用于x射线准直仪的辐射孔径的制作方法

文档序号:1255863阅读:188来源:国知局
用于x射线准直仪的辐射孔径的制作方法
【专利摘要】本发明的准直仪包括x射线阻挡表面,所述x射线阻挡表面包括限定孔径边缘的一个或多个大体平直的板。孔径边缘包括:包含孔径边缘的第一端的第一端部分,包含孔径边缘的第二端的第二端部分,以及包含孔径边缘的中心的中心部分。孔径边缘的第一端部分对应于检测器的第一端部分,孔径边缘的第二端部分对应于检测器的第二端部分,以及孔径边缘的中心部分对应于检测器的中心部分。孔径边缘的轮廓在孔径边缘的第一端与孔径边缘的中心之间的点突变。
【专利说明】用于X射线准直仪的辐射孔径
【技术领域】
[0001]一般来说,本文所公开的主题涉及成像系统,更具体来说,涉及用于X射线准直仪的孔径(aperture )。
【背景技术】
[0002]无创成像广泛包括用于生成人或对象的内部结构或区域的图像的技术。一种此类成像技术称作X射线计算机断层扫描(CT)。CT成像系统测量从多个角度穿过对象的X射线束的衰减(通常称作投影数据)。基于这些测量,计算机能够处理和重构造成辐射衰减的对象各部分的图像。
[0003]准直仪用于过滤来自源(如X射线管)的射线流以使得允许在所需方向(一个或多个方向)行进的射线穿过。准直仪可由充分阻挡X射线的材料制成,其中提供孔径以允许一部分X射线束穿过。例如,系统可包括源和检测器。为了良好的图像重构,需要来自源的X射线均匀地覆盖检测器的所有或指定部分。
[0004]某些CT系统使用检测器形状大体为矩形、但相对于横断X射线束的平面弯曲的检测器。使用具有大体矩形孔径轮廓的基本上平面的准直仪来整形X射线束以投射到这种弯曲的检测器可导致不需要的检测器射束投射覆盖范围。通过平直孔径的射束投射会在弯曲检测器上导致失真(与孔径形状不同的形状)。这种失真降低系统的剂量效率。这种延伸出检测器可使用(或需要使用)部分的射束额外部分会导致患者暴露于未使用的X射线或额外剂量。
[0005]某些已知CT系统尝试了用各种方式解决这个问题。例如,采用取代基本上平面而沿其长度弯曲的准直仪。但是,这些设计占用的空间远远多于基本上平面的孔径,而空间通常在CT系统中非常珍贵(例如,准直仪所占的空间可以是膛尺寸的限制因素)。此外,例如,采用了具有从边缘延伸到中心的直线斜坡的孔径。虽然与直线组成的孔径形状相比这些具有直线斜坡的孔径减少了过剂量,但具有直线斜坡的孔径仍会造成未使用的X射线束部分。
[0006]因此,当前已知的准直仪占用过多空间,和/或导致不需要的过剂量X射线暴露,和/或限制或抑制功能性。

【发明内容】

[0007]在一个实施例中,提供一种准直仪。准直仪包括X射线阻挡表面,所述X射线阻挡表面包括限定孔径的孔径边缘的一个或多个大体平直的板。孔径边缘包括:包含孔径边缘的第一端的第一端部分,包含孔径边缘的第二端的第二端部分,以及包含孔径边缘的中心的中心部分。中心部分置于第一与第二端部分之间。孔径边缘的第一端部分对应于检测器的第一端部分,孔径边缘的第二端部分对应于检测器的第二端部分,以及孔径边缘的中心部分对应于检测器的中心部分。孔径边缘的轮廓在孔径边缘的第一端与孔径边缘的中心之间的点突变(discontinuous)。[0008]在另一个实施例中,提供一种系统。该系统包括X射线源、检测器及准直仪。X射线源提供X射线束,而检测器接收一部分X射线束。准直仪置于检测器与X射线源之间。准直仪包括X射线阻挡表面,所述X射线阻挡表面包括限定孔径的孔径边缘的一个或多个大体平直的板。X射线阻挡表面配置成使得一个或多个大体平直的板阻止X射线传输并且孔径允许X射线通过其传输,其中射束的投影邻近检测器而投射。孔径边缘包括:包含孔径边缘的第一端的第一端部分,包含孔径边缘的第二端的第二端部分,以及包含孔径边缘的中心的中心部分。中心部分置于第一与第二端部分之间。孔径边缘的第一端部分对应于检测器的第一端部分,孔径边缘的第二端部分对应于检测器的第二端部分,以及孔径边缘的中心部分对应于检测器的中心部分。孔径边缘的轮廓在孔径边缘的第一端与孔径边缘的中心之间的点突变。
[0009]在又一个实施例中,提供一种系统。该系统包括X射线源、检测器、准直仪及处理器。X射线源提供X射线束,而检测器接收一部分X射线束。准直仪置于检测器与X射线源之间。准直仪包括X射线阻挡表面,所述X射线阻挡表面限定孔径的孔径边缘的一个或多个大体平直的板。X射线阻挡表面配置成使得一个或多个大体平直的板阻止X射线传输并且孔径允许X射线通过其传输,其中射束的投影邻近检测器而投射。孔径边缘包括:包含孔径边缘的第一端的第一端部分,包含孔径边缘的第二端的第二端部分,以及包含孔径边缘的中心的中心部分,中心部分置于第一与第二端部分之间。孔径边缘的第一端部分对应于检测器的第一端部分,孔径边缘的第二端部分对应于检测器的第二端部分,以及孔径边缘的中心部分对应于检测器的中心部分。孔径边缘的中心部分配置成提供与检测器的中心部分的轮廓基本一致的第一射束投射部分,并且孔径边缘的第一端部分配置成提供基本不同于检测器的第一端部分的轮廓的第二射束投射部分。处理器配置成使用由检测器提供的信息重构图像,其中由检测器 的中心部分提供的信息以包括图像重构的第一方式进行处理,并且由检测器的第一端部分提供的信息以包括跟踪处理的第二方式进行处理。
[0010]按照本发明的第一实施例,提供一种准直仪,包括:
限定孔径的X射线阻挡表面,所述X射线阻挡表面包括限定所述孔径的孔径边缘的一个或多个大体平直的板;
其中,所述孔径边缘包括:包含所述孔径边缘的第一端的第一端部分,包含所述孔径边缘的第二端的第二端部分,以及包含所述孔径边缘的中心的中心部分,所述中心部分置于所述第一和第二端部分之间,其中所述孔径边缘的第一端部分对应于检测器的第一端部分,所述孔径边缘的第二端部分对应于所述检测器的第二端部分,以及所述孔径边缘的中心部分对应于所述检测器的中心部分;以及
其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的点突变。
[0011]按照第一实施例的准直仪,其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的多个点突变。
[0012]按照第一实施例的准直仪,其中,所述孔径边缘包括直线部分和连接所述直线部分的弯曲部分,其中限定所述直线部分与所述弯曲部分连接的位置的连接点限定所述孔径边缘的突变。
[0013]按照第一实施例的准直仪,其中,所述孔径边缘的第一端部分包括平直段并且所述孔径边缘的中心部分包括非直线部分。
[0014]按照第一实施例的准直仪,其中,所述非直线部分配置成提供对应于所述检测器的中心部分的第一、基本直线射束投影边缘,并且其中所述平直段配置成在所述准直仪用于整形射束供投射到弯曲检测器时提供在横向方向从所述第一、基本直线射束投影向内延伸的第二射束投影边缘。
[0015]按照第一实施例的准直仪,其中,所述孔径边缘包括置于所述孔径边缘的第一端与所述孔径边缘的中心之间的多个倾斜不同的直线段。
[0016]按照第一实施例的准直仪,其中,所述孔径边缘的中心部分配置成提供与所述检测器的中心部分的轮廓基本一致的第一射束投影,并且所述孔径边缘的第一端部分配置成提供基本不同于所述检测器的第一端部分的轮廓的第二射束投影。
[0017]按照本发明的第二实施例,提供一种系统,包括:
X射线源,所述射线源提供X射线束;
检测器,所述检测器接收一部分X射线束;以及准直仪,置于所述检测器与所述X射线源之间,所述准直仪包括限定孔径的X射线阻挡表面,所述X射线阻挡表面包含限定所述孔径的孔径边缘的一个或多个大体平直的板,所述X射线阻挡表面配置成使得所述一个或多个大体平直的板阻止X射线传输并且所述孔径允许X 射线通过其传输,其中射束的投影邻近所述检测器而投射;
其中,所述孔径边缘包括:包含所述孔径边缘的第一端的第一端部分,包含所述孔径边缘的第二端的第二端部分,以及包含所述孔径边缘的中心的中心部分,所述中心部分置于所述第一和第二端部分之间,其中所述孔径边缘的第一端部分对应于所述检测器的第一端部分,所述孔径边缘的第二端部分对应于所述检测器的第二端部分,以及所述孔径边缘的中心部分对应于所述检测器的中心部分;以及
其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的点突变。
[0018]按照第二实施例的系统,其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的多个点突变。
[0019]按照第二实施例的系统,其中,所述孔径边缘包括直线部分和连接直线部分的弯曲部分,其中限定所述直线部分与所述弯曲部分连接的位置的连接点限定所述孔径边缘的突变。
[0020]按照第二实施例的系统,其中,所述孔径边缘的第一端部分包括平直段并且所述孔径边缘的中心部分包括非直线部分。
[0021]按照第二实施例的系统,其中,所述检测器沿横断射束的中心投影的方向弯曲,其中所述非直线部分配置成提供对应于所述检测器的中心部分的第一、基本直线射束投影边缘,并且其中所述平直段配置成提供在横向方向从所述第一、基本直线射束投影向内延伸的第二射束投影边缘。
[0022]按照第二实施例的系统,其中,所述孔径边缘包括置于所述孔径边缘的第一端与所述孔径边缘的中心之间的多个倾斜不同的直线段。
[0023]按照第二实施例的系统,其中,所述孔径边缘的中心部分配置成提供与所述检测器的中心部分的轮廓基本一致的第一射束投影,并且所述孔径边缘的第一端部分配置成提供基本不同于所述检测器的第一端部分的轮廓的第二射束投影。[0024]按照第二实施例的系统,其中,所述检测器包括第一边缘部分中配置用于测量所述射束的通量的元件。
[0025]按照第二实施例的系统还包括处理器,其中,所述处理器配置成使用来自所述检测器的信息来重构图像,其中所述处理器配置成使用从所述检测器的中心部分接收的信息来重构图像以及使用来自所述检测器的第一端的信息来跟踪射束的焦点。
[0026]按照本发明的第三实施例,提供一种系统,包括:
X射线源,所述射线源提供X射线束;
检测器,所述检测器接收一部分X射线束;
准直仪,置于所述检测器与所述X射线源之间,所述准直仪包括限定孔径的X射线阻挡表面,所述X射线阻挡表面包含限定所述孔径的孔径边缘的一个或多个大体平直的板,所述X射线阻挡表面配置成使得所述一个或多个大体平直的板阻止X射线传输并且所述孔径允许X射线通过其传输,其中射束的投影邻近所述检测器而投射;
其中,所述孔径边缘包括:包含所述孔径边缘的第一端的第一端部分,包含所述孔径边缘的第二端的第二端部分,以及包含所述孔径边缘的中心的中心部分,所述中心部分置于所述第一和第二端部分之间,其中所述孔径边缘的第一端部分对应于所述检测器的第一端部分,所述孔径边缘的第二端部分对应于所述检测器的第二端部分,以及所述孔径边缘的中心部分对应于所述检测器的中心部分;以及
其中,所述孔径边缘的中心部分配置成提供与所述检测器的中心部分的轮廓基本一致的第一射束投射部分,并且所述孔径边缘的第一端部分配置成提供基本不同于所述检测器的第一端部分的轮廓的第二射束投射部分;以及
处理器,配置成使用由所述检测器提供的信息来重构图像,其中由所述检测器的中心部分提供的信息以包括图像重构的第一方式进行处理,并且由所述检测器的第一端部分提供的信息以包括跟踪处理的第二方式进行处理。
[0027]按照第三实施例的系统,其中,所述检测器具有大体矩形的覆盖区并且沿横断射束的中心投影的方向弯曲,并且其中所述孔径边缘的第一端部分包括平直段并且所述孔径边缘的中心部分包括非直线部分。
[0028]按照第三实施例的系统,其中,限定所述平直段与所述非直线部分连接的位置的连接点限定所述孔径边缘的突变。
[0029]按照第三实施例的系统,其中所述检测器包括配置成检测所述第二射束投影部分的通量的元件分组,所述元件分组定位成邻近所述检测器的一个或多个边缘。
【专利附图】

【附图说明】
[0030]图1是按照各个实施例所构成的计算机断层扫描(CT)成像系统的简化框图;
图2是按照各个实施例所构成的成像系统的示图;
图3是图2所示成像系统的一部分的示意框图;
图4示出准直仪系统和所产生X射线过剂量;图5示出具有大体平直或直线组成的孔径的准直仪; 图6示出图5的孔径的所产生投影;
图7示出具有直线锥度的孔径的准直仪;
图8示出图7的孔径的所产生投影;
图9示出根据各个实施例构成的准直仪;
图10示出图9的孔径的所产生投影;
图11示出根据各个实施例构成的准直仪;
图12示出图11的孔径的所产生投影;
图13示出根据各个实施例构成的准直仪;
图14示出图13的孔径的所产生投影;
图15示出根据各个实施例构成的具有非对称孔径的准直仪;
图16示出产生于根据一个实施例构成的孔径的投射在检测器上的投影。
【具体实施方式】
[0031]通过结合附图进行阅读之后,将会更好地理解上述
【发明内容】
以及以下的各个实施例的具体详细描述。在附图示出各个实施例的功能块的简图的意义上,功能块不一定指示硬件电路之间的划分。因此,例如,功能块(例如处理器或存储器)的一个或多个可在单个硬件(例如,通用信号处理器或者随机存取存储器块、硬盘等)或者多个硬件中实现。类似地,程序可以是独立程序,可以结合为操作系统中的子例程,可以是已安装软件包中的功能,等等。应当理解,各个实施例并不局限于附图所示的布置和工具。
[0032]实施例提供大体平直的孔径,它具有针对给定系统几何形状调整的开口弯曲部分。例如,在某些实施例中,开口弯曲部分朝向孔径的端部具有更大的宽度,它对于弯曲检测器投射基本直线。各个实施例提供具有改进的容差控制和紧凑性的整体式设计。某些实施例可用作主射束限制孔径,而某些其它实施例可用作辅助孔径以减少散射。各个实施例提供较简单的孔径边缘形状,例如弧形,而某些其它实施例提供更复杂的几何形状,例如一系列不同边缘轮廓。例如,在某些实施例中,提供复杂的孔径边缘,导致成像空间中的直线投影和成像空间外的非直线投影。成像空间外的非直线投影可用于例如跟踪。各个实施例的技术效果是提供改进的X射线束整形和/或改进的剂量管理和/或制造简单性和/或自定义整形和/或改进的形状因子(如需要更少空间)。
[0033]图1是按照各个实施例所构成的计算机断层扫描(CT)成像系统10的简化框图。成像系统10可用于在围绕经受成像体积(如患者、包裹、制造部件等等)的各种视图来获取X射线衰减数据。成像系统10包括配置成发射辐射(例如X射线14)通过包含主体16 (例如成像患者)的体积的X射线源12。
[0034]在图1所示的实施例中,成像系统10包括准直仪18。在操作中,发射的X射线14穿过准直仪18的开口或孔径,它限制与X射线14在一个或多个维度穿过体积相关的角度范围(根据各个实施例构成的某些孔径在下文详细描述)。更具体地说,准直仪18整形发射的X射线14,例如整形成进入和穿过成像体积的大体锥形或大体扇形射束,在成像体积中定位成像过程的主体或对象,如主体16。在实施例中,准直仪18可调整为适应不同的扫描模式,例如在螺旋扫描模式中提供窄扇形X射线束和在轴扫描模式中提供较宽的锥形X射线束。例如,准直仪18可由贯穿其而构成孔径的板构成。可选地,准直仪18可使用两个或更多平移板或闸构成。
[0035]成像系统10还包括位于X射线源12与准直仪18之间的滤波器22。在各个实施例中,滤波器22是具有预定厚度并由预定材料制成的蝴蝶结形滤波器。在操作中,X射线14穿过调整所发射X射线14的频率和/或强度特性的滤波器22。滤波器22可以是常规蝴蝶结形滤波器或适用于改变X射线14束的强度以补偿从X射线源12的不同角度位置所见的主体16的不同厚度的其它X射线束整形滤波器。在一个实施例中,蝴蝶结形滤波器22的厚度可在轴向改变以补偿足跟效应(heel effect)。可选地,可结合蝴蝶结形滤波器22提供厚度在轴向改变的独立或附加滤波器以补偿足跟效应。
[0036]在操作中,X射线14穿过或在周围经过主体16并且照射检测器20。在所示实施例中,检测器显示为沿大体横断X射线14的方向弯曲。检测器20包括可布置成单行或多行的多个检测器元件24以构成检测器元件24的阵列。检测器元件24生成表示入射X射线14的强度的电信号。电信号被获取和处理以重构主体16内的一个或多个特征或结构的图像。在各个实施例中,成像系统10还可包括防散射光栅(未示出)以吸收在成像体积中偏转或散射的光子或另一方面防止其照射检测器20。防散射光栅可以是一维或二维光栅和/或可包括多个部分,其中一些为一维并且其中一些为二维。
[0037]成像系统10还包括配置成向X射线源12提供电力和定时信号的X射线控制器26。成像系统10还包括数据获取系统28。在操作中,数据获取系统28接收由检测器20的读出电子器件所收集的数据。数据获取系统28可接收来自检测器20的取样模拟信号,并且将数据转换成数字信号 ,供处理器30进行后续处理。可选地,数模转换可由在检测器20上提供的电路来执行。
[0038]处理器30编程为执行本文所述的功能,并且本文所使用的术语“处理器”不局限于本领域称作计算机的那些集成电路,而是广义指计算机、微控制器、微型计算机、可编程逻辑控制器、专用集成电路和其它可编程电路,并且这些术语在本文中可互换地使用。
[0039]图2是按照各个实施例所构成的成像系统400的示图。图3是图2所示成像系统400的一部分的示意框图。虽然在包括CT成像系统的成像系统的上下文中描述各个实施例,但应该理解,预计使用能够执行本文所述功能的其它成像系统。
[0040]示出成像系统300,其中包括CT成像系统302。可选地,成像系统300可采用CT之外的形态。例如,成像系统300可以是独立CT成像系统、X射线成像系统和/或用于专门用途(例如肢体或胸部扫描)的CT系统及其组合,等等。成像系统300还可以是多形态成像系统。
[0041]CT成像系统302包括具有X射线源12的扫描架310,x射线源12向扫描架310的对侧上的检测器阵列20投射X射线束14。检测器阵列20包括布置在行或通道中的多个检测器元件24,它们一起感测穿过对象(例如主体306)的投射X射线。成像系统300还包括从检测器阵列20接收投影数据并处理投影数据以重构主体306的图像的计算机30。在操作中,操作员提供的命令和参数由计算机30用于提供控制信号和信息以重新定位电动台架322。更具体地说,电动台架322用于将主体306移入和移出扫描架310。具体地说,台架322至少移动主体306的一部分通过贯穿扫描架310的扫描架开口 324。
[0042]如上所述,检测器20包括多个检测器元件24。每个检测器元件24产生电信号或输出,它表示照射X射线束的强度,并且因而允许估计射束在穿过主体306时的衰减。在获取X射线投影数据的扫描期间,扫描架310和其上安装的组件围绕旋转中心340转动。图3只示出单行检测器元件24 (即检测器行)。但是,多层面检测器阵列20包括检测器元件24的多个平行检测器行,以使得在扫描期间可同时获取对应于多个层面的投影数据。
[0043]扫描架310的旋转和X射线源12的操作由控制机构342来管理。控制机构342包括向X射线源12提供电力和定时信号的X射线控制器26以及控制扫描架310的转速和位置的扫描架电动机控制器346。控制机构342中的数据获取系统(DAS) 28对来自检测器元件24的模拟数据进行取样,并将数据转换成数字信号供后续处理。图像重构器350从DAS28接收经取样和数字化的X射线数据并执行高速图像重构。重构的图像输入将图像存储到存储装置352中的计算机30。可选地,计算机30可从DAS 28接收经取样和数字化的x射线数据并执行本文所述的各种方法。计算机30还经由具有键盘的控制台360接收来自操作员的命令和扫描参数。关联的可视显示单元362允许操作员观察来自计算机的重构图像和其它数据。
[0044]操作员提供的命令和参数由计算机30用于向DAS 28、x射线控制器26和扫描架电动机控制器346提供控制信号和信息。另外,计算机30操作台架电动机控制器364,台架电动机控制器364控制电动台架322以在扫描架310上定位主体306。具体地说,台架322至少移动主体306的一部分通过图2所示的扫描架开口 324。
[0045]再次参照图3,在一个实施例中,计算机30包括装置370,例如软盘驱动器、⑶-ROM驱动器、DVD驱动器、磁光盘(MOD)装置或任何其它数字装置,包括网络连接装置,例如用于读取来自非暂时计算机可读介质372 (例如软盘、CD-ROM、DVD或诸如网络或因特网之类的其它数字源以及仍有待开发的数字部件)的指令和/或数据的以太网装置。在另一个实施例中,计算机30执行固件(未示出)中存储的指令。计算机30编程为执行本文所述的功能,并且本文所使用的术语“计算机”不局限于本领域称作计算机的那些集成电路,而是广义指计算机、微控制器、微型计算机、可编程逻辑控制器、专用集成电路和其它可编程电路,并且这些术语在本文中可互换地使用。
[0046]在示范实施例中,X射线源12和检测器阵列20随扫描架310在成像平面并围绕待成像主体306旋转,使得X射线束374与主体306相交的角度不断变化。来自检测器阵列20处于一个扫描架角度时的一组X射线衰减测量(即投影数据)被称作一个“视图”。主体306的“扫描”包括在X射线源12和检测器20的一次旋转期间,以不同扫描架角度或视角制作的一组视图。在CT扫描中,投影数据被处理以重构对应于通过主体306截取的二维层面的图像。
[0047]以上详细描述了成像系统的示范实施例。所示的成像系统组件并不局限于本文所述的具体实施例,而是可单独且独立于本文所述的其它组件来使用每个成像系统的组件。例如,上述成像系统组件还可与其它成像系统结合使用。
[0048]这种系统中的准直仪用于例如帮助管理患者所接收的X射线剂量。例如,穿过患者但未投射到用于成像的检测器或一部分检测器上的X射线可视为过剂量。在连同相对由平直准直仪限定的平面而弯曲的检测器一起使用具有直线组成的或线性倾斜孔径形状的平直准直仪的系统中,可能因系统的几何形状导致过剂量或不良剂量管理。图4示出准直仪系统100和所产生X射线过剂量。[0049]准直仪系统100包括X射线源102、准直仪106和检测器140。从源102发射的射束104经过准直仪106并大体向检测器140投射。在图4中,源102建模为点源,但也可使用管源。此外,示出单个准直仪。在实施例中,可使用附加的滤波器和/或准直仪。在图4中,准直仪106显示为设置在射束104 —侧的单块板。也可以在射束104的对侧部署大体对称的准直仪板。虽然检测器140沿图4的X方向弯曲,但检测器和邻近检测器140的X射线束投影示为水平投影。检测器140的形状为大体矩形并包括侧边142。
[0050]由准直仪限定的孔径的形状限制或限定了扇形射束104在检测器140之上或附近的投影的形状。例如,对于具有大体平直边缘128 (在图4中以虚线显示)的准直仪106,所产生射束投影130 (在图4中也以虚线显示)横向延伸到检测器140的侧边142之外,如图所示。投影130延伸到侧边142之外的部分一般视作X射线过剂量,因为患者暴露于该部分,但该部分并未由系统用于例如重构图像。
[0051]某些先前已知的系统尝试了提供减少过剂量的射束投射和改进剂量管理。通过在孔径的中心线(和检测器的相应中心线)减小孔径的宽度,可减少投射到检测器之外的投影部分的面积。例如,在图4中,还示出了准直仪的倾斜轮廓118(以虚线显示)。对应于轮廓118的所产生投影120 (以虚线显示)比产生自平直边缘128的投影130沿检测器中心线更接近侧边142。相比投影130投影120延伸到检测器之外的部分也占据更小的面积,从而导致更佳的剂量管理。
[0052]通过使倾斜轮廓118的尖端向内,倾斜轮廓的尖端可与检测器投影线(在检测器中心线从源延伸到检测器侧边缘的线)相切。这在图4中显示为位于准直仪106和投影仪140的中心线上的具有尖端109的倾斜轮廓108。投影110产生自使用倾斜轮廓108。倾斜轮廓108和尖端109被调整大小和配置以使得投影110基本上不会在检测器140的侧边142的中心144延伸到检测器140之外。如果在射束104的对侧使用相似的倾斜轮廓108,所产生跨检测器140的中心线 (通过侧边142的中心144)的投影110的宽度会与检测器在z方向的宽度相符。因此,对于倾斜轮廓例如倾斜轮廓108,射束宽度可由孔径的中心限定,或对于平直孔径例如具有大体平直边缘128的孔径,可由孔径的端点限定。
[0053]还结合图5a和图5b以及图6a和图6b讨论了上述孔径形状。图5示出具有大体平直或直线组成的孔径502的准直仪500,而图6示出孔径502在沿基本与准直仪500平行(或横断经过准直仪500的射束)的方向弯曲的检测器上的所产生投影560。准直仪500由具有足够宽度的适当材料制成,以允许充分防止X射线穿过准直仪500的实心部分,而孔径502是配置成允许X射线穿过的贯穿准直仪500的厚度(在图5中进入页面)的开口。
[0054]孔径502基本为直线组成的。孔径具有沿孔径502的长度延伸的边504和沿孔径502的宽度延伸的端506。在图5中,边504是平直的,并且没有相对于直线组成的检测器的相应边倾斜或成角度。
[0055]图6示出由X射线束穿过孔径502所产生的投影560。投影560相对检测器550示出。检测器550的形状为直线组成的,具有沿检测器550的长度延伸的边552和沿检测器550的宽度延伸的端554。配置孔径502的宽度以使得投影560的宽度基本符合检测器550在检测器的端554处的宽度。因此,如上所述,投影560横向延伸到检测器550之外,延伸的最大距离沿检测器550的中心线570。投影560包括延伸到检测器550之外的部分556,表示X射线的过剂量。[0056]图7示出具有变窄孔径602的准直仪600,而图8示出孔径602在沿基本与准直仪600平行(或横断经过准直仪600的射束)的方向弯曲的检测器上的所产生投影660。准直仪600由具有足够宽度的适当材料制成,以允许充分防止X射线穿过准直仪600的实心部分,而孔径602是配置成允许X射线穿过的贯穿准直仪600的厚度(就图6而言进入页面)的开口。
[0057]孔径602包括具有线性锥度的边缘。孔径602具有由端点604和中心点606限定的侧边缘。该边缘向内横向或向内沿孔径602的长度从端点604到中心点606沿连续的斜线608变窄。因此,孔径602的边不是平直的,而是相对于直线组成的检测器的相应边倾斜或成角度。
[0058]图8示出X射线束穿过孔径602所产生的投影660。投影660相对检测器650示出。检测器650的形状为直线组成的,具有沿检测器650的长度延伸的边652和沿检测器650的宽度延伸的端654。配置孔径602的端的宽度以使得投影660的宽度在距源给定距离处基本符合检测器650在检测器的端654处的宽度,并且配置中心点606之间的宽度以使得投影660在中心线670处的宽度基本符合给定距离处检测器650的宽度。因此,如上所述,投影660横向延伸到检测器650之外,并且包括延伸到检测器650之外的部分656,表示X射线的过剂量。
[0059]通过比例如上述平直和/或线性锥度轮廓所提供更密切地将投影形状或射束投射与检测器形状相关,各个实施例提供改进的剂量管理。例如,图9示出具有孔径702的准直仪700,孔径702包括沿与检测器投影线相切的侧边缘的多个点,而图10示出孔径702在沿基本与准直仪700平行(或横断经过准直仪700的射束)的方向弯曲的检测器上的所产生投影760。
[0060]图9示出具有包含孔 径边缘703的孔径702的准直仪700,而图10示出孔径702在沿基本与准直仪700平行(或横断经过准直仪700的射束)的方向弯曲的检测器上的所产生投影760。准直仪700由具有 足够宽度的适当材料制成,以允许充分防止X射线穿过准直仪700的实心部分,由此提供X射线阻挡表面,而孔径702是配置成允许X射线穿过的贯穿准直仪700的厚度(进入页面,就图9而言)的开口。
[0061]图9中示出的准直仪700基本上是平直的或平面的准直仪。准直仪700可由具有贯穿其中的孔径的单块板制成,或者,作为另一个示例,准直仪700可包括多个叶片、板或定位以提供所需孔径的其它部分。在一些实施例中,叶片、板或其它部分或铰接以提供例如孔径宽度的可调整性。此外,在一些实施例中,准直仪700可以是射束经过的一系列准直仪中的一个。例如,一个准直仪可用于整形或引导射束,而其它准直仪可用于减少散射。本文所讨论的孔径形状可由在系统中一起使用的这种准直仪中的一个或多个使用。
[0062]孔径702的孔径边缘703包括由端点704、中心点708和中间点706构成的侧边缘。端点704位于准直仪700的端,而中心点708位于准直仪700的中心线上。中间点706位于侧边缘的长度上,置于端点704与中心点708之间。端点704、中间点706和中心点708中的每一个基于系统几何形状和配置进行配置,以使得对于距检测器750给定距离的射束源,每一个端点704、中间点706和中心点708将与检测器投影线(经过该点的各射线将落在沿检测器侧边缘的相应长度处的检测器侧边缘上)相切。因此,端点704、中间点706和中心点708配置成使得沿检测器750长度的相应位置处的投影760的宽度符合沿检测器750长度的相应位置处的检测器750的宽度。
[0063]每一个端点704通过沿孔径702边缘的长度向内横向延伸的第一线段710与中间点706连接。而且,每一个中间点706通过沿孔径702边缘的长度向内横向延伸的第二线段712与中心点708连接。第一线段710和第二线段712的斜度(或第一线段710和第二线段712与检测器侧边缘之间的角度)不同。在图9中,孔径702包括沿准直仪的端与中心之间的边缘703的两个不同斜度或不连续的线段,以及置于孔径的中心与端之间的一个中间峰点(投影线基本位于检测器边缘的点)。在其它实施例中,可使用更多线段或峰点。
[0064]图10示出X射线束穿过孔径702所产生的投影760。投影760相对检测器750示出。检测器750的形状为直线组成的,具有沿检测器750的长度延伸的边752和沿检测器750的宽度延伸的端754。如上所述,孔径702的宽度配置成使得投影760的宽度基本符合对应于孔径702的端点704、中间点706和中心点708的沿检测器750的边752的位置处的检测器650的宽度。例如,对应于孔径702的中间点706的中间点772是投影760基本位于检测器750的侧边缘上的点。相似地,对应于孔径702的中心点708的中间点774是投影760基本位于检测器750的侧边缘上的点。这样,孔径702提供投影基本未延伸超过检测器边缘的沿检测器长度的多个点。投影760在多个峰点之间的位置横向延伸到检测器750之外,并且包括延伸到检测器750之外的部分756。这些部分比上述平直或线性变窄孔径的部分更小,因此减少了 X射线过剂量。
[0065]因此,一些实施例提供了基本平直或平面的准直仪,它提供更接近带弯曲直线组成的检测器的表面的相应投影。因此,在与弯曲检测器配合使用时,各个实施例还提供减少的X射线剂量。
[0066]通过将孔径边缘分成置于位于检测器边缘的投影的切线上的点之间的越来越短的线段,甚至可进一步减少所产生投影横向延伸到检测器之外的部分。随着线段变得无限小,孔径的边缘轮廓变成曲线。因此,给定轮廓的曲线可视作产生基本符合直线组成的检测器的投影的理想形状。图11示出具有包含孔径边缘803的弧形孔径802的准直仪800,而图12示出孔径802在沿基本与准直仪800平行(或横断穿过准直仪800的射束)的方向弯曲的检测器上的所产生投影860。准直仪800由具有足够宽度的适当材料制成,以允许充分防止X射线穿过准直仪800的实心部分,而孔径802是配置成允许X射线穿过的贯穿准直仪800的厚度(就图11而言进入页面)的开口。
[0067]孔径802的孔径边缘803包括沿孔径802的端之间的孔径边缘803延伸的相反弯曲部分804。在图8a和Sb的实施例中,调整和配置孔径802以提供与给定系统几何形状和配置基本一致的带弯曲直线组成的检测器的投影。因此,对于给定系统几何形状和配置,沿孔径802的弯曲边缘的每个点基本与从源到检测器边缘的射线相切。如图12所示,检测器850的形状为直线组成的,具有沿检测器850的长度延伸的边852和沿检测器850的宽度延伸的端854。投影860基本符合检测器的轮廓,从而减少、最小化和/或消除X射线的过剂量。
[0068]在备选实施例中,可调整孔径802以仅覆盖检测器的给定部分。例如,在实施例中,只有一部分检测器表面区域可用于成像。因此,在实施例中,可调整孔径802以使得所产生投影覆盖检测器宽度的所需部分,例如一半。在其它实施例中,相同的准直仪和孔径可用于需要检测器使用不同成像宽度的不同应用。在此类实施例中,孔径可针对给定成像宽度(例如使用更频繁的成像宽度)进行调整或配置,然后如上所述经由例如可移动板进行调整以提供其他成像宽度。或者,作为另一个示例,孔径可针对两个宽度之间的宽度进行调整或配置,以提供比专门针对其中一个宽度调整时的孔径更密切相符的剂量管理。
[0069]因此,各种实施例提供理想或近似理想的给定检测器形状覆盖。但是,在备选实施例中,准直仪的孔径可配置成偏离这种理想或近似理想的覆盖。
[0070]例如,图13示出根据一个实施例构成的准直仪900。准直仪900包括具有孔径边缘903的孔径902。在图9的实施例中,调整或配置孔径902以使得所产生投影的第一部分基本符合检测器的轮廓,并且所产生投影的第二部分基本不同于检测器的轮廓。图14示出孔径902在沿基本与准直仪900平行(或横断穿过准直仪900的射束)的方向弯曲的检测器952上的所产生投影950。准直仪900由具有足够宽度的适当材料制成,以允许充分防止X射线穿过准直仪900的实心部分,而孔径902是配置成允许X射线穿过的贯穿准直仪900的厚度(就图13而言进入页面)的开口。
[0071]如图13所示,孔径902的孔径边缘903包括置于端部分906之间的中心部分908。中心部分908对应于检测器的中心部分,而端部分906对应于检测器的端部分。孔径902配置成提供基本在中心部分符合检测器轮廓但在端部分偏离轮廓的射束投影。在所示实施例中,因检测器基本为直线组成的并且相对大体与准直仪900限定的平面平行的平面弯曲,孔径912的中心部分908包含弯曲部分912。弯曲部分912经调整或配置成提供理想或近似理想的投影以覆盖具有给定宽度的检测器(或覆盖检测器宽度的给定部分)。弯曲部分912提供对应于相应直线组成的检测器的基本直线射束投影。
[0072]孔径902的端部分906包括平直部分910。本文中结合孔径轮廓所用的术语“平直”是指大体与基本直线组成的检测器的边或边缘平行。平直部分910在点914处与弯曲部分912连接,表示在孔径902的边缘903上平直部分910与弯曲部分912之间的突变。平直部分910从点920所示的弯曲部分912的延伸和孔径902的边缘的交叉点横向向内定位。因此,孔径902的面积小于调整成在检测器长度上基本符合检测器轮廓的孔径。所以,产生自孔径902的投影覆盖小于检测器轮廓的面积。这样,平直部分910配置成提供从弯曲部分912提供的基本直线射束投影横向向内延伸的射束投影。
[0073]图14示出相对基本直线组成的检测器952的产生自孔径902的投影950。检测器952的形状为直线组成的,具有沿检测器952的长度延伸的边954和沿检测器952的宽度延伸的端956。投影950在对应于孔径902的中心部分908的检测器952的中心部分964上基本符合检测器的轮廓,由此减少、最小化和/或消除了 X射线过剂量,同时提供对中心部分964的可用成像空间的覆盖。
[0074]但是,因为上述端部分906的配置,投影950没有跨检测器952的完整宽度延伸到邻近检测器952的端960。检测器952而是包括未由投影950覆盖的部分970。例如,在实施例中,并不是所有检测器区域均可用于或需要用于成像,因此可能不需要全部检测器区域接收射束的一部分。在某些实施例中,检测器中部分用于跟踪目的,例如如下所述,并且孔径可调整成沿检测器的一个或多个边缘提供改进的跟踪。
[0075]此外,在备选实施例中,可在孔径的一个或多个端部分采用平直部分之外的不同形状。例如,备选实施例中可包括不同于弯曲中心部分的线性倾斜、梯级或弯曲。在图13的实施例中,端部分关于孔径中心对称。在备选实施例中,端部分可以是非对称的。[0076]图15示出根据一个实施例构成的包含具有孔径边缘983的非对称孔径982的准直仪980。所示实施例关于平分准直仪980长度的中心线994非对称。作为补充或替代,孔径也可以关于其它轴非对称,例如平分准直仪宽度的轴。孔径982的孔径边缘983包括第一端984和第二端988。中心部分986置于第一端984和第二端988之间。中心部分986包含调整或配置成提供基本与带弯曲直线组成的检测器轮廓重合的弯曲部分992。孔径982的边缘的弯曲部分992连续地贯穿中心部分986以及延伸到第二端988。
[0077]但是,第一端984包括孔径982的边缘983的平直部分990,并且孔径982的边缘983在平直部分990与弯曲部分992连接的位置突变(参见如以上关于平直部分910的讨论)。对于具有带弯曲直线组成的轮廓并且已为其调整或配置孔径982的检测器,孔径982的所产生投影会基本与对应于中心部分986和第二端988的检测器部分的检测器轮廓重合。但是,对于对应于孔径982的第一端984的检测器部分,所产生投影不会基本与检测器轮廓重合,而是导致一些检测器部分未被投影覆盖(参见如以上关于部分970的讨论)。
[0078]图16示出产生于根据一个实施例构成的孔径的投射在检测器1000上的投影1050。例如,检测器1000是带弯曲直线组成的检测器,并且可采用大体与孔径902相似的孔径,该孔径包括弯曲中心部分,配置成提供基本符合检测器1000的轮廓的投影,以及定位于孔径的端的平直部分,以提供基本不符合朝向检测器1000的端的检测器1000的轮廓的投影。
[0079]检测器1000包括沿检测器1000的长度延伸的边1008和沿检测器1000的宽度延伸的端1010。检测器1000的形状大体为直线组成的,并且相对与投射到检测器1000上的射束相切的平面弯曲。检测器包括布置在行1004或通道1006中的多个检测器元件1002。如图16所示,检测器1000包括未被投影覆盖的由边界1052限定的部分。边界1052定位于邻近检测器1000的边缘。因此,元件分组1020限定为均未暴露于射束,或仅部分暴露于射束,其中只有元件的一部 分暴露于射束。
[0080]在实施例中,全部或部分元件分组1020用于跟踪目的。例如,在扫描过程中,射束焦点可相对准直仪和/或检测器移动。通过得知检测器的位置和准直仪的位置,可由检测器上射束投影的位置确定焦点。而且,通过提供覆盖少于完整检测器元件的投影,检测器可检测和跟踪投影的边缘或边界。例如,可由元件分组1020中的一个或多个元件跟踪一个或多个边界1052的移动,并使用有关边界移动的信息来确定焦点的位置和移动。因此,检测器上的射束通量可被检测并用于确定射束焦点的位置和移动。通过提供具有高阶周线(如斜坡或曲线)的边界1052的孔径,可提供有关焦点移动的更精确的信息。因此,焦点的移动和/或位置可通过来自元件分组1020的信息确定。在一些实施例中,来自一组检测器的信息可由处理器处理以重构图像,并且来自元件分组1020的信息可由处理器处理用于跟踪和确定对系统配置和几何形状的任何必需调整。因此,在实施例中,以不同的方式处理不同位置的检测器元件。
[0081]在各个实施例中,成像区域可能只需要一部分可用检测器元件。在此类实施例中,可提供一个孔径,该孔径提供基本符合检测器的一部分的所需成像区域的投影,但同时还扩展到所需成像区域之外并覆盖其它未用于成像的检测器元件,这些其它元件用于例如跟踪。在某些实施例中,所需成像区域的形状可以是不规则的(例如,非直线组成的),并且可利用根据本文所述实施例构成的孔径提供形状不规则的投影。[0082]此外,例如,在一些实施例中,检测器可以是基本平直而不是弯曲的,并可在孔径的第一部分上提供具有第一、基本平直的边缘的孔径,以在第一相应检测器部分提供基本符合检测器轮廓的射束,其中具有第二、不同形状(例如弯曲)边缘的孔径在第二相应检测器部分整形不符合检测器轮廓的射束部分。在其它实施例中,所需成像区域可以只是检测器的一部分,并且可调整、配置和/或调节孔径以提供覆盖所需成像区域的射束。[0083]作为补充或替代,一些实施例提供可针对不同应用进行选择或切换的可互换孔径的系统。例如,可为不同大小的成像区域提供具有不同大小的孔径的准直仪。作为另一个示例,可提供一个或多个准直仪整形基本符合检测器轮廓的射束,还有一个或多个其它准直仪针对至少一部分检测器轮廓整形基本不符合检测器轮廓的射束。
[0084]本文所使用的、以单数形式所述并且具有数量词“一”的元件或步骤应该被理解为不排除多个所述元件或步骤的情况,除非明确说明了这种排除情况。此外,本发明的“一个实施例”的说法不是要被理解为排除同样结合了所述特征的其它实施例的存在。此外,除非另加相反的明确说明,否则,“包括”或“具有”带特定性质的元件或多个元件的实施例可包括没有那种性质的附加元件。
[0085]本文还使用的词语“重构图像”并不是预计排除其中生成表示图像的数据但没有生成可视图像的本发明的实施例。因此,本文所使用的术语“图像”广义地表示可视图像以及表示可视图像的数据。但是,许多实施例生成或者配置成生成至少一个可视图像。
[0086]本文所使用的术语“软件”和“固件”是可互换的,并且包括存储器中存储以供计算机执行的任何计算机程序,其中存储器包括RAM存储器、ROM存储器、EPROM存储器、EEPROM存储器和非易失性RAM(NVRAM)存储器。在实施例中,可读存储介质不包括信号。上述存储器类型只是示范性的,因而并不是限制可用于存储计算机程序的存储器的类型。
[0087]应当理解,以上描述意在说明而不是限制。例如,上述实施例(和/或其方面)可相互结合使用。另外,可对本发明的理论进行多种修改以适合具体情况或材料,而没有背离其范围。虽然本文所述的尺寸和类型预计限定本发明的参数,但是它们完全不是限制性的,而只是示范实施例。通过阅读以上描述,本领域的技术人员将会清楚地知道其它许多实施例。因此,本发明的范围应当参照所附权利要求连同这类权利要求涵盖的完整等效范围共同确定。在所附权利要求中,术语“包括”和“其中”用作相应术语“包含”和“其中”的普通语言等效体。此外,在随附权利要求中,术语“第一”、“第二”和“第三”等只用作标记,而不是意在对其对象施加数字要求。此外,随附权利要求的限制并不是按照部件加功能格式编写的,并且不是意在根据35 U.S.C.§ 112第六节来解释,除非这类权利要求限制明确使用词语“用于的……部件”加上没有其它结构的功能的陈述。
[0088]本书面描述使用示例来公开本发明的各个实施例,并且还使本领域的技术人员能够实施本发明的各个实施例,包括制作和使用任何装置或系统,以及执行任何结合方法。本发明的各个实施例的专利范围由权利要求来限定,并且可包括本领域的技术人员想到的其它示例。如果示例具有与权利要求的文字语言完全相同的结构元件,或者如果示例包括具有与权利要求的文字语言的非实质差异的等效结构元件,则这类其它示例意在落入权利要求的范围之内。
[0089]附图标记说明 ___
10 成像系统_656 部分_
【权利要求】
1.一种准直仪,包括: 限定孔径的X射线阻挡表面,所述X射线阻挡表面包括限定所述孔径的孔径边缘的一个或多个大体平直的板; 其中,所述孔径边缘包括:包含所述孔径边缘的第一端的第一端部分,包含所述孔径边缘的第二端的第二端部分,以及包含所述孔径边缘的中心的中心部分,所述中心部分置于所述第一和第二端部分之间,其中所述孔径边缘的第一端部分对应于检测器的第一端部分,所述孔径边缘的第二端部分对应于所述检测器的第二端部分,以及所述孔径边缘的中心部分对应于所述检测器的中心部分;以及 其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的点突变。
2.如权利要求1所述的准直仪,其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的多个点突变。
3.如权利要求1所述的准直仪,其中,所述孔径边缘包括直线部分和连接所述直线部分的弯曲部分,其中限定所述直线部分与所述弯曲部分连接的位置的连接点限定所述孔径边缘的突变。
4.如权利要求1所述的准直仪,其中,所述孔径边缘的第一端部分包括平直段并且所述孔径边缘的中心部分包括非直线部分。
5.如权利要求4所述的准直仪,其中,所述非直线部分配置成提供对应于所述检测器的中心部分的第一、基本直线射束投影边缘,并且其中所述平直段配置成在所述准直仪用于整形射束供投射到弯曲检测器时提供在横向方向从所述第一、基本直线射束投影向内延伸的第二射束投影边缘。
6.如权利要求1所述的准直仪,其中,所述孔径边缘包括置于所述孔径边缘的第一端与所述孔径边缘的中心之间的多个倾斜不同的直线段。
7.如权利要求1所述的准直仪,其中,所述孔径边缘的中心部分配置成提供与所述检测器的中心部分的轮廓基本一致的第一射束投影,并且所述孔径边缘的第一端部分配置成提供基本不同于所述检测器的第一端部分的轮廓的第二射束投影。
8.一种系统,包括: X射线源,所述射线源提供X射线束; 检测器,所述检测器接收一部分X射线束;以及 准直仪,置于所述检测器与所述X射线源之间,所述准直仪包括 限定孔径的X射线阻挡表面,所述X射线阻挡表面包含限定所述孔径的孔径边缘的一个或多个大体平直的板,所述X射线阻挡表面配置成使得所述一个或多个大体平直的板阻止X射线传输并且所述孔径允许X射线通过其传输,其中射束的投影邻近所述检测器而投射; 其中,所述孔径边缘包括:包含所述孔径边缘的第一端的第一端部分,包含所述孔径边缘的第二端的第二端部分,以及包含所述孔径边缘的中心的中心部分,所述中心部分置于所述第一和第二端部分之间,其中所述孔径边缘的第一端部分对应于所述检测器的第一端部分,所述孔径边缘的第二端部分对应于所述检测器的第二端部分,以及所述孔径边缘的中心部分对应于所述检测器的中心部分;以及其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的点突变。
9.如权利要求8所述的系统,其中,所述孔径边缘的轮廓在所述孔径边缘的第一端与所述孔径边缘的中心之间的多个点突变。
10.如权利要求8所述的系统,其中,所述孔径边缘包括直线部分和连接直线部分的弯曲部分,其中限定所述直线部分与所述 弯曲部分连接的位置的连接点限定所述孔径边缘的突变。
【文档编号】A61B6/03GK103505235SQ201310242211
【公开日】2014年1月15日 申请日期:2013年6月19日 优先权日:2012年6月19日
【发明者】N.德米亚诺维奇 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1