-3中,在实验室规模使用WELLGUARD 7030杀生物剂(Albemarle Corporation)作为杀生物剂组合物进行了一组试验,以表明这样的产品在水介质中显示的强大的杀生物活性。在这些试验中,通过初始制备500g在合成水中溴残余物含量为100或者30ppm的WELLGUARD 7030杀生物剂样品,然后加入不同的油井压裂液组份,配制通常的凝胶类型油井压裂液。所述的100和30ppm溴含量分别相应于667或者200ppm的产品施用量。在定时间间隔监测卤素残余物的分解。通过将WELLGUARD 7030杀生物剂加入到相对地需要丰富的合成水中同样制备30ppm溴残余物含量的控制制剂。
特别是,使用的WELLGUARD 7030杀生物剂的活性作为BrCl为10.8%,或者108,000ppm(作为Br2为15.0%或者150,000ppm)。形成凝胶类型油井压裂液的化学制品由PLEXSURF WRS(表面活性剂)、CLAYMAX(粘土控制剂)、PLEXGEL 907L(胍尔豆胶油悬浮体)和PLEXBOR 97(交联剂)组成。用于光滑类型油井压裂液操作的化学品是PLEXSLICK 961(阴离子型聚丙烯酰胺悬浮体)。CELITE 545助滤剂和Gelman ACRODISC 5μm针筒式滤器(Gelman部件号;4489)用于澄清一些溶液,之后进行凝胶类型油井压裂液研究中的DPD分析。从几种材料得到微生物产品供应。PetriFilm有氧计数板和Butterfield的缓冲液(用于系列稀释)可从Edge Biologicals(Memphis,TN)得到。SRB液体培养基瓶子从C&S Laboratories Inc(Broken Arrow,OK)得到。
将CaCl2(0.91g)、NaHCO3(0.71g)和NaCl(0.10g)加入到一加仑的去离子水中制备合成水(SW)样品。样品包含约50ppm碱度(以CaCO3计)、100ppm钙硬度(以CaCO3计)和150ppm氯化物。pH是8.1。
通过用合成水将1.35g WELLGUARD 7030杀生物剂稀释到200g制备WELLGUARD 7030杀生物剂备用液。通过DPD方法分析表明备用液的活性为993ppmBr2(即,0.511g的原料用去离子水稀释到125.0g;3分钟之后Hach DPD读数是4.06ppm)。
用于制备油井压裂液的一般方法包括按以下顺序将以下组份加入到1升不锈钢共混杯中1)适量的WELLGUARD 7030杀生物剂备用液和用于500g总溶液的合成水。
2)PLEXSURF WRS表面活性剂(0.5mL)。
3)CLAYMAX粘土控制剂(0.5mL)。
4)PLEXGEL 907L胍尔豆胶(3.75mL)。以1100rpm搅拌混合物10分钟以分散该添加剂。有时PLEXBOR 97交联剂(0.6mL)然后被加到搅拌混合物中,由此该混合物立即变浓。然后以大约1100rpm另外搅拌混合物2-3分钟。所有的样品用去离子水稀释1∶20,用磁力搅拌器混合2分钟。使用Hach DR/2000分光光度计测定卤素残余物总量(以Br2计)。为更精确的残余物分析除去浑浊的任选的方法包括加入0.3gCelite 545助滤剂和搅拌。然后通过5.0微米Gelman ACRODISC针筒式滤器过滤混合物直接进入10mL Hach透明小容器用于DPD分析。
实施例1使用100ppm Br2的WELLGUARD 7030杀生物剂确定凝胶类型油井压裂液中溴残余物的残留性具有1升不锈钢杯的厨房用搅拌器装填WELLGUARD 7030杀生物剂备用液(50.5g)和合成水(449.5g)。这提供初始溴残余物以Br2计为100ppm,或者以施加产品计为670ppm。如上所指出加入试剂。通过在去离子水中1∶20稀释凝胶,用磁力搅拌器剧烈地搅拌以将大多数凝胶分散进入该溶液中,然后定期分析样品。然后通过DPD方法分析混浊液。
实施例2使用30ppm Br2的WELLGUARD 7030杀生物剂确定凝胶类型油井压裂液中溴残余物的残留性使用实施例1的步骤,不同之处在于使用的WELLGUARD 7030杀生物剂备用液的量是15.15g,使用的合成水量是484.85g。这提供初始溴残余物以Br2计为30ppm,或者以施加产品计为200ppm。
实施例3使用在合成水中30ppm Br2的WELLGUARD 7030杀生物剂的对照实验用于对照目的,将15.15g WELLGUARD 7030杀生物剂加入到合成水(484.85g)中。样品在去离子水中稀释1∶20通过Hach方法分析。
在实施例1和2中,人们发现15分钟之后,卤素残余物保留值约为30%。2小时之后仍然为20%,18小时之后约6%。随后发现因为样品检杳中的困难(发现使用的搅拌速度太缓慢),在实施例1和2中得到的残余物溴结果比存在的残余物溴实际量低。然而,这些结果表明优选的杀生物剂提供适当地长效的溴残余物。另外,人们发现凝胶的特性不受杀生物剂处理的影响。
在减水阻油井压裂液中使用WELLGUARD 7030杀生物剂进行现场研究。该该研究的一部分包括确定减水阻油井压裂液的溴残余物。该研究另外的部分包括确定在这样的油井压裂液中优选的杀生物剂的微生物学的影响。这些研究分别参考实施例4和5。
实施例4用减水阻添加剂和优选的杀生物剂分析矿井水在Texas的断裂地点,提取矿井水样品用于断裂工作。该矿井水外观相对地清洁。用常规的光滑添加剂处理该水。处理之前的水仅有略微的混浊。将WELLGUARD 7030杀生物剂加入到该水中以提供理论上7.5ppm溴残余物(基于施加的产品溶液为50ppm),混合之后立即和混合15分钟之后测定活性。活性为1.41ppm(混合之后)和1.38ppm(混合15分钟之后)。这些结果表明,在用减水阻添加剂配制矿井水的情况下,作为施加产品50ppm的处理水平有可能得到可计量的和长期的残余物。
实施例5用减水阻添加剂和优选的杀生物剂的矿井水微生物学检验在这些试验中,通过使用Butterfield缓冲液进行系列稀释,并将1mL涂敷到PetriFilm有氧计数板上。矿井水是用于作业的水源,包含于位于现场约300码的塑料制品衬里的水池中。该水被泵送到一系列混合罐中。从那里,该水用PLEXSLICK 961、WELLGUARD 7030杀生物剂和沙子配制。三台柴油机供电的额定为2240HP的机泵,每一个提供动力以使井内混合物以3000gpm速率、约3000psi的压力进入岩层。用该矿井水试验表明相对于装瓶水的某种需要。减水阻添加剂引进了另外的需求。所述的“矿井水+添加剂”研究通过抽出矿井水样品、加入减水阻试剂(PLEXSLICK 961)然后引入7.5ppm水平溴的WELLGUARD 7030杀生物剂从而进行研究。该试验表明50ppm施加产品的处理提供了用减水阻添加剂配制的矿井水可计量的和长期的残余物。操作同样在混合罐中的水上实施。该“混合水”是铁锈色,一直与金属容器接触,因此可能表示对于用于断裂作业水的微生物活性的最坏情况。最后,在现场配制的减水阻试剂的分析(“压裂作业水”)表明可实现希望的溴残余物而且它是持续的。微生物学的数据表示低的细菌计数,从存在于混合水中的含量3-对数减少。该现场研究的结果总结在表1中。
表1现场研究WELLGUARD 7030杀生物剂处理的减水阻Fraccing制剂(WELLGUARD 7030杀生物剂作为50ppm产品或等效物加入)

1添加剂是PLEXSLICK 961和WELLGUARD 7030杀生物剂。
2压裂作业水取样约1小时进入该作业。它由来自混合槽的水(混合水)加上添加剂组成。
实施例1-5的研究表明通过WELLGUARD 7030杀生物剂举例说明的优选的杀生物剂与凝胶类型和减水阻类型油井压裂液相容。在瓜尔胶基凝胶类型压裂制剂中的实验室试验表明优选的杀生物剂,WELLGUARD 7030杀生物剂,提供持续的和长效的残余物。凝胶的特性不受用该杀生物剂处理的影响。减水阻类型压裂作业的现场研究表明作为50ppm产品的WELLGUARD 7030杀生物剂导致需氧细菌数3-对数减少。该作业使用聚丙烯酰胺基制剂。
上述现场试验另外重要的发现是一桶WELLGUARD 7030杀生物剂(~600磅)处理全部配制的1.1百万加仑的减水阻剂。该压裂作业需要7桶通用的比较便宜的杀生物剂,THPS(硫酸四羟甲基磷鎓)。该操作明确表明WELLGUARD 7030杀生物剂可提供良好的细菌灭杀能力,同时在油田应用场合是有经济效益的。
实施例6说明与两个其他熟知的含卤素杀生物剂,即漂白剂和活化溴化钠相比,优选的杀生物剂的低氧化还原电位,因此低的金属腐蚀性。
实施例6氧化还原电位的对比研究(ORP)研究的氧化剂由WELLGUARD 7030杀生物剂、STABREX杀生物剂(稳定的次溴酸钠)、漂白剂(NaOCI)和活化溴化钠(NaOCI和NaBr)组成。WELLGUARD 7030杀生物剂的活性为10.88%BrCl或者6.69%Cl2。STABREX杀生物剂的活性为9.70%BrCl或者5.96%Cl2。漂白剂是工业级,活性为2.42%Cl2。
使用去离子水稀释在棕色玻璃瓶子中制备1000ppm卤素残余浓度(以Cl2计)的杀生物剂备用液。使用DPD方法和HachCo.(Loveland,CO)DR/2000分光光度计证实溶液的活性。制造和使用的关于备用液的信息总结在表2中。
表2

在表2中,溴基杀生物剂的活性用总的卤素残余物(Cl2)来表示;漂白剂的活性用游离的卤素残余物(Cl2)来表示。以游离的卤素残余物表示的表2备用液活性为STABREX杀生物剂,974ppm;WELLGUARD7030杀生物剂,840ppm;活化溴化钠,960ppm。
以上备用液的等分样品加入到1000mL的引自冷却塔的冷却塔水中。1000mL烧杯装满1000mL的冷却塔水并搅拌,同时用BrinkmannMetrohm 716DMS Titrino自动滴定器进行测量。大约要45分钟样品平衡--氧化-还原电位读数逐渐地下降到约300mV的读数。当氧化-还原电位读数变化小于或者等于1单位/分钟时样品被认为达到平衡。在这一点上,加入0.5g备用液(标称卤素残余物=0.5ppm),使混合物再一次达到平衡。取出样品确定游离的和总的卤素残余物,然后加入0.5g另外的备用液,重复过程。在实验期间加入以下的等分样品0.5g、1.0g、2.0g、3.0g、4.0g、6.0g、8.0g和10.0g。
从这些研究中得到的氧化-还原电位数据总结在表3中。
表3

从表3可见WELLGUARD 7030杀生物剂和STABREX杀生物剂,代表用于实施本发明的杀生物剂,相对于氧化-还原电位响应具有类似的行为。与常规的氧化杀生物剂比如漂白剂和活化溴化钠相比,它们产生低的氧化-还原电位值。另外,WELLGUARD 7030杀生物剂和STABREX杀生物剂在这些条件下都显示出很少的杀生物剂残余物损失。相反,在杀生物剂加入最初阶段期间,漂白剂和活化溴化钠有显著的残余物损失。
实施例7说明与两个熟知的含卤素杀生物剂,即漂白剂和活化溴化钠相比,对于水基井液的膦酸酯添加剂而言,优选的杀生物剂显著的相容性。
实施例7几种含卤素杀生物剂对膦酸酯添加剂的相容性的对比研究研究的氧化剂由WELLGUARD 7030杀生物剂、漂白剂(NaOCI)和活化溴化钠(NaOCI和NaBr)组成。WELLGUARD 7030杀生物剂和漂白剂直接加入。通过将20ppm溴化物离子引入到备用液随后加入漂白剂制备活化溴化钠。用于本操作的膦酸酯由AMP(氨基亚甲基膦酸)、HEDP(羟基亚乙基二膦酸)和PBTC(膦酸基丁烷三羧酸)组成。这些材料是商业样品(分别是Mayoquest 1320、1500和2100),从CallawayChemical Co.(Smyrna,GA)得到。
在10ppm氧化剂(Cl2)存在下由5ppm防垢剂(作为活性的膦酸酯)组成的溶液制备如下。向900mL去离子水中加入适当的含膦酸酯、碱度(NaHCO3)和钙硬度(CaCl2)的备用液。用5%NaOH水溶液将pH调节到9.1,在暗黄色瓶子中稀释直至1L。加入一些氧化剂以实现10ppm的残余物。然后通过确定转变为正磷酸盐(Hach方法490)定期监测溶液的膦酸酯转变。使用DPD方法(Hach方法80)同样定期监测氧化剂残余物。所有的操作在室温下(23℃)实施。通过经由紫外线/过硫酸盐氧化转化为正磷酸盐,随后常规的磷酸盐分析(Hach方法501)证实初始活性的膦酸酯含量。应用于确定存在的活性膦酸酯起始量的磷酸盐测量中的转换因子如下AMP,1.05;HEDP,1.085;PBTC,2.85。
不同的杀生物剂对AMP、HEDP和PBTC影响的试验数据分别列于表4、5和6。
表4--氧化杀生物剂对于AMP转化为正磷酸盐的影响

1可被释放出的正磷酸盐的最大的量(通过AMP的UV/过硫酸盐氧化确定,Hach方法501)。
2磷酸盐分析×转换因子(=1.05)。
表5--氧化杀生物剂对于HEDP转化为正磷酸盐的影响

1可被释放出的正磷酸盐的最大的量(通过AMP的UV/过硫酸盐氧化确定,Hach方法501)。
2磷酸盐分析×转换因子(=1.085)。
表6--氧化杀生物剂对于PBTC转化为正磷酸盐的影响

1可被释放出的正磷酸盐的最大的量(通过AMP的UV/过硫酸盐氧化确定,Hach方法501)。
2磷酸盐分析×转换因子(=2.85)。
表4中数据表明WELLGUARD 7030杀生物剂,优选的杀生物剂,比漂白剂和活化溴化钠对于普通膦酸酯添加剂氨基亚甲基膦酸(AMP)具有较弱的侵蚀性。相对次序是WELLGUARD 7030杀生物剂<漂白剂<活化溴化钠,尽管在该数据中有少许分散,但对于所有的杀生物剂在100分钟的反应时间之内膦酸酯转化基本上仍然是无变化的。膦酸酯转化的平均数量是7.4%(WELLGUARD 7030杀生物剂)、18.7%(漂白剂)和27.8%(活化溴化钠)。
表5的数据表明WELLGUARD 7030杀生物剂比其他两个测试的杀生物剂,对于另外的普通膦酸酯添加剂羟基亚乙基二膦酸(HEDP)也具有较弱的侵蚀性。事实上,在活化溴化钠存在下,HEDP比漂白剂或者WELLGUARD 7030杀生物剂显著地不太稳定。对于所有的杀生物剂,膦酸酯转化似乎随时间有规律的增加,尽管在该数据中也有少许分散。在520分钟以后转化的相对量是11.9%(WELLGUARD 7030杀生物剂)、19.6%(漂白剂)和62.5%(活化溴化钠)。
从表6的数据能够看出没有任何的杀生物剂对于膦酸基丁烷三羧酸(PBTC)是特别具有侵蚀性的。事实上,对于任何杀生物剂没有检测到膦酸酯转化直到3.5小时接触。3.5小时及更长时间接触之后的膦酸酯转化平均数是4.8%(WELLGUARD 7030杀生物剂)、5.2%(漂白剂)和7.8%(活化溴化钠)。
从总结在表4、5和6中的结果显而易见,按照本发明使用的WELLGUARD 7030杀生物剂与通常使用的漂白剂和活化溴化钠相比具有显著地较弱的侵蚀性。这反过来表明按照本发明使用至少优选的杀生物剂,与漂白剂和活化溴化钠相比可提供与测压井流体组份添加剂增加的相容性。
实施例8说明本发明的杀生物剂在海水、特别是在控制硫酸盐还原细菌中效力。
实施例8基本上根据AOAC International.17th Edition,2000 Chapter 6,Disinfectants Section 965.13中正式的方法,两个任意批次的WELLGUARD 7030杀生物剂中的样品进行试验。每一个批次的试验物质是以测定的10ppm溴,在Instant Ocean盐溶液中一式三份进行测试,所述的Instant Ocean盐溶液针对各自的试验菌,脱硫脱硫弧菌脱硫亚种,ATCC 7757、蜡状芽孢杆菌,ATCC 11778和荧光假单胞菌,ATCC 13525,用“无需氯的水”制备。从Aquarium Systems,Inc.,Mentor,Ohio得到Instant Ocean合成海盐。稀释/等分试样的试验物料与已知数目的试验细菌接触具体限定的时间。然后涂敷样品以计算存活的细菌。计算log10残存者,及从初始数目log10的减少。在20±1℃下对于去磺弧菌曝光条件是10分钟、1小时、3小时和24小时,对于蜡状芽孢杆菌和荧光假单胞菌为10分钟、1小时和3小时。与未经处理的对照相比,对于两个批次的WELLGUARD 7030杀生物剂每一时间点都进行计算平均log10残存者和细菌数量平均log10减少。试验结果总结在表7中。
能够看出,在10ppm溴和10分钟接触时间下,对于两个批次WELLGUARD 7030杀生物剂,针对脱硫脱硫弧菌脱硫亚种,ATCC7757而言,显示试验细菌数量>3log10减少。
在相同测试条件下,及在直至3小时接触情况下,对于两个批次的STABROM7909杀生物剂而言,没有看到荧光假单胞菌,ATCC13525数量的减少,蜡状芽孢杆菌,ATCC 11778数量减少~0.3log10。
结果的总表--LOG10减少对于STABROM909@10ppm溴的结果总结以1/2杯/加仑稀释“Instant Ocean”

NR=没有减少NT=没有测试*log10的CFUmL(三次重复试验的平均值)**与未经处理的对照数值相比的减少在该文件中无论何处通过化学名称或者通式称名的化合物,无论以单数或者复数称名,确认为它们在与通过化学名称或者化学类型称名的另外的物质(例如另外的组份或者溶剂)接触之前,它们已经存在。在得到的混合物或者溶液中发生了什么初步的化学变化,如果有的话,并不重要,因为这样的变化是在按照该公开要求的条件下将特定的物质放置在一起自然的结果。同样,即使权利要求可能涉及现在时表示的物质(例如“包括”或者“是”),但也是参考该物质,因为根据本发明公开就在它第一次与一个或多个其他物质接触、混和或者混合之前,该物质就存在。
权利要求
1.一种用于二次油和/或气体回收系统中的注水方法,改进包括使杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂与用于所述方法的注射水共混,以使溴基杀生物剂存在于所述系统中的至少一部分系统和/或至少一部分的进水中。
2.如权利要求1的改进,其中在所述共混中的杀生物剂是高浓度水溶液,其由(A)卤素源,其是(i)氯化溴,(ii)溴和氯,(iii)溴,或者(iv)(i)、(ii)和(iii)任何两个或多个的混合物,(B)氨基磺酸盐阴离子源,(C)碱金属碱和(D)水得到的,其量为该杀生物剂的活性溴含量至少为50,000ppm,pH至少为7,及来自(A)和(B)的氮与活性溴的原子比大于0.93。
3.如权利要求2的改进,其中所述的活性溴含量至少为100,000ppm。
4.如权利要求2的改进,其中所述的活性溴含量大于160,000ppm。
5.如权利要求2的改进,其中所述的活性溴含量为176,000ppm~190,000ppm。
6.如权利要求2的改进,其中所述的活性溴含量为201,000ppm~215,000ppm。
7.如权利要求1的改进,其中用于所述共混的杀生物剂是pH至少为12的高浓度水溶液。
8.如权利要求2-6任一项的改进,其中所述的高浓度水溶液的pH至少为12。
9.如在权利要求1中的改进,其中用于所述共混的杀生物剂是固态含溴杀生物组合物,所述的杀生物组合物通过从氨基磺酸盐稳定的溴基杀生物剂的水溶液或者浆料中除去水形成的。
10.如权利要求9的改进,其中从其中除去水的水溶液或者浆料是氨基磺酸盐稳定的溴基杀生物剂组合物,所述的组合物在水中由(I)卤素源和(II)高碱性的氨基磺酸盐源形成,所述的卤素源是(i)溴、(ii)氯化溴、(iii)氯化溴和溴的混合物,(iv)Br2与Cl2摩尔比至少为1的溴和氯,或者(v)按比例使Br2总量与Cl2摩尔比至少为1的氯化溴、溴和氯;所述的氨基磺酸盐源是(i)氨基磺酸的碱金属盐/或者氨基磺酸,和(ii)碱金属碱,其中所述的水溶液或者浆料的pH至少为7,来自(I)和(II)的氮与活性溴的原子比大于0.93。
11.如权利要求10中改进,其中所述的水溶液或者浆料的pH,在从其中除去水以前大于7,其中来自所述的水溶液或者浆料的(I)和(II)的氮与活性溴原子比在从其中除去水以前大于1。
12.一种用于二次油或者气体回收注水系统的操作方法,其中该系统包括脱氧器、脱氧器的上游段、从脱氧器到井头段和井头的下游段,其中使水流入至少所述段每一个的至少一部分中,改进包括共混杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂和使流入至少一个所述段的至少一部分的水,以使在所述的至少一个所述段的至少一部分中提供杀生物剂。
13.如权利要求12的改进,其中使混和有杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂的水流入至少两个所述段的每一个的至少一部分中,因此在所述至少两个所述段的每一个的至少一部分中提供杀生物剂。
14.如权利要求12的改进,其中使混和有杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂的水流入所有三个所述段的每一个的至少一部分中,因此在所述的所有三个所述段的每一个的至少一部分中提供杀生物剂。
15.如权利要求12-14任一项的改进,其中用于所述共混的杀生物剂是高浓度的水溶液,其从(A)卤素源,其是(i)氯化溴,(ii)溴和氯,(iii)溴,或者(iv)(i)、(ii)和(iii)任何两个或多个的混合物,(B)氨基磺酸盐阴离子源,(C)碱金属碱和(D)水得到的,其量为该杀生物剂的活性溴含量至少为50,000ppm,来自(A)和(B)的氮与活性溴的原子比大于0.93。
16.如权利要求15的改进,其中所述的活性溴含量至少为100,000ppm,其中所述的原子比大于1,且其中所述的高浓度水溶液的pH至少为12。
17.如权利要求15的改进,其中所述的活性溴含量大于160,000ppm,其中所述的原子比大于1,及其中所述的高浓度水溶液的pH至少为12。
18.如权利要求15的改进,其中所述的活性溴含量为176,000ppm~190,000ppm,其中所述的原子比大于1,而且其中所述的高浓度水溶液的pH至少为12。
19.如权利要求15的改进,其中所述的活性溴含量为201,000ppm~215,000ppm,其中所述的原子比大于1,其中所述的高浓度水溶液的pH至少为12。
20.如在权利要求12-14任一项中的改进,其中用于所述共混的杀生物剂是固态含溴杀生物组合物,所述的杀生物组合物通过从氨基磺酸盐稳定的溴基杀生物剂的水溶液或者浆料中除去水形成的。
21.如权利要求20的改进,其中从其中除去水的水溶液或者浆料是氨基磺酸盐稳定的溴基杀生物剂组合物,所述的组合物在水中由(I)卤素源和(II)高碱性的氨基磺酸盐源形成,所述的卤素源是(i)溴、(ii)氯化溴、(iii)氯化溴和溴的混合物、(iv)Br2与Cl2摩尔比至少为1的溴和氯,或者(v)按比例Br2总量与Cl2摩尔比至少为1的氯化溴、溴和氯;所述的氨基磺酸盐源是(i)氨基磺酸的碱金属盐/或者氨基磺酸,和(ii)碱金属碱,其中所述的水溶液或者浆料的pH至少为7,由(I)和(II)得到的氮与活性溴的原子比大于0.93。
22.如权利要求21中的改进,其中所述的水溶液或者浆料的pH在从其中除去水以前大于7,而且其中来自所述的水溶液或者浆料的(I)和(II)的氮与活性溴原子比在从其中除去水以前大于1。
23.一种用于二次油或者气体回收的注水系统,其中该系统包括脱氧器、脱氧器上游段、从脱氧器到井头段和井头下游段,其中使水流入所述段每一个的至少一部分中,改进包括在至少一个所述段的至少一部分中,存在通过共混水与杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂形成的含杀生物有效量的杀生物剂的水。
24.如权利要求21的改进,其中与所述的水混和的氨基磺酸盐稳定的溴基杀生物剂是高浓度水溶液,所述的高浓度水溶液从(A)卤素源,其是(i)氯化溴,(ii)溴和氯,(iii)溴,或者(iv)(i)、(ii)和(iii)任何两个或多个的混合物,(B)氨基磺酸盐阴离子源,(C)碱金属碱和(D)水得到的,其量为该杀生物剂的活性溴含量至少为50,000ppm,pH至少为7,由(A)和(B)得到的氮与活性溴的原子比大于0.93。
25.如权利要求24的组合物,其中所述的卤素源是溴或者氯化溴和溴的混合物;其中所述的高碱性氨基磺酸盐的源是(i)氨基磺酸钠和/或氨基磺酸,及(ii)氢氧化钠;其中所述的活性溴含量至少为100,000ppm;其中所述的高浓度水溶液的pH至少为12。
26.如在权利要求23中的改进,其中与所述的水共混的氨基磺酸盐稳定的溴基杀生物剂是固态含溴杀生物组合物,所述的杀生物组合物通过从氨基磺酸盐稳定的溴基杀生物剂的水溶液或者浆料中除去水形成的。
27.如权利要求26的改进,其中从其中除去水的水溶液或者浆料是氨基磺酸盐稳定的溴基杀生物剂组合物,所述的组合物在水中由(I)卤素源和(II)高碱性的氨基磺酸盐源形成,所述的卤素源是(i)溴、(ii)氯化溴、(iii)氯化溴和溴的混合物、(iv)Br2与Cl2摩尔比至少为1的溴和氯,或者(v)按比例Br2总量与Cl2摩尔比至少为1的氯化溴、溴和氯;所述的氨基磺酸盐源是(i)氨基磺酸的碱金属盐/或者氨基磺酸,和(ii)碱金属碱,其中所述的水溶液或者浆料的pH至少为7,由(I)和(II)得到的氮与活性溴的原子比大于0.93。
28.如权利要求27的组合物,其中所述的卤素源是溴或者氯化溴和溴的混合物;其中所述的高碱性氨基磺酸盐的源是(i)氨基磺酸钠和/或氨基磺酸,及(ii)氢氧化钠;其中所述的溴基杀生物剂组合物活性溴含量在从其中除去水以前至少为100,000ppm;其中所述的溴基杀生物剂组合物的pH在从其中除去水以前至少为12。
29.一种特别适宜于二次采油操作的组合物,所述的组合物由已经混和杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂的海水组成。
30.如权利要求29的组合物,其中用于所述共混的杀生物剂是高浓度水溶液,所述的高浓度水溶液从(A)卤素源,其是(i)氯化溴,(ii)溴和氯,(iii)溴或者(iv)(i)、(ii)和(iii)任何两个或多个的混合物,(B)氨基磺酸盐阴离子源,(C)碱金属碱和(D)水得到的,其量为该杀生物剂的活性溴含量至少为50,000ppm,pH至少为7,由(A)和(B)得到的氮与活性溴的原子比大于0.93。
31.如权利要求30的组合物,其中所述的活性溴含量至少为100,000ppm,其中所述的原子比例大于1,其中所述的高浓度水溶液的pH至少为12。
32.如权利要求30的组合物,其中所述的活性溴含量大于160,000ppm,其中所述的原子比大于1,而且其中所述的高浓度水溶液的pH至少为12。
33.如权利要求30的组合物,其中所述的活性溴含量为176,000ppm~190,000ppm,其中所述的原子比大于1,而且其中所述的高浓度水溶液的pH至少为12。
34.如权利要求30的组合物,其中所述的活性溴含量为201,000ppm~215,000ppm,其中所述的原子比大于1,而且其中所述的高浓度水溶液的pH至少为12。
35.如在权利要求29中的组合物,其中氨基磺酸盐稳定的溴基杀生物剂是固态含溴杀生物组合物,所述的杀生物组合物通过从氨基磺酸盐稳定的溴基杀生物剂的水溶液或者浆料中除去水形成的。
36.如权利要求35的组合物,其中从其中除去水的水溶液或者浆料是氨基磺酸盐稳定的溴基杀生物剂组合物,所述的组合物在水中由(I)卤素源和(II)高碱性的氨基磺酸盐源形成,所述的卤素源是(i)溴、(ii)氯化溴、(iii)氯化溴和溴的混合物、(iv)Br2与Cl2摩尔比至少为1的溴和氯,或者(v)按比例Br2总量与Cl2摩尔比至少为1的氯化溴、溴和氯;所述的氨基磺酸盐源是(i)氨基磺酸的碱金属盐/或者氨基磺酸,和(ii)碱金属碱,其中所述的水溶液或者浆料的pH至少为7,由(I)和(II)得到的氮与活性溴的原子比大于0.93。
37.如权利要求36中的组合物,其中所述的水溶液或者浆料的pH在从其中除去水以前大于7,而且其中来自所述的水溶液或者浆料(I)和(II)的氮与活性溴原子比在从其中除去水以前大于1。
38.如权利要求30、31、36或者37任一项的组合物,其中所述的卤素源是溴或者氯化溴和溴的混合物,所述的高碱性的氨基磺酸盐源是(i)氨基磺酸钠和/或氨基磺酸和(ii)氢氧化钠。
39.一种用于二次油和/或气体回收系统的注水方法,改进包括使杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂与用于所述方法的注射水共混,以使溴基杀生物剂存在于所述系统中的至少一部分系统和/或者至少一部分的进水中。
40.一种用于二次采油注水系统的方法,包括共混杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂与海水以形成杀生物的海水溶液,将该杀生物的海水溶液作为注水介质注入,因此在所述系统的至少一部分内提供杀生物的活性。
41.如权利要求40的方法,其中所述的系统包含硫还原细菌。
全文摘要
本发明提供一种用于二次油和/或气体回收注水系统中注水的方法,用于所述系统或方法的注射水与杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂一起存在和使用,以使溴基杀生物剂存在于所述的系统中的至少一部分系统和/或至少一部分进水中。一种特别适宜于二次采油操作的组合物,所述的组合物由已经混和杀生物有效量的氨基磺酸盐稳定的溴基杀生物剂的海水组成。
文档编号A01N59/00GK1738962SQ200380108883
公开日2006年2月22日 申请日期2003年12月22日 优先权日2002年12月20日
发明者乔尔·F·卡蓬特, 克里斯多佛·J·纳莱帕 申请人:阿尔伯麦尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1