用于评估受试体的刺激敏感度的可配置系统及其使用方法与流程

文档序号:11158990阅读:1244来源:国知局
用于评估受试体的刺激敏感度的可配置系统及其使用方法与制造工艺

本公开一般地涉及感知的现实增强和感知改善。更具体地,但非排他地,本公开涉及用于评估受试体的刺激敏感度的可配置系统及其使用方法。



背景技术:

支点原理(Fulcrum Principle)是在不同的人类系统中发生的现象。支点原理允许通过将随机的或确定的信号注入系统中来改善对低于阈值的信号的可检测性。因此,支点原理似乎是应用在感官系统中以改善受试体的感官、反射和/或运动机制的有趣且引人注目的现象。对支点原理的讨论可以在“On The Physical Fundamentals Of Human Perception And Muscle Dynamics:From The Fulcrum Principle To Phonons”(J.E.Lugo等,第11届振动问题国际会议,Z.Dimitrovová等(编辑),里斯本,葡萄牙,2013年9月9-12日)中找到,其公开通过在此对其整体引用而并入本文。

事实上,已经示出了当将施加到个体用于刺激一种感官、反射和/或运动机制的弱的感官刺激(兴奋信号)以适当量的随机的或确定的信号幅度(促进信号)添加到第二感官、反射和/或运动机制时,然后可以检测到该弱的感官刺激,并且由此响应于所施加的弱的感官刺激而激活特定的感官、反射和/或运动机制的反应。

例如,题为“Method and System for Improving a Subject’s Sensory,Reflex and/or Motor Mechanisms via Auditory,Tactile or Visual Stimulations”的美国专利公开第2011/0005532A1号(其公开通过在此对其整体引用而并入本文)描述了用于通过刺激受试体的第二感官、反射和/或运动机制而改善受试体的第一感官、反射和/或运动机制的敏感度的方法和系统。为此目的,由于跨模随机共振交互,所以将噪声施加到第二感官、反射和/或运动机制以改善第一感官、反射和/或运动机制的敏感度。

仍然存在改善对施加在受试体的第二感官、反射和/或运动机制的刺激的定义、控制以及灵活性的需求。



技术实现要素:

根据本公开,提供了一种用于评估受试体的刺激敏感度的系统。在该系统中,第一动作通道被配置为向受试体提供第一类型的刺激。反应通道被配置为从受试体接收响应。信号通路连接到第一动作通道和反应通道。控制器适于建立第一转换回路和第一通道回路中的至少一个,所述第一转换回路包括第一动作通道并在信号通路中形成路径终止,所述第一通道回路包括形成通过信号通路的路径的第一动作通道并在第一基准单元处终止。

根据本公开,还提供了一种用于评估受试体的刺激敏感度的方法。该方法使用用于评估受试体的刺激敏感度的系统。在该系统中,第一动作通道被配置为向受试体提供第一类型的刺激。反应通道被配置为从受试体接收响应。信号通路连接到第一动作通道和反应通道。控制器适于建立第一转换回路和第一通道回路中的至少一个,所述第一转换回路包括第一动作通道并在信号通路中形成路径终止,所述第一通道回路包括形成通过信号通路的路径的第一动作通道并在第一基准单元处终止。第一动作通道用作用于刺激受试体的第一感官、反射和/或运动机制的兴奋信号源。第二动作通道用作用于刺激受试体的第二感官、反射和/或运动机制的促进信号源。反应通道用来测量第一感官、反射和/或运动机制的生理响应。

根据本公开,还提供了一种用于改善受试体的第一感官、反射和/或运动机制的敏感度的系统。在该系统中,促进信号源刺激受试体的第二感官、反射和/或运动机制。测量第一感官、反射和/或运动机制的生理响应。控制器基于所测量的生理响应调整促进信号的水平。由于支点原理交互,调整促进信号的水平改善了受试体的第一感官、反射和/或运动机制的敏感度。

根据对借助于仅与附图有关的示例给出的其说明性实施例的以下非限制性描述的阅读,前述及其他特征将变得更加明显。

附图说明

本公开的实施例将借助于仅与附图有关的示例来描述,其中:

图1示出了反馈系统和前馈系统的简化的框图;

图2是图示根据实施例的用于刺激受试体的系统的框图;

图3是在图2的系统中以纯透射(pure trans-immitance)配置的单点刺激(直接回路)的示例;

图4是在图2的系统中以纯透射配置的分布式刺激(直接回路)的示例;

图5是示出本公开的回路分类的树状图;

图6是示出针对用于单点刺激的通道回路的开关位置的图2的系统的配置;

图7是示出针对用于单点刺激的转换器回路的开关位置的图2的系统的配置;

图8是示出针对用于分布式刺激的通道回路的开关位置的图2的系统的配置;

图9是示出针对用于分布式刺激的转换器回路的开关位置的图2的系统的配置;

图10A、10B和10C示出了图2的系统的各种回路配置示例;

图11是图示用于刺激受试体的图2的系统的示例应用的框图;

图12是图11的应用中的转换器回路的图示;

图13是图11的应用中的通道回路的图示;

图14是图11的应用中的接口回路的图示;

图15是图11的应用中的自适应回路的图示;

图16是根据实施例的用于改善受试体的第一感官、反射和/或运动机制的敏感度的方法的流程图;

图17是根据另一实施例的用于基于所测量的生理响应调整促进信号的水平的详细序列的流程图;

图18是根据实施例的神经调谐器的实现的立体图;以及

图19-24提供了使用图18的神经调谐器获得的实验结果。

在不同附图中相同的参考标号表示相同的特征。

具体实施方式

在此公开的系统允许探索测试下的受试体的感知的感觉限制,同时调节改善、学习和/或使得获得增强的能力和对受试体感觉感知的控制。该系统使用各种类型的刺激回路,包括组合的、单通道放大、反馈、前馈、自适应反馈或生物反馈刺激回路。另外,本公开提供了用于借助刺激回路可配置接口经由感官刺激来改善受试体的感官、反射和/或运动机制的方法和系统。刺激回路可以经由随机的或确定的信号自动打开或关闭,以稳定并保持受试体处于最佳性能状态。

因此,可配置接口允许自动选择各种实验配置。接口支持由要进行的实验所需的刺激回路定义的几种配置类型。

现在参考附图,图1示出了反馈系统和前馈系统的简化的框图。刺激回路可以被定义为要施加的刺激的函数以及定义为受试体的感知或训练中的特定效应的函数。具有或不具有前馈补偿的回路(特定点之间的反馈稳定动作)也可以在不同的块层定义,包括激励器层、通道层,涉及几个通道,或者涉及受试体本身。回路可以实现为涉及模拟信号、数字信号或其混合,当需要时应用变换器。

回路可以被定义为实时回路(RTL),回路增益呈现延迟的延时回路(DL),补偿同时施加几个刺激的信号处理所需的时间的延迟补偿回路(DCL),以预先建立的、随机的或连续的方式延迟回路动作的节奏回路(CL),等等。延迟在放大器或附加的特定块(未示出)的内部。延迟的主要功能是补偿通道上的传播时间之间的差异。在此定义的所有回路都可以具有延迟。

闭环配置允许根据采样变量和反馈变量来稳定电路的参数之间的关系。采样和反馈变量例如可以是电流或电压值。稳定率(例如电压增益)用作两个特定点的基准,其中信号首先被评定然后在电路中被拓扑地重新导入,从而关闭回路。如果需要将闭环反馈稳定添加到特定刺激通道中,作为负反馈的典型示例,使用传感器在该两点的第一点处做出对来自通道动作的输出信号的评估。可以使用电子网络传感器、麦克风、温度计、或者任何其他类似的传感器。传感器将部分所评定的输出信号馈送到反馈通道的反馈放大器中。通常地,但非排他地,反馈放大器将具有小于一(unity)的增益。在直接通道中的动作放大器的输入处,在第二点处将反馈放大器的输出从基准信号中减去。

很多标准传感器是标量传感器。还考虑使用矢量传感器,其输出不仅取决于量级值,还取决于传感器在空间中的对准。

在前馈的情况下,系统在环境扰动面前具有预定行为。

图2是图示根据本实施例的用于刺激受试体的系统的框图。系统100包括控制设备104、105、放大器102、激励器106、传感器108、电源(在稍后的附图中示出)、操作员接口(在稍后的附图中示出)、以及主控制单元110中的有源信号管理设备的布置,被布置为完成与评估受试体的刺激敏感度相关的任务。图2提供了具有两个(2)动作通道和一个(1)反应通道的系统100的非限制性示例,每个动作和反应通道包括一个激励器106和一个传感器108。动作通道和反应通道的实际数目可以变化并且对这些数字没有先验限制。如下文更详细描述的,这些通道中的每一个可配置为提供直接(正向)通道和反馈(反向)通道。主控制单元110操作打开和关闭以配置可配置信号通路115的开关(下文中描述)。可配置信号通路115从主控制单元110本身延伸以将主控制单元连接到动作通道和反应通道。控制设备104和105可以以继电器的形式实施。在主控制单元110外部的那些继电器105通常被实现为实际的物理设备(真实的继电器)。集成到主控制单元110的那些继电器104可以被实现为实际的物理设备或通过软件实现(虚拟的继电器)。

动作通道管理对受试体的系统动作。在图2的示例中,两个(2)动作通道向测试下的受试体提供听觉刺激120和触觉刺激(振动)122。这些动作通道可以是开环通道。替选地,动作通道可以是在通道层或在转换层实现的反馈通道。当信号从主控制单元110流向受试体时,在负反馈的情况下,由放大器102(指向右边的三角形)表示的直接通道上的增益是负的,并且具有大于1的量级。因此,由放大器102(指向左边的三角形)表示的反馈通道中的增益具有小于一的正值。

反应通道管理对系统100的受试体动作(即反应)。反应通道允许信号从受试体流到主控制单元110。在图2的示例中,反应通道测量体温124,其以信号形式提供给主控制单元110。在反应通道的情况下,对于负反馈,直接通道是从反应通道到主控制单元110,并且具有大于1的负增益,而反馈通道处于相反的方向上,具有小于一的正增益。

对于动作通道,传感器108评估施加到受试体的输出信号的演变。动作通道的激励器106向受试体提供这些信号。相应的传感器108监控激励器106的性能。而对于反应通道,传感器108提供表示受试体的响应的信号,例如体温,并且激励器106表示这些传感器108的反馈补偿,以控制它们在温度、力、皮肤电阻率等方面的转换受试体反应的效率。动作通道和反应通道配置无需用电子电路来实现。在质量传递装备(例如流体加热器或液体冷却器)、机械激励器和电磁设备的情况下,(例如,用于测量血压的)气动接口可能需要调节器动作或阀。这些是反应通道中的激励器的示例。

可以观察到,由根据来自控制设备104和105的命令打开和关闭的开关SW1、SW2、SW3和SW4形成的可配置信号通路115允许重新配置图2的系统100,使得动作通道可以变为反应通道,可能呈现正或负反馈或前馈。该动态配置可根据预先建立的程序或者替选地根据受试体响应而配置。重新配置可以实时或延时完成。采用适于正在进行的测试条件的最有效的配置,系统100可以允许实际工作者在正在进行的测试中寻找受试体的响应。

图3是在图2的系统中以纯透射配置的单点刺激(直接回路)的示例。如图3所示的回路提供单点刺激(SPS)。图3所示的一个示例是声音刺激。另一种类型的SPS是点光源。图4是在图2的系统中以纯透射配置的分布式刺激(直接回路)的示例。可以使用一个或多个激励器提供分布式刺激。例如,如图4的情况,可以使用单个宽表面激励器提供振动刺激。替选地,可以使用多个单点激励器。如图4所示的回路提供分布式刺激(DS)。图4示出了振动表面附接到受试体的身体的示例。在图3和图4中,所示的回路是直接回路(DL),其使用例如作用在手指上的振动销或作用在整个手掌的振动表面,对受试体的单个感觉在纯透射(PTI)中起作用的单模交互。

图5是示出本公开的回路分类的树图。如上文所介绍的,回路可以包括单点刺激(SPS)或分布式刺激(DS)。任一者可以用作直接回路(DL)或混合回路(ML),其中,例如通过同时提供音频和视频刺激,单个或分布式的刺激作用于感官的组合。以下在本文提供ML示例。以纯换能导抗(PTI)提供分布式刺激,而以跨导抗(CI)提供混合的刺激。在图3和4中提供了PTI示例,而以下在本文中提供CI示例。每个给定的回路可以具有正或负增益,具有从零(0)到无穷大(∞)的范围内的增益幅度。

图6是图2的系统的配置,示出了单点刺激的通道回路的开关位置。图7是图2的系统的配置,示出了单点刺激的换能回路的开关位置。图8是图2的系统的配置,示出了分布式刺激的通道回路的开关位置。图9是图2的系统的配置,示出了分布式刺激的换能回路的开关位置。依据来自控制装置104和105的命令的开关SW1、SW2、SW3和SW4的打开或闭合创建了可配置信号路径115内的各种类型的回路。这些直接回路以纯换能导抗(PTI)的方式配置(图3、4、6-9)。直接回路的非限制性示例提供形成听觉刺激并且涉及听觉感知的音频信号。

图8和9示出了用于提供分布式刺激的三(3)个不同的激励器/传感器对。在一个变型中,三(3)个独立的SPS回路可以用来提供相同类型的刺激。

图10A、10B和10C示出了图2的系统100的各种回路配置的示例。在这些图中,以跨导抗(CI)来配置混合回路(ML)。它们可以例如提供引起听觉刺激120并且涉及触觉感知122的音频信号、或引起触觉刺激(来自音频信号的固有振动)并且涉及视觉感知的音频信号。

开关SW1A、SW2A、SW3A和SW4A是用于第一动作通道的可配置信号路径115的一部分。开关SW1B、SW2B、SW3B和SW4B是用于第一动作通道的可配置信号路径115的一部分。在图10A,刺激通道处于开环回路可以由这些通道的反馈路径中的开关SW4A和SW4B的打开加以证明。提供反馈通道200以返回有关受试体的响应的信息。与此相反,图10B和10C示出了开关SW4B及SW1B的闭合来创建刺激通道内的闭环回路通道,除反馈通道200之外,还创建刺激通道内的反馈路径。图10B和10C示出了,刺激通道内的反馈路径可以由换能器回路或通道回路组成。图10C还示出了由温度传感器提供的、代表受试体周围环境的温度的变量T0的添加。这个添加使得系统100成为前馈系统,其中,主控制单元110获取修改系统的行为的能力,作为T0的函数。例如,系统100可以具有“学习”哪个配置随着T0变化是最有效的能力。因此,该系统100具有评估其性能,并相应地管理配置的能力。

图10A、10B和10C的系统100可以被配置以开环回路或闭环回路模式操作,提供换能器回路、通道回路或它们的组合,具有或不具有用于前馈操作的参数。因此,可以定义大量不同的配置。

在一个变型中,系统100可以使用任何接口扬声器、监视器等来施加刺激。在另一个变型中,系统100使用天然的刺激源来提供周围的声音或图像。

回路可以以宽范围的正或负反馈增益进行配置,从非常低反馈的正或负反馈增益、接近或达到开环回路、到非常高的正(传入)或负(传出)反馈增益的范围变化。反馈增益可以根据预定义的(顺序、随机等)或自适应操作模式而有所变化。

虽然图2、图10A,10B和10C示出了使用反馈补偿(如在图1中介绍的,上部)的实施例,系统100的另一实施例可以提供有前馈补偿(如在图1中介绍的,底部)。图10C实际上同时示出了反馈和前馈补偿。

现在将参照图11至图15描述系统100的一般操作。图11是示出图2的系统用于刺激受试体的示例应用的框图。图12是图11的应用中的换能器回路的图示。图13是图11的应用中的通道回路的图示。图14是图11的应用中的接口回路的图示。图15是图11的应用中的自适应回路的图示。首先考虑图11至15,非限制性示例示出了向受试体提供听觉、触觉和视觉刺激的同时表面温度计从受试体向系统100提供反馈。

为了简单和清楚的目的,关于涉及听觉、触觉和视觉刺激致动器和表面温度计对不同通道进行配置的特定非限制性示例,来对系统100的操作进行描述。与这些通道相关联的阶段配备有配置为反馈回路的传感器(麦克风、加速度计、加热器和光传感器、电反馈网络)。也可以预期将系统100的操作扩展为使用各种数目的通道/刺激模块和刺激装置的若干个同时的刺激。

实验被预先定义并实现为主控制单元110中的软件工具。回路配置由可配置信号路径115进行定义,该可配置信号路径115由主控制单元110管理。

主控制单元110被连接到电源132。它评估若干个涉及到的变量、处理统计数据、和管理系统100的配置模式。主控制单元110还管理操作者接口130和可配置信号路径115,该可配置信号路径115提供操作者接口130和系统100的其它部件之间的连接。

由连接到主控制单元110的操作者接口130管理的可配置信号路径115,对模拟和数字信号进行链路,该模拟和数字信号配置该回路、定义系统100的操作模式、控制通道参数、并建立涉及系统100和测试下的受试体的功能性操作。

输入输出块作为输入输出块和通道致动器或通道传感器之间的接口。

输入输出换能器作为通道致动器或传感器,并且包括,例如耳机、振动器、温度计、监视器等。输入输出换能器可在闭环回路操作中使用。

操作者接口130为人机接口,包括例如监视器、键盘、定点装置等,所有这些都未示出但是公知的。其监视器也可以被用作视觉刺激激励器。

经配置回路以要对受试体执行的实验的函数进行定义,并且以变量的演变的函数或以自适应的方式、例如取决于受试体响应的自愿或非自愿响应,来从一个配置切换到另一个配置。

在用于听觉刺激的单点直接回路和用于触觉刺激的分布式直接回路的二者情况下,图12所示的换能回路140被用于稳定来自激励器响应的响应。更详细地,换能回路140本身稳定激励器动作。它可以例如改进其频率响应、线性化其相移以避免谐波失真、或使其增益沿着频谱平坦化、当环境温度变化时降低其参数漂移等。这些改进被引入至到达相应的输入继电器(较近的控制装置105)的信号作为参考,即,该信号为在换能回路的参考输入处呈现的信号。如果该信号包含任何失真,换能器重现该失真。该换能器本身不引入进一步的显著失真。

图13所示的通道回路142用于在直接回路的情况下稳定可变的响应。添加通道回路142改进了整体通道性能。现在,甚至是相比于仅使用换能回路时,在上文提到的换能回路的参考输入处呈现的信号呈现进一步减小的失真,这是由于添加了负反馈动作。换能回路140具有快速的反应时间,而通道回路142提供更高层次的控制。较长的回路呈现较长的传播时间。

图14所示的接口回路144稳定在混合回路的情况下可变响应的组合。

图15所示的自适应回路146具有至少部分取决于来自受试体的响应或反应的参数,再次诸如相移等。

在系统100的操作中,操作者激励主控制单元110,例如通过位于操作者接口130的按钮或键。使用操作者界面130,操作者可以选择期望的回路类型以激励受试体的刺激,诸如,例如,视觉刺激、声刺激、振动刺激等。例如,听觉刺激可以经由单点直接回路被激励(如图3所示)且触觉刺激可以经由分布式直接回路被激励(如图4所示)。然后,操作者可以经由适当的回路将对应于所选择类型的刺激的刺激装置连接到主控单元110。图12-15的示例包括三(3)个换能器回路140、三(3)个通道回路142、和一(1)个接口回路144以形成自适应回路146。主控单元110自动配置系统模式,评估所涉及的变量、计算统计数据、并通过可配置信号路径115建立系统100的组件之间的链接。

图2的系统100相对于刺激的数量是灵活的。它也容易操作,并且可以很容易地运输。

更具体地,如在图11所示的系统100的示例同时产生不同刺激。受试体可以将主控单元110穿戴在固定在腰间的皮带上。以声刺激装置150的形式的第一刺激装置、以温度测量装置152的形式的传感器装置和以振动器154的形式的第二刺激装置通过可配置信号路径115连接到主控单元110。

图12-15示出了若干个回路的实现,以使用图2的系统100实现受试体在两个同时的感官刺激的影响之下。在图12-15中,受试体在同时由声刺激装置150和振动刺激装置154施加的两个感官刺激的影响之下,并且温度由温度计152感测。图12-15的设置已经被用于实验室中以证明受试体的触觉敏感性可以经由声刺激得到改进。

当然,应该理解的是,许多其它这种刺激的组合是可能的,具有两(2)个或甚至更多同时施加的刺激。

支点原理(Fulcrum Principle)的概念可以用于改进受试体的感官、反射和/或运动机制,更具体地,改进受试体的一般敏感性和姿势平衡。本公开示出了通过使用促进信号刺激另一个不同的感官机制,来改进受试体的感官、反射和/或运动机制的敏感性。刺激回路接口用于控制促进信号的水平。

对于在非线性系统中产生支点原理,该非线性系统需要以下三个参数:(i)阈值、(ii)促进信号,其可以是随机确定的或确定性的、和(iii)亚阈值信息(即兴奋信号),其中,亚阈值信息涉及施加到感官机制的兴奋信号并且具有太低的幅度(低于阈值)不足以允许感官机制对兴奋信号作出反应。添加的促进信号的最佳量可以产生兴奋信号检测的最佳改进。事实上,当添加过小的促进信号时,亚阈值兴奋信号信息仍然低于阈值,并且不能被检测到。当将过强的促进信号添加到兴奋信号时,相对于兴奋信号的信息内容,促进信号变得太强,因此,该过强的促进信号将随机化响应于该兴奋信号的受试体的感官、反射和/或运动机制的反应。

本公开的一个非限制性的方面涉及刺激受试体的特定类型的感官机制以改进同一受试体的另一种类型的感官、反射和/或运动机制。一些实验表明,对受试体的耳朵施加听觉噪声作为促进信号,可以调节他/她的食指的触感、调节他/她的腿部肌肉的肌电(EMG)活动、和/或调节姿势维持期间的稳定性图扫描区域。在其它实验中,促进信号是确定性的,且对受试体的耳朵的和谐(harmonic)声音调节他/她的小腿的触感。在另一些实验中,对受试体的眼睛的和谐视觉信号调节他/她的小腿的触感。因此,这些实验表明,人类皮质内的相互作用是基于支点原理的相互作用,形成多感官集成系统。在多感官集成系统中的促进信号的影响下,受试体的一般化的状态可以被增强,包括姿势平衡。

当受试体在若干个刺激的影响下时,支点原理的应用包括使用促进信号用于改进受试体对兴奋信号的敏感性。兴奋信号被施加以刺激受试体的第一感官、反射和/或运动机制。促进信号被施加以刺激受试体36的第二感官、反射和/或运动机制。在第一感官、反射和/或运动机制处测量受试体36的生理响应。基于所测量的生理响应调整促进信号的水平。例如,为了改进受试体对兴奋信号的触觉敏感性,如在图11中所示,受试体被提供有形成促进信号的声信号。声促进信号的调整允许寻找改进触觉敏感性的最佳水平。以下更详细地描述使用目标的生理响应用于找到这个最佳水平的过程。具有本公开的益处技术读者将理解,如本文中所施加以改进触觉敏感性或调整促进信号的“最佳水平”意在表示所希望的或令人满意的水平,并且不意指绝对性能水平。

图16是根据一个实施例的用于改进受试体的第一感官、反射和/或运动机制的敏感性的方法的流程图。序列200可以包括用于使用兴奋信号的源用于刺激受试体的第一感官、反射和/或运动机制的操作202,以及用于将兴奋信号的水平调整至第一感官、反射和/或运动机制处的最小检测的阈值的操作204。然后在操作206,使用促进信号的源用于刺激受试体的第二感官、反射和/或运动机制。操作208包括使用传感器测量第一感官、反射和/或运动机制的生理响应。然后在操作210中,基于测量的生理响应调整促进信号的水平。促进信号的应用加上生理响应的测量提供一种自适应回路,由此调整促进信号的水平,由于支点原理相互作用而提高了第一感官、反射和/或运动机制的敏感性。这是一个混合回路的一个示例。

在序列200中,促进信号例如可以是随机确定的、或者是确定性的信号,并且生理响应例如可以包括在第一感官、反射和/或运动机制处测量的温度。

在序列200中的变型中,用于将兴奋信号的水平调整至第一感官、反射和/或运动机制处的最小检测的阈值的操作204可以包括降低兴奋信号的水平,直到它不再可由受试体检测到。一旦处于亚阈值水平,机器接口自动增加或受试体手动增加该促进信号。当促进信号幅度增加时,兴奋信号感觉相应地增加到感觉为最大值的一个点。这一点被称为最大感觉点。如果促进信号增大更多,兴奋信号感觉开始减少,直到它再次减弱。这一点是噪声阈值水平,这将是新的参考。促进信号在切换到下一个噪声水平之前需要被施加至少一分钟。最大感觉点会比此点低5分贝。该接口可以通过包括电子衰减器自动衰减该5分贝。

刺激第一或第二感官、反射和/或运动机制中的任一者可以通过以下实现:通过施加听觉信号到受试者的至少一只耳朵、通过施加视觉信号到受试者的至少一只眼睛、通过施加触觉信号到受试者的身体中的至少一个部分、通过施加电磁信号到受试者的身体中的至少一个区域、通过施加热信号到受试者的身体中的至少一个区域、通过施加振动信号到受试者的身体中的至少一个区域、通过提供受试体来检测气味、或通过提供受试体来品尝味觉样品。

第一或第二感官、反射和/或运动机制中的任一者的刺激可以通过直接施加兴奋信号或促进信号到受试者的身体的特定区域实现。

第一感官、反射和/或运动机制的刺激可以通过刺激受试者的身体的两个不同区域而区别地施加兴奋信号实现,以便刺激试者的身体的两个不同区域之间的范围。第一感官、反射和/或运动机制的刺激可以进一步通过刺激受试者的身体的若干区域而分布该兴奋信号实现,以便刺激受试者的身体的由该若干区域覆盖的范围。第一感官、反射和/或运动机制的刺激可以替代地在受试者的身体上分布多个不同的兴奋信号而实现。

第二感官、反射和/或运动机制的刺激可以通过刺激受试者的身体的两个不同区域而区别地施加促进信号实现,以便刺激试者的身体的两个不同区域之间的范围。第二感官、反射和/或运动机制的刺激可以进一步通过刺激受试者的身体的若干区域而分布该促进信号实现,以便刺激受试者的身体的由该若干区域覆盖的范围。第二感官、反射和/或运动机制的刺激可以替代地在受试者的身体上分布多个不同的促进信号而实现。

图17是根据另一实施例的用于基于所测量的生理响应调整促进信号的水平的详细序列的流程图。在一个实施例中,图16的操作210可以包括操作211-217。操作211包括首先不施加促进信号。操作212包括在不存在促进信号时,获取第一生理响应测量。然后操作213包括增加促进信号的水平,之后,操作214包括获取下一个生理响应测量。在操作215检测该下一个生理响应测量中的拐点。在针对促进信号的当前水平检测拐点之后,如果在操作216,未达到促进信号的预定最大水平,操作213、214和215重复。在操作216达到促进信号的预定最大水平之后,操作217包括选择提供最大生理响应的促进信号的水平,该生理响应随着获取该生理响应的持续时间而增加,以便基于所测量的生理响应完成促进信号的水平的调整。

在一个变型中,获取每个生理测量的操作214可以实时地执行。具有本公开的益处的技术读者将能够根据该方法的实现的特定情况,在本范围内或在更广的范围内调整获取时间。在相同或其它的变型中,选择提供最大生理响应的促进信号的水平、其中该生理响应随着获取该生理响应的持续时间而增加的操作217可以包括计算每个生理响应测量在其获取的持续时间的积分、计算每个生理响应的梯度,其中,该梯度通过它自己的幅度进行归一化、对每个生理响应计算积分与梯度的乘积,然后选择最高的正的乘积。

当然,系统100及其在先前的图2-4、6-15的描述中所介绍的部件、这种系统100和部件的变型可以用于应用该方法和改进受试体的第一感官、反射和/或运动机制的敏感性。因此,系统100可以包括用于刺激受试体的第二感官、反射和/或运动机制促进信号的源等、用于测量第一感官、反射和/或运动机制的生理响应的传感器、和用于基于所测量的生理响应调整促进信号的水平的控制器,例如主控制单元110或主控制单元110内构建的控制器。作为一个示例,传感器可被配置为测量第一感官、反射和/或运动机制处的温度。

由于支点原理相互作用,系统100可以调整促进信号的水平并改进受试体的第一感官、反射和/或运动机制的敏感性。在系统100中,促进信号的源可以包括视觉刺激装置、振动刺激装置、电磁刺激装置、热刺激装置、触觉刺激装置、声刺激装置、置于受试体的距离短内的气味(例如香味)、或受试体可以品尝的味觉样品。促进信号的源可以被配置为直接刺激受试体的身体的特定区域。或者,系统100可以包括两个源,用于通过刺激受试体的两个不同区域而施加区别的促进信号,以便刺激试者的身体的两个不同区域之间的范围。在另一个替代方案中,系统100可以包括多个源,用于通过刺激受试者的身体的若干区域而施加分布式的促进信号,以便刺激受试者的身体的由该若干区域覆盖的范围,或者包括多个不同类型的源,用于对受试者的身体施加多个不同的促进信号。

系统100的控制器可以能够执行或控制图16和17的序列的全部操作的执行,包括但不限于在一(1)到二(2)分钟之间的范围的持续时间内执行每个生理测量测量获取,还包括但不限于通过计算每个生理响应测量在其获取的持续时间的积分、计算每个生理响应的梯度,其中,该梯度通过它自己的幅度进行归一化、对每个生理响应计算积分与梯度的乘积、以及选择最高的正的乘积,来选择提供最大生理响应的促进信号的水平,该生理响应随着获取该生理响应的持续时间而增加。

系统100可以包括用于刺激受试体的第一感官、反射和/或运动机制的兴奋信号的源等,在该情况下,控制器被配置为,在调整促进信号的水平之前,在第一感官、反射和/或运动机制处将兴奋信号的水平调整至亚阈值水平。控制器还可以被配置为通过降低兴奋信号的水平直到它不再可由受试体检测到,来将第一感官、反射和/或运动机制处的兴奋信号的水平调整至亚阈值水平。一旦处于亚阈值水平,机器接口自动增加或受试体手动增加该促进信号。当促进信号幅度增加时,兴奋信号感觉相应地增加到感觉为最大值的一个点,这一点被称为最大感觉点。如果促进信号增大更多,兴奋信号感觉开始减小,直到它再次减弱。这一点是噪声阈值水平,这将是新的参考。促进信号在切换到下一个噪声水平之前需要被施加至少一分钟。最大感觉点会比此点低5分贝。该接口可以通过包括电子衰减器自动衰减该5分贝。兴奋信号的源可以包括视觉刺激装置、振动刺激装置、电磁刺激装置、热刺激装置、触觉刺激装置、声刺激装置、置于受试体的距离短内的气味(例如香味)、或受试体可以品尝的味觉样品。连接到兴奋信号的源的刺激器可以施加兴奋信号至第一感官、反射和/或运动机制,且连接到促进信号的源的另一个刺激器可以施加促进信号至第二感官、反射和/或运动机制

系统100还可以包括用于将系统100连接到计算机用于向其传送与刺激过程有关的信息的接口。

上述系统100和方法的实际实现已经被实施并在下文中描述。图18是根据实施例的神经调节器(neurotuner)的实现的透视图。系统200包括主控制单元210,其通常结合图2的系统100的大部分元件。主控制单元210包括促进信号的源和兴奋信号的源,具有独立的信号控制212和214。该系统200还包括连接到音频耳机218的促进信号接口216、和连接到触觉信号激励器222的兴奋信号接口220。触觉信号激励器222也可以用作温度传感器或温度可单独地使用经由生理响应接口226连接到主控制单元210的温度传感器224来测量。最后,该系统200包括用于自动地控制主控制单元210的操作者接口228。

该系统200使用计算机接口,其包括换能器回路140以及通道回路142,用于测量受试体的末梢温度的演变,在本特定的例子中,表示兴奋信号。该计算机接口基于在其四肢上测量的受试体的身体的末梢温度根据灌注皮肤的血液量而变化的事实。进而,这取决于于客户的交感神经的状态。当人们变得紧张时,他们的手指往往会变得更冷。这种现象在放松训练的领域是公知的,其中受试体学会主动升高手指温度。此处的亚阈值水平表示紧张状态。

对六(6)个受试体进行类似的训练。受试体未被要求学会主动增加他们的手指温度。相反,手指温度升高是通过使用有效听觉随机确定的信号促进的。受试体开始实验,并在两(2)分钟期间是无促进信号条件,然后,每个两(2)分钟时段期间地施加三个随机确定的、范围为从低、中、到高幅度的信号水平施加到音频耳机218。最后,对于另一个两(2)分钟时段,再次施加无促进条件。使用粘扣带将触觉信号激励器222绑在食指的手掌侧,以获得他们的手指温度的读数。图19-24提供了使用图18的神经调节器获得的实验结果。这些图是从表示为S1-S6的六(6)个受试体获得的。在图19-24的每个图中,上部分示出食指手掌侧温度随时间的曲线图,该曲线图被分为以下五(5)个连续的条件:(a)无促进信号、(b)低随机确定的水平、(c)中随机确定的水平、(d)高随机确定的水平、以及(e)无促进信号。附图的下部分示出了与随机确定的促进信号的听觉条件(a-e)相关的最佳指标的直方图,下文对其进行描述。

以下意见可从实验结果得出:

1)在受试体S1、S2、S3、S4、S5中,在第一无促进信号条件下,平均来说,温度降低。

2)一般来说,随机确定水平中的一个更有效地增加所有参与者中的温度。

3)在受试体S1、S3、S4、S6中,在最后无促进信号条件下,平均来说,温度降低。

4)仅在受试体S2和S5中,在无促进信号条件下,平均来说,温度升高。

5)总体来说,听觉随机确定信号有效地提高了温度。

如下测量最大感觉点:开始实验,并在两(2)分钟期间是无促进信号条件。接口对温度变化进行测量。以低幅度的水平,手动启动听觉随机确定信号的应用。观察温度是否升高,在这种情况下,保持该水平直至温度开始下降。再次升高促进信号的水平到中幅度水平。当随机确定信号幅度水平为高时,即实验的预定最大值,重复该过程。在大多数受试体中,在这种高幅度随机确定信号存在时,温度会下降。操作者接口228然后计算图19-24的上部的曲线下的曲面的积分。操作者接口228还计算由它自己的幅度归一化的平均梯度。当然,取决于曲线的正或负斜率,相一致地提供正或负的单位值。曲线下的面积与正或负的单位的乘积指定了最佳促进信号水平,也在本文中称为最佳指标。因此,最佳促进水平是具有最高正最佳指标的那一个。操作者接口228可以自动地确定哪些促进水平提供最佳指标,但是该确定当然可以基于实验结果手动完成。

在一个变型中,可以实现自适应回路;操作者接口228还可以自动地施加所需的听觉促进信号以找到最佳指标。操作者接口228可以实时地计算温度梯度。如果该梯度为正或零,听觉促进幅度不被改变。否则,听觉促进信号递增,直到梯度再次为零或正。已经观察到,操作者接口228增加听觉促进水平之前的两(2)分钟的等待时间是令人满意的。如果梯度在两个噪声水平增量后仍保持为负,则操作者接口228可被配置为停止过程,并如以上段落来自动确定最佳指标。

通过提供为示例的非限制性实施例的方式,在以上说明书中已经对本公开进行了描述。这些说明性的实施例可以任意修改。权利要求的范围不应该由在示例中阐述的实施例进行限制,而应给予与说明书一致的作为整体的最广泛的解释。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1