用于监测关节健康的假体部件的制作方法

文档序号:11491651阅读:225来源:国知局
用于监测关节健康的假体部件的制造方法与工艺

本发明是于2012年9月21日提出的申请号为201280057871.6、发明名称为《用于监测关节健康的假体部件》的发明专利申请的分案申请。

相关申请的交叉引用

本申请是基于2012年2月27日提交的美国申请号13/406,519、2012年2月27日提交的美国申请号13/406,523、以及2012年2月27日提交的美国申请号13/406,525的国际申请,这些申请的全部内容通过引用结合在此。

美国申请号13/406,519、美国申请号13/406,523以及美国申请号13/406,525各自是2010年6月29日提交的、要求2009年6月30日提交的美国临时专利申请号61/221,881的优先权的美国申请号12/825,852的部分继续申请,这些申请的全部内容通过引用结合在此。此外,美国申请号13/406,519、美国申请号13/406,523以及美国申请号13/406,525要求2010年6月29日提交的非临时申请号12/826,349以及2011年9月23日提交的非临时申请13/242,277和13/242,662的优先权,这些申请的全部内容通过引用结合在此。同样,美国申请号13/406,519、美国申请号13/406,523以及美国申请号13/406,525要求全部在2009年6月30日提交的美国临时专利申请号61/221,761、61/221,767、61/221,779、61/221,788、61/221,793、61/221,801、61/221,808、61/221,817、61/221,867、61/221,874、61/221,879、61/221,881、61/221,886、61/221,889、61/221,894、61/221,901、61/221,909、61/221,916、61/221,923以及61/221,929的优先权,这些申请通过引用结合在此。

本发明总体上涉及物理参数的测量,且更具体来说,但非排他地,涉及用于高精度感测的医疗电子装置。



背景技术:

哺乳类动物的骨骼系统在不同物种之间存在差异。可能由于环境因素、通过使用而退化以及老化而发生另外的变化。骨骼系统的矫形关节典型地包括相对于彼此移动的两个或更多个骨头。移动是由附接到关节的骨骼系统上的肌组织和肌腱来实现。韧带使该一个或多个关节骨在位置上固持不动且稳定。软骨是防止骨与骨接触、分布负载并且减小摩擦的磨损表面。

在人体骨骼系统的修复中一直存在大量增长。总体上,矫形关节已使用来自模拟、机械原型以及收集并用于发起改进设计的患者数据的信息而得到发展。类似地,用于矫形外科手术的工具这些年来已经得到了改善,但实质上没有改变。因此,用于矫形关节置换的基本程序已被标准化来满足广泛分布的群体的一般需求。尽管这些工具、程序和人工关节满足一般需求,但每个置换程序在不同患者之间均存在显著差异。这些个体差异的校正依赖于外科医生使用可用的工具使置换关节适应并且适合于特定情况的技能。



技术实现要素:

一些实施例包括用于测量肌肉-骨骼系统的参数的系统。该系统包括:假体部件,该假体部件具有可透过区域和被配置为联接到骨上的至少一个特征。此外,该系统包括电子电路;以及至少一个传感器,该至少一个传感器被配置为测量该肌肉-骨骼系统的该参数。该电子电路可以是联接到该至少一个传感器上的并且该假体部件可容纳该电子电路和该至少一个传感器。

一些实施例包括一种胫骨假体部件。该胫骨假体部件包括:至少一个滑液传感器。该至少一个滑液传感器可被配置为监测位于该胫骨假体部件附近的滑液。该胫骨假体系统还包括联接到该至少一个滑液传感器上的电子电路。此外,该至少一个滑液传感器和该电子电路可以是容纳在该胫骨假体部件中的。

一些实施例包括一种假体部件。该假体系统可包括:至少一个光学传感器;以及联接到该至少一个光学传感器上的电子电路。该电子电路可以是容纳在该假体部件中的,并且该至少一个光学传感器和该电子电路可被配置为监测位于该假体部件附近的滑液。

一些实施例包括一种关节监测的方法。该方法可包括:将电子电路和一个或多个传感器容纳在假体部件中;用该一个或多个传感器周期性地测量位于该假体部件附近的滑液的特性;并且比较该滑液的特性的测量值。

一些实施例包括一种关节监测的方法。该方法可包括:将电子电路和一个或多个传感器容纳在假体部件中;并且周期性地测量位于该假体部件附近的滑液的浊度。

一些实施例包括一种假体部件。该假体部件包括:温度传感器;以及联接到该温度传感器上的电子电路。该电子电路可以是容纳在该假体部件中的,并且该温度传感器和该电子电路可被配置为测量该假体部件附近的温度。

一些实施例包括一种假体部件。该假体部件包括:ph传感器;以及联接到该ph传感器上的电子电路。该电子电路可以是容纳在该假体部件中的,并且该ph传感器和该电子电路可被配置为测量邻近该假体部件的ph。

一些实施例包括一种关节监测的方法。该方法可包括:在假体部件中提供电子电路和一个或多个传感器;周期性地监测位于该假体部件附近的滑液;测量该滑液的特性;并且向远程系统发送关于该滑液的数据。

一些实施例包括一种系统。该系统包括:具有至少一个滑液传感器的假体部件。该至少一个滑液传感器可被配置为监测邻近该假体部件的滑液。该系统还联接到该至少一个滑液传感器上的电子电路。该至少一个滑液传感器和该电子电路可以是容纳在该假体部件中的。

在这些或其他实施例中,该假体部件包括可透过区域。此外,该至少一个滑液传感器可包括光学传感器、ph传感器、超声波传感器、和温度传感器中的至少一种。再者,该可透过区域可包含玻璃。

再者,这些或其他实施例中,该系统可包括至少一个力、压力或负载传感器,该至少一个力、压力或负载传感器被配置为测量施加到该假体部件的支撑表面的力、压力和负载中的至少一个。在各种实施例中,该假体部件可包含聚醚醚酮。

附图说明

该系统的不同特征在所附权利要求书中具体地阐述。在此这些实施例可以结合附图参照以下说明来理解,在附图中:

图1示出根据示例性实施例的在股骨与胫骨之间接触放置以用于测量参数的传感器;

图2示出根据示例性实施例的零交叉接收器的框图;

图3示出根据示例性实施例的联接到感测组件上的集成零交叉接收器的框图;

图4示出根据示例性实施例的结合有零交叉接收器或边沿检测接收器以用于维持正闭环反馈的传播调谐振荡器(pto);

图5示出根据示例性实施例在连续波复用安排中结合有零交叉接收器以用于维持正闭环反馈的传感器接口;

图6示出结合有集成零交叉接收器以用于以连续波模式操作的传播调谐振荡器(pto)的框图;

图7示出根据示例性实施例在脉冲复用安排中结合有集成零交叉接收器以用于维持正闭环反馈的的传感器接口图;

图8示出根据示例性实施例的结合有集成零交叉接收器以用于以脉冲模式操作的传播调谐振荡器(pto)的框图;

图9示出根据示例性实施例的边沿检测接收器电路的框图;

图10示出联接到感测组件上的边沿检测接收器电路的框图;

图11示出根据示例性实施例在脉冲回波复用安排中结合有边沿检测接收器电路以用于维持正闭环反馈的传感器接口图;

图12示出结合有边沿检测接收器电路以用于以脉冲回波模式操作的传播调谐振荡器(pto)的框图;

图13示出根据示例性实施例的感测模块的简化截面视图;

图14示出根据示例性实施例的用于说明反射和单向操作模式的组装件;

图15示出组装件,说明超声波在这个组装件的双向操作模式下在波导内的传播;

图16示出用于说明超声波的传播上的变化与波导长度上的变化的传感器元件的截面视图;

图17示出根据示例性实施例的用于高精度处理和测量数据的方法步骤的简化流程图;

图18示出根据示例性实施例的医疗感测系统的框图;

图19示出根据示例性实施例的被配置为生成对应于电容器的测量周期的振荡器;

图20示出根据示例性实施例的感测力、压力或负载的方法;

图21示出根据示例性实施例的电容器的截面视图;

图22示出根据示例性实施例的包括超过一个串联机械联接的电容器的图21的电容器;

图23示出根据示例性实施例的包括超过一个机械并联电联接的电容器的图21的电容器;

图24示出根据示例性实施例的图21的电容器的导电区域和通向该导电区域的互连件的顶视图;

图25示出根据示例性实施例的联接到图21的电容器上的互连件的截面视图;

图26示出根据示例性实施例的测量力、压力或负载的方法的图;

图27示出根据示例性实施例的具有多个传感器的医疗装置;

图28示出根据示例性实施例的具有联接到并且符合非平面表面的传感器的一个或多个假体部件;

图29示出根据示例性实施例的具有联接到非平面表面上的一个或多个屏蔽传感器的工具;

图30示出根据示例性实施例的使用电容器作为传感器来测量肌肉-骨骼系统的参数的方法的图;

图31示出根据示例性实施例的具有多个传感器的假体部件;

图32示出根据示例性实施例的该假体部件的结构的截面视图;

图33示出根据示例性实施例的该假体部件和插入物;

图34示出根据示例性实施例的联接到互连件上的电子电路;

图35示出根据示例性实施例的已组装假体部件;

图36示出根据示例性实施例的假体部件的部分截面视图;

图37示出根据示例性实施例的结构和电子电路;

图38示出根据示例性实施例的假体部件和远程系统;

图39是根据示例性实施例的电子电路和结构的图示;

图40是根据示例性实施例的电子电路和结构的图示;

图41描绘了根据示例性实施例的机器的示例性图解表示,该机器呈系统的形式,在该系统内,一个指令集被执行;并且

图42是根据示例性实施例的用于测量和报告的通信网络的图示。

具体实施方式

本发明的实施例广泛地针对物理参数的测量,且更具体来说,针对支持传感器小变化的准确测量的快速响应电路。

以下对一个或多个示例性实施例的说明本质上仅仅是说明性的并且决不是意在限制本发明、其应用、或用途。

如由本领域的普通技术人员已知的过程、技术、设备和材料可能未进行详细讨论但旨在在适当情况下是实现说明书的一部分。例如,可能没有列出特定计算机代码以用于实现所讨论步骤中的每一个,然而,鉴于在此的实现披露,本领域的普通技术人员将能够在无需实验的情况下写出此代码。此代码旨在落在至少一个示例性实施例的范围内。

在所有在此所示和所讨论的实例中,用于处理步骤或特定结构实现方式的任何特定资料(如温度、时间、能量以及材料特性)应解释为仅仅是说明性的而非限制性的。如由本领域的普通技术人员已知的过程、技术、设备以及材料可能并未进行详细讨论但旨在在适当情况下是实现说明书的部分。还应指出,在此所使用的词语“联接”意味着元件可以被直接联接在一起或可以通过一个或多个介入元件来联接。

另外,示例性实施例中所使用的结构的大小并不受在此的任何讨论限制(例如,结构的大小可以是宏观的(厘米、米和更大尺寸)、微观的(微米)和纳米尺寸以及更小)。

请注意,在以下附图中,类似的参考数字和字母指代类似的物品,并且因此一旦在一个附图中定义了物品,则在下面的附图中可能不对该物品进行讨论或进一步定义。

在第一实施例中,超声波测量系统包括一个或多个超声波换能器、超声波波导以及传播调谐振荡器(pto)或锁相环路(pll)。在这个实施例中,该超声波测量系统采用操作的连续模式(cm)来借助于闭环反馈对连续超声波在该波导中的传播特性进行评价,以便确定在该波导上所施加的力的水平。

在第二实施例中,超声波测量系统包括一个或多个超声波换能器、超声波波导以及传播调谐振荡器(pto)或锁相环路(pll)。在这个实施例中,该超声波测量系统采用操作的脉冲模式(pm)来借助于闭环反馈对脉冲超声波在该波导中的传播特性进行评价,以便确定在该波导上施加的力的水平。

在第三实施例中,超声波测量系统包括一个或多个超声波换能器、超声波波导以及传播调谐振荡器(pto)或锁相环路(pll)。在这个实施例中,该超声波测量系统采用操作的脉冲回波模式(pe)来借助于闭环反馈对超声回波反射在该波导中的传播特性进行评价,以便确定在该波导上施加的力的水平。

图1是根据示例性实施例的在股骨102与胫骨108之间接触放置以用于测量参数的传感器100的图示。总体上,传感器100被放置成与肌肉-骨骼系统接触且邻近以测量参数。在非限制性实例中,传感器100用于在程序(如人工关节的安装)过程中测量肌肉-骨骼系统的参数。传感器100的实施例广泛地针对物理参数的测量,且更具体来说,针对评价脉冲能量波传播穿过介质的渡越时间上的变化。在矫形关节植入物外科手术过程中的现场测量对于验证植入物是否处于平衡并处于适当的负载或张力下来说将是大大有益的。在一个实施例中,仪器与外科医生当前所使用的其他仪器是类似的并且与外科医生当前所使用的其他仪器类似地(familiarly)操作。这将提高接受性并减少新技术的采用周期。这些测量将允许外科医生确保植入的部件是安装在预先确定的范围内,该预先确定的范围使得关节假体的使用寿命最大化并减少昂贵的修正。提供定量测量和使用实时数据对程序的评估将产生更一致的结果。另一个问题是在手术后以及长期存在很少或不存在从植入物外科手术所生成的植入物数据。传感器100可以提供植入物状态数据给矫形制造商和外科医生。此外,由对植入的关节本身的直接测量所生成的数据将大大改善对植入的关节操作和关节磨损的认识,从而导致改善的设计和材料。

在至少一个示例性实施例中,能量脉冲通过脉冲模式操作和脉冲成形在传感器100中的一个或多个波导内被引导。该波导是在预先确定的方向上引导能量脉冲的导管。该能量脉冲典型地被约束在该波导内。在一个实施例中,波导包含聚合材料。例如,氨基甲酸乙酯或聚乙烯是适用于形成波导的聚合物。聚合物波导可以被压缩并且在系统中具有很少或不具有滞后现象。可替代地,能量脉冲可以被引导穿过肌肉-骨骼系统。在一个实施例中,能量脉冲被引导穿过肌肉-骨骼系统的骨头以测量骨密度。能量脉冲的渡越时间是与该能量脉冲所横穿的介质的材料特性相关。这种关系用于生成对参数(略举数例如距离、重量、应变、压力、磨损、振动、粘度以及密度)的准确测量。

传感器100的大小可能受将肌肉-骨骼系统或部件(如工具、设备或人工关节)配合在区域内的形状因子要求来约束。在非限制性实例中,传感器100用于测量安装好的人工膝关节的负载和平衡。膝假体包括股骨假体部件104、插入物以及胫骨假体部件106。股骨102的远端是准备好的并且接收股骨假体部件104。股骨假体部件104典型地具有模拟天然股骨的两个髁表面。如所示,股骨假体部件104具有联接到股骨102上的单个髁表面。股骨假体部件104典型地是由金属或金属合金制成。

胫骨108的近端是准备好的以接收胫骨假体部件106。胫骨假体部件106是支撑结构,该支撑结构被紧固到该胫骨的近端上并且通常是由金属或金属合金制成。胫骨假体部件106还使插入物相对于胫骨108固持在固定位置中。插入物是配合在股骨假体部件104与胫骨假体部件106之间。该插入物具有至少与股骨假体部件104的髁表面相接触的至少一个支承表面。该髁表面可以相对于该插入物的支承表面移动,以使得小腿可以在负载下转动。该插入物典型地是由使摩擦最小化的高磨损塑料材料制成。

在膝关节置换过程中,外科医生将股骨假体部件104固定到股骨102上并且将胫骨假体部件106固定到胫骨108上。胫骨假体部件106可以包括固定到胫骨108的平面化近端上的盘或板。传感器100被放置在股骨假体部件104的髁表面与胫骨假体部件106的主要表面之间。该髁表面接触传感器100的主要表面。传感器100的该主要表面接近插入物的表面。胫骨假体部件106可以包括主要表面上的空腔或盘,该空腔或盘在测量过程中接收并且固持传感器100。胫骨假体部件106和传感器100具有组合厚度,该组合厚度表示该胫骨假体部件106和膝关节的最终(或长期)插入物的组合厚度。

在一个实施例中,两个传感器100被配合到两个单独的空腔中,这些空腔是处于由胫骨部件106保持在适当位置中的试验插入物内(该试验插入物也可以称作胫骨插入物,而不是胫骨部件本身)。一个或两个传感器100可以被插入在股骨假体部件104与胫骨假体部件106之间。每个传感器都是独立的并且各自测量股骨102的对应髁。单独的传感器还适应其中单个髁被修补并且仅使用单个传感器的情况。可替代地,这些电子器件可以在两个传感器之间共享以降低系统的成本和复杂性。这些共享电子器件可以在每个传感器模块之间复用以便在适当的情况下进行测量。由传感器100进行的测量帮助外科医生修改每个髁上的绝对负载和髁之间的平衡。虽然示出用于膝植入物,但传感器100可以用于测量其他矫形关节,如脊柱、髋、肩、肘、踝、腕、趾间关节、跖趾关节、掌指关节及其他。可替代地,传感器100还可以被适配用于矫形工具以提供测量。

结合有传感器100的假体模仿自然膝关节的功能。传感器100可以测量在整个运动范围内各个点处的负载或其他参数。来自传感器100的数据经由有线或无线通信发送至接收站110。在第一实施例中,传感器100是一次性系统。传感器100可以在使用传感器100来使关节植入物最优地配合之后被处置掉。传感器100是低成本的一次性系统,该系统降低资本成本、操作成本,有助于定量测量的快速采用,并且开启基于证据的矫形医学。在第二实施例中,可以实施用于对传感器100进行清洁和灭菌以供再使用的方法。在第三实施例中,传感器100可以被结合在工具中而不是成为置换关节的部件。该工具可以是一次性的或被清洁和灭菌以供再使用。在第四实施例中,传感器100可以是置换关节的永久部件。传感器100可以用于提供关于植入的关节的手术后短期数据和手术后长期数据二者。在第五实施例中,传感器100可以联接到肌肉-骨骼系统上。在所有这些实施例中,接收站110可以包括数据处理、存储、或显示、或其组合,并且提供负载的水平和分布的实时图形表示。接收站110可以记录传感器100的会计信息并将该会计信息提供给适当机构。

在手术中实例中,传感器100可以测量股骨假体部件104和胫骨假体部件106上具有相应位置的力(fx、fy以及fz)和扭矩(例如,tx、ty以及tz)。所测量的力和扭矩数据被发送至接收站110,以便提供用于辅助外科医生识别实现最优关节压力和平衡所需的任何调整的实时可视化。该数据在确定使返工最小化并且使患者功能和关节寿命最大化所要求的负载和对准公差的范围方面具有相当大的价值。

如之前所提及,传感器100可以用于其他关节外科手术;它不局限于一种或多种膝置换植入物。此外,传感器100不局限于试验测量值。传感器100可以被结合到最终关节系统中,以便在手术后提供数据来确定植入的关节是否正在正确地运行。使用传感器100对问题的早期确定可以通过使人们意识到患者不能检测到的问题而减少关节的严重失效。该问题通常可以使用对患者来说具有更低的成本和应力的微创程序来进行矫正。类似地,关节的更长期监测可以确定以下磨损或未对准:如果在早期被检测的,那么这些磨损或未对准可以使用最小外科手术来针对最优寿命或磨损表面的置换来调整,从而延长植入物的寿命。总体上,传感器100可以被成形成使得它可以被放置或接合或固定至在与肌肉骨骼系统、关节、以及与其相关联的工具有关的许多矫形应用中所使用的(或任何矫形应用中所使用的)承载表面之上或之内。传感器100可以提供关于一个或多个所感兴趣的性能参数(如磨损、应力、运动学、动力学、固定强度、韧带平衡、解剖学配合以及平衡)的组合的信息。

图2是根据一个实施例的零交叉接收器200的框图。在第一实施例中,零交叉接收器200被提供来检测能量波的过渡态,如每个能量波穿过对称性或周期性波形的中点的过渡。这使得能够捕获以下参数,这些参数包括但不限于能量波的渡越时间、相位或频率。接收器快速地响应于信号过渡并输出与能量波过渡特性并且与最小延迟相符的数字脉冲。零交叉接收器200进一步通过可调整水平的降噪来在噪声与所感兴趣的能量波(包括非常低水平波)之间进行区分。降噪段218包括滤波级和偏移调整级,以便在包括低水平波的广泛范围的振幅内准确确地执行噪声抑制。

在第二实施例中,零交叉接收器被提供用于将进入的对称波、周期波或正弦波转换成对于非常低水平的输入信号具有优越性能的方形的或矩形的数字脉冲序列。数字脉冲序列表示与能量波渡越时间一致的脉冲定时间隔。零交叉接收器与感测组件联接以便响应于评价进入正弦波的渡越而生成数字脉冲序列。这个数字脉冲序列输送与感兴趣的参数(如施加的力)有关的、与感测组件中的物理变化相关联的定时信息。

在第三实施例中,集成零交叉接收器被结合在传播调谐振荡器(pto)内,以便在以连续波模式或脉冲环路模式操作时维持正闭环反馈。集成边缘零交叉接收器通过复用输入和输出电路来与pto电气地集成,以便实现超低功率和小型紧凑尺寸。pto的电部件与零交叉接收器的部件集成以便保证对低水平信号的足够的灵敏度。

在一个实施例中,低功率零交叉接收器200可以是与传播调谐振荡器的其他电路集成,以便进一步改进低信号水平下的性能。零交叉接收器200包括前置放大器206、滤波器208、偏移调整电路210、比较器212以及数字脉冲电路214。滤波器208和偏移调整电路210构成如将在之后解释的降噪段218。零交叉接收器200可以按离散模拟分量、数字分量或其组合来实现。集成零交叉接收器200实践在指定位置处、并且在指定条件下检测能量波的中点的测量方法,以使得能够捕获多个参数,这些参数包括但不限于能量波的渡越时间、相位或频率。对操作方法的简要说明如下。

进入能量波202从电连接件、天线或换能器联接至零交叉接收器200的输入端204。零交叉接收器200的输入端204被联接到前置放大器206上以放大进入能量波202。放大的信号由滤波器208过滤。滤波器208被联接到前置放大器206的输出端和偏移调整电路210的输入端上。在一种配置中,滤波器208是用于移除在进入能量波202带宽之上的高频分量的低通滤波器。在另一种安排中,滤波器是具有对应于进入能量波202的带宽的通带的带通滤波器。然而,该滤波器不限于任一安排。滤过的放大的波的偏移是由偏移调整电路210来调整。比较器212的输入端被联接到偏移调整电路210的输出端上。比较器212监测放大的波形,并且每当检测到预设触发电平时就触发数字脉冲电路214。数字脉冲电路214具有联接到比较器212的输出端上的输入端和用于提供数字脉冲216的输出端。数字脉冲216可以被进一步联接到信号处理电路上,如将在之后进行解释。

在优选实施例中,这些电子部件可操作地联接在一起,作为集成电路的区块。如将在之后所示,这种集成安排用最少数量的部件来有效地执行其特定功能。这是因为这些电路部件被划分在集成电路内的多个结构与多个离散部件之间,并且模拟和数字的创新划分起作用,以便以最少数量的部件和最低功率消耗来实现所要求的性能。

图3示出根据示例性实施例的联接到感测组件300上的集成零交叉接收器200的框图。示出前置放大器206和数字脉冲电路214以供参考和讨论。在一个实施例中,感测组件300包括发送器换能器302、能量传播结构(或介质)304、以及接收器换能器306。如将在下文中进一步所解释,在一个实施例中,感测组件300是测量参数(如力、压力或负载)的传感装置的部分。在非限制性实例中,外部参数(如施加的力308)影响感测组件200。如所示,施加的力308在尺寸上修改传播结构304。总体上,感测组件300输送一个或多个所感兴趣的参数,如与能量传播结构304的变化有关的距离、力、重量、应变、压力、磨损、振动、粘度、密度、方向以及位移。实例是在该关节的骨头之间使用感测组件300来测量如上文所披露的由肌肉-骨骼系统的关节所施加的负载。

换能器驱动电路(未示出)驱动感测组件300的发送器换能器302产生被引导进入能量传播结构304中的能量波310。能量传播介质304中由于施加的参数(如施加的力308)而引起的变化改变能量波310(或脉冲)的频率、相位以及渡越时间。在一个实施例中,施加的力308影响传播结构304在能量波310的传播路径方向上的长度。零交叉接收器200被联接到接收器换能器306上来检测再生能量波202的零交叉。在检测时,零交叉数字脉冲电路214被触发来输出脉冲216。数字脉冲216的定时输送所感兴趣的参数(例如,距离、力、重量、应变、压力、磨损、振动、粘度、密度、方向、位移等)。

依赖于能量波310或能量波脉冲的这种传播的测量方法是实现对能量波或脉冲进行高度准确且受控的检测所要求的。此外,能量波脉冲可能含有其中具有复杂波形的多个能量波,从而导致检测的潜在的模糊性。具体来说,将能量波310引导到能量传播结构304中可以生成由于波导的无效和共振、以及所生成的能量波310的特性而引起的干涉图案。这些干涉图案能够生成导致原始能量波的边缘失真的多绕组励磁波形。

简要地回顾图2,为了可靠地检测到能量波脉冲的到达,零交叉接收器200利用结合有两种形式的降噪的降噪段218。用滤波器208来衰减高于用于所感兴趣的参数的物理测量的操作频率的频率。另外,通过偏移调整210来调整进入波形的偏移水平,以便最优化比较器212触发输出脉冲所处的电压水平。这与放大进入波形相比是更加可靠的,因为它并不增加对存在于输入端上的噪声的额外放大。对进入的对称波、周期波或正弦波的到达的快速响应与可调整的降噪水平的组合借助于对于非常低水平的信号具有优越性能的超低功率零交叉接收器200实现了可靠的过零检测。

对于具有超低功率电路的紧凑测量模块或装置来说存在广泛范围的应用,该超低功率电路实现了可以被定制成配合广泛范围的非医疗和医疗应用的高度执行测量模块或装置的设计和构建。高度紧凑测量模块或装置的应用可以包括但不限于一次性模块或装置,以及可重复使用的模块或装置和用于长期使用的模块或装置。除了非医疗应用之外,广泛范围的潜在医疗应用的实例可以包括但不限于可植入装置,可植入装置内的模块,手术中植入物或手术中植入物或试验插入物内的模块,插入或摄入装置内的模块,可佩戴装置内的模块,手持式装置内的模块,仪器、器具、设备、或所有这些的附件内的模块,或植入物、试验插入物、插入或摄入装置、可佩戴装置、手持式装置、仪器、器具、设备或这些装置、仪器、器具或设备的附件内的一次性用品。

图4是根据示例性实施例的用于维持正闭环反馈的传播调谐振荡器(pto)404的示例性框图400。测量系统包括感测组装件401和传播调谐振荡器(pto)404,该传播调谐振荡器检测感测组装件401的一个或多个波导403中的能量波402。在一个实施例中,能量波402是超声波。响应于检测到能量波402而生成脉冲411,以便引发新的能量波在波导403内的传播。应指出,超声能量脉冲或波,即,由超声共振器或换能器发射、被发送穿过超声波导、并且由这些超声共振器或换能器检测到的超声脉冲或波仅仅作为能量脉冲、波、以及传播结构和介质的实例来使用。在此所考虑的其他实施例可以利用其他波形式,如光。

感测组装件401包括换能器405、换能器406以及波导403(或能量传播结构)。在非限制性实例中,感测组装件401被固定到承载表面或接触表面408上。施加到这些接触表面408上的外力压缩波导403并且改变波导403的长度。在压缩作用下,换能器405和406还将被移动得更靠近在一起。距离上的变化影响能量波402在换能器405与406之间被发送和被接收的渡越时间407。响应于这些物理变化,传播调谐振荡器404将更早地(例如,更短的渡越时间)检测到每个能量波并且发起与该更短的渡越时间相关联的新的能量波的传播。如下文将解释,这通过pto404结合脉冲发生器410、模式控制412、以及相位检测器414来完成。

值得注意的是,波导403(一个或多个能量传播结构)上的变化改变了传播介质的传播特性(例如,渡越时间407)。能量波可以是连续波或脉冲能量波。脉冲能量波方法降低功率损耗,从而允许临时电源(如电池或电容器)在手术过程中为系统供电。在至少一个示例性实施例中,连续波能量波或脉冲能量波是由换能器405提供给波导403的第一表面。换能器405生成耦合到波导403中的能量波402。在非限制性实例中,换能器405是能够发送和接收在超声波频率范围内的声信号的压电装置。

换能器406被联接到波导403的第二表面上,以便接收所传播的脉冲信号并生成相应的电信号。由换能器406输出的电信号被耦合到相位检测器414。总体上,相位检测器414是将所检测的能量波的波形上的选择点的定时与于其他所传播的能量波的波形上的同一点的定时进行比较的检测电路。在第一实施例中,相位检测器414可以是零交叉接收器。在第二实施例中,相位检测器414可以是边沿检测接收器。在第三实施例中,相位检测器414可以是锁相环路。在其中感测组装件401被压缩的实例中,与外力被施加给接触表面之前的信号相比,检测到所传播的能量波402更早地发生(由于波导403的长度/距离减少)。脉冲发生器410响应于由相位检测器414检测到所传播的能量波402而生成新的脉冲。该新的脉冲被提供给换能器405来发起新的能量波序列。因此,每个能量波序列均是维持能量波402在波导403中传播的能量波传播、能量波检测、以及能量波发射的单独事件。

所传播的能量波的渡越时间407是能量波从波导403的第一表面传播到第二表面所花费的时间。存在与上述每个电路相关联的延迟。典型地,电路的总延迟显著地小于能量波穿过波导403的传播时间。另外,在平衡条件下,电路延迟上的变动最小。当外力上的变化相对于脉冲信号传播时间相对缓慢地发生时(如在生理或机械系统中),多个脉冲到脉冲定时可以用于生成平均时间间隔。数字计数器420结合电子部件来对所传播的能量波的数量进行计数,以便确定波导403的长度上的相应变化。这些长度变化与外力成正比地改变,从而使得能够将一个或多个所感兴趣的参数上的变化转换成电信号。

框图400进一步包括计数和定时电路。更确切地说,定时、计数和时钟电路包括数字计时器420、数字计时器422、数字时钟426以及数据寄存器424。数字时钟426在测量序列过程中提供时钟信号给数字计数器420和数字计时器422。数字计数器420被联接到传播调谐振荡器404上。数字计时器422被联接到数据寄存器424上。数字计时器420、数字计时器422、数字时钟426以及数据寄存器424捕获由超声共振器或换能器405发射的、传播穿过波导403的、并且由超声共振器或换能器405或406检测到的能量波402的渡越时间407,这取决于施加于表面408的所感兴趣的物理参数的测量模式。定时和计数电路的操作在下文进行更详细的披露。

可以分析测量数据以取得准确的、可重复的、高精度的以及高分辨率的测量值。这种方法使得所捕获数据的精度或分辨率的水平设置能够最优化测量分辨率与频率(包括感测和数据处理操作的带宽)之间的权衡,从而使得感测模块或装置能够在其最优操作点下操作,而不会折损测量的分辨率。这是通过的多个周期的激励和渡越时间累加而不是对多个单独激励和渡越周期的渡越时间求平均来实现的。结果是物理系统中所感兴趣的参数的准确的、可重复的、高精度的以及高分辨率的测量值。

在至少一个示例性实施例中,传播调谐振荡器404结合一个或多个感测组装件401用于对肌肉-骨骼系统进行测量。在非限制性实例中,感测组装件401被放置在股骨假体部件与胫骨假体部件之间,以提供有助于安装人工膝关节的所测量的负载信息。感测组装件401还可以是用于监测关节功能的永久部件或肌肉-骨骼关节或人工肌肉-骨骼关节。这些测量可以在伸展时以及在挠曲时进行。在该实例中,组装件401用于测量髁负载,以便确定该髁负载是否落在预先确定的范围和位置内。基于该测量值,外科医生可以选择插入物的厚度,以使得在最终插入物处于适当位置时所测量的负载和发病率将落在预先确定的范围内。软组织张紧可以由外科医生使用来进一步最优化力或压力。类似地,两个组装件401可以用于同时测量两个髁或可以被复用。可以测量髁之间的负载上的差异(例如,平衡)。软组织张紧可以用于减小具有较高测量负载的髁上的力,以便减小所测量的髁之间的压力差。

一种操作方法将传播穿过波导403的能量波的数量保持为恒定的整数。能量波的时间间隔对应于能量波周期数。稳定的时间间隔是其中时间间隔在许多能量波内改变非常小的时间间隔。这在影响感测组装件401的条件保持始终如一或恒定时出现。将传播穿过波导403的能量波的数量保持为整数是约束条件,该约束条件在波导403的长度变化时,迫使脉冲之间在时间上发生变化。所得的每个能量波的时间间隔上的变化对应于合计能量波时间间隔上的变化,该变化是使用数字计数器420来捕获以作为施加于接触表面408的外力或条件上的变化的测量值。

在下文描述根据一个实施例的用于从换能器405传播并且由换能器406接收的能量波402的另一种操作方法。在至少一个示例性实施例中,能量波402是超声波能量波。换能器405和406是压电共振式换能器。虽然未描述,但波传播可以在相反方向上发生,由换能器406发起并由换能器405接收。此外,检测超声共振式换能器406可以是单独的超声共振器(如所示),或换能器405可以仅仅取决于所选择的传播模式(例如,反射感测)来使用。施加于接触表面408的外力或条件上的变化影响波导403的传播特性并且改变渡越时间407。如先前所提及的,传播调谐振荡器404保持传播穿过波导403的能量波402的整数数量(例如,脉冲能量波时间间隔的整数数量)恒定,从而控制重复率。如上所指出,一旦pto404稳定化,数字计数器420就使脉冲能量波的重复率数字化,例如,通过边沿检测,如下文将更详细地解释。

在替代实施例中,由换能器405发射的脉冲能量波402的重复率可以由脉冲发生器410来控制。在有待测量的参数对应于脉冲能量波402在波导403内的渡越时间407的测量值的情况下,操作保持类似。应指出,单独的超声波脉冲可以包括具有阻尼波形状的一个或多个能量波。能量波形状是由脉冲发生器410的电参数和机械参数、一种或多种界面材料(当需要时)、以及超声共振器或换能器405来确定。单独脉冲内的能量波的频率是由发射超声共振器404对由电脉冲411进行的励磁做出的响应来确定。脉冲能量波402穿过波导403的传播模式是由模式控制电路412(例如,反射或单向)来控制。检测超声共振器或换能器可以是单独的超声共振器或换能器406或发射共振器或换能器405,这取决于所选择的操作模式(反射或单向)。

总体上,物理参数的准确测量是在具有以下性质的平衡点处实现的:整数数量的脉冲在任何时间点都正在传播穿过能量传播结构。对超声能量波在已知长度的波导内的“飞行时间”或渡越时间上的变化的测量可以通过以下方式来实现:根据由于一个或多个所感兴趣的参数上的变化而引起的穿过传播介质的距离和速度上的变化、或距离和速度上的变化的组合来调节超声能量波的重复率。

依赖于能量波、或能量脉冲内的能量波的传播的测量方法可以要求在指定位置处、或在指定条件下检测能量波的特定点,以便使得能够捕获以下参数,这些参数包括但不限于这些能量波的渡越时间、相位或频率。对单独超声波导的物理长度上的变化的测量可以若干种模式来进行。一个或两个超声共振器或换能器连同超声波导的每个组装件可以被控制来以六种不同的模式来操作。这包括:两种波形状模式:连续波或脉冲波,以及三种传播模式:超声波的反射、单向传播以及双向传播。这些测量的分辨率可以进一步通过对测量数据的先进处理来增强,以便使得能够最优化测量分辨率与波导的长度、超声波的频率以及感测与数据捕获操作的带宽之间的权衡,从而达到感测模块或装置的最优操作点。

由传播调谐振荡器404和感测组装件401进行的测量实现高灵敏度和高信噪比。基于时间的测量在很大程度上对于可能会影响电压或电流驱动的感测方法和装置的大多数误差源不敏感。所得操作的渡越时间上的变化对应于可以快速测得的频率,并且具有高分辨率。这实现了所要求的测量准确度和精度,从而捕获所感兴趣的物理参数上的变化并且使得能够分析它们的动态和静态行为。

这些测量可以通过集成无线感测模块或装置来实现,该集成无线感测模块或装置具有:封装结构,该封装结构支撑传感器和承载表面或接触表面;以及电子组装件,该电子组装件集成电源、感测元件、一个或多个能量换能器和一个或多个弹性能量传播结构、一个或多个偏置弹簧或其他形式的弹性构件、一个加速度计、多根天线以及电子电路,该电子电路处理测量数据并且控制超声生成、传播以及检测和无线通信的所有操作。该电子组装件还支持可测试性和校准特征,这些可测试性和校准特征保证完整的无线感测模块或装置的质量、准确度以及可靠性。

由能量换能器和与传播调谐振荡器的电子部件联接的一个或多个能量传播结构的集成实现的准确度和分辨率的水平使得能够构建(但不限于)用于监测或测量所感兴趣的参数的紧凑的超低功率模块或装置。在广泛范围的尺寸内构建感测模块或装置的灵活性使得感测模块能够被定制成配合广泛范围的应用,以使得该感测模块或装置可以接合或放置、附接或固定到身体、仪器、器具、车辆、设备、或其他物理系统之上或之内并且监测或收集关于所感兴趣的物理参数的数据,而不会干扰该身体、仪器、器具、车辆、设备、或物理系统的操作。

参照图17,示出根据示例性实施例的用于高精度处理和测量数据的方法步骤的简化流程图1700。方法1700可以通过多于或少于所示步骤来实践,并且不限于所示的步骤顺序。这些方法步骤对应于有待通过上文提及的部件或适合于这种处理的任何其他部件(例如,用于控制能量脉冲或波的发射并且用于捕获这些能量脉冲的重复率或传播穿过弹性能量传播结构或介质的能量波的频率的电子电路)来实践的图4。

在步骤1702中,该过程开始测量操作。在步骤1704中,通过重设数字计时器422和数据寄存器424来确立已知状态。在步骤1706中,将数字计数器420预设为测量周期的数量,在这些测量周期内将取得并收集测量值。在步骤1708中,开始该测量周期并且能够进行数字时钟426的时钟输出。来自数字时钟426的时钟信号被提供给数字计数器420和数字计时器422二者。由数字计时器420基于由数字时钟426输出的时钟信号的频率对经过时间进行计数。在步骤1710中,数字计时器422开始追踪经过时间。同时,数字计数器420开始在每个测量序列后递减计数。在一个实施例中,在每个能量波传播穿过波导403并由换能器406检测到时,数字计数器420递减。数字计数器420递减计数,直到已经完成预设数量的测量周期。在步骤1712中,在数字计数器420在检测到所传播的能量波时递减时,由传播调谐振荡器404持续能量波传播。在步骤1714中,当数字计数器420中的计数大于零时,能量波检测、发射以及传播继续进行。在步骤1716中,在数字计数器420上达到零计数时,禁用数字计时器422的时钟输入,从而防止数字计数器420和数字计时器422被记时。在一个实施例中,提供给数字计数器420的测量周期的预设数量除以由数字计时器422测量的经过时间,从而计算出所传播的能量波的频率。相反,可以通过来自数字计时器422的经过时间除以测量周期的预设数量来计算出数字作为渡越时间。最终,在步骤1718中,将所得值传输至寄存器424。可以将数据寄存器424中的数字无线地发送给显示器和数据库。可以使来自数据寄存器424的数据与正测量的参数相关。参数(如力或负载)被施加到传播介质(例如,波导403),以使得参数变化也改变测量的频率或渡越时间计算。传播介质的材料特性与参数之间的关系与测量值(例如,频率、渡越时间、相位)一起使用来计算参数值。

由图4的示例性组装件、并且通过数字计数器420、数字计时器422、数字时钟426以及相关联的电子电路实践的方法1700根据操作点条件分析数字化测量数据。具体来说,这些部件累加多个数字化数据值以提高弹性能量传播结构或介质的长度变化的测量分辨率水平,或提高可以改变能量脉冲或波在该弹性能量传播结构或介质内传播的渡越时间的其他方面上的变化的测量分辨率水平。通过控制数字计数器420运行多个测量周期来对数字化数据进行求和,每个周期均具有多个励磁和渡越阶段,这样使得在多个连续测量周期之间不存在滞后并且捕获总经过时间。计数器的大小被确定成对多达实现所要求的分辨率而不溢出该计数器的累加能力并且不损害计数器最低有效位的分辨率所要求的测量周期的总经过时间进行计数。随后总经过渡越时间的数字化测量值除以测量周期的数量,以便估计这些单独测量周期的时间并且由此估计励磁、穿过弹性能量传播结构或介质的传播、以及能量脉冲或波的检测的单独周期的渡越时间。在用于能量脉冲或波的激励和检测的经过时间固定时,捕获这些能量脉冲或波穿过弹性能量传播结构或介质的渡越时间上的变化的准确估计值。

在除法之前对单独测量值进行求和以估计平均测量值数据值比对相同数量的样本求平均产生更优良的结果。从数字计数器收集的计数数据的分辨率是由计数器中的最低有效位来限制。捕获一系列计数并对它们求平均不会产生比这个最低有效位(也就是说,单个计数的精度)更大的精度。如果在单独测量值之间存在随机变动,那么求平均确实降低最终估计值的随机性。对大量测量周期的计数求和以便获得累计计数、随后计算整个测量间隔内的平均值通过内插小于计数器的最低有效位的测量值分量来提高测量值的精度。由这个程序获得的精度大约是计数器的最低有效位的分辨率除以测量周期的总计数量。

数字计数器的大小和累加的测量周期的数量可以大于所要求的分辨率水平。这不仅保证实现所要求分辨率水平的性能,而且对单独计数内的随机分量求平均,从而产生可靠地满足所要求分辨率水平的高度可重复测量值。

测量周期的数量大于所要求的分辨率水平。这不仅保证实现所要求分辨率水平的性能,而且对单独计数内的任何随机分量求平均,从而产生可靠地满足所要求分辨率水平的高度可重复测量值。

图5是根据一个示例性实施例将零交叉接收器200接合在连续波复用安排中以用于维持正闭环反馈的传感器接口图。正闭环反馈是由粗线路径示出。最初,复用器(mux)502接收被传递给换能器驱动器506以产生驱动线路信号508的时钟信号504作为输入。模拟复用器(mux)510接收被传递给发送器换能器512以产生能量波514的驱动线路信号508。换能器512位于一能量传播介质的第一位置处。所发射的能量波514传播穿过该能量传播介质。接收器换能器516位于该能量传播介质的第二位置处。接收器换能器516捕获这些能量波514,这些能量波被馈送到模拟复用器520并被传递给零交叉接收器200。由换能器516捕获的能量波是由提供给复用器520的电波518来指示。零交叉接收器200输出对应于从所捕获电波518中检测到的每个零交叉的脉冲。这些零交叉被计数并用于确定传播穿过能量传播介质的这些能量波的相位和频率上的变化。在非限制性实例中,参数(如施加的力)是通过使所测得的相位和频率与该参数(例如,力)跟能量传播介质的材料特性之间的已知关系相关来测得。总体上,脉冲序列522对应于所检测的信号频率。零交叉接收器200处于传播调谐振荡器的反馈路径中。脉冲序列522在正闭环反馈路径中通过复用器502被耦合。脉冲序列522禁用时钟信号504,以使得提供脉冲序列522的路径被联接到驱动器506上以继续将能量波发射到能量传播介质中并且禁用时钟信号504到驱动器506的路径。

图6是用于以连续波模式操作的结合有零交叉接收器640的传播调谐振荡器(pto)的示例性框图。具体来说,相对于图4,该图示出通过传播调谐振荡器416的操作对超声波414在波导408内的渡越时间412进行的闭环测量。此实例是用于以连续波模式来操作。该系统还能够以脉冲模式和脉冲回波模式来操作。脉冲模式和脉冲回波模式使用脉冲能量波。脉冲回波模式使用反射来在能量传播介质内引导能量波。简言之,数字逻辑电路646将传播调谐振荡器的操作频率数字化。

在连续波操作模式下,包括换能器604、传播结构602以及换能器606的传感器用于测量参数。总体上,有待测量的参数影响传播介质的特性。例如,外力或条件612被施加到传播结构602,从而改变传播能量波的路径中的波导的长度。长度上的变化对应于传播波的渡越时间608上的变化。类似地,传播结构602的长度对应于施加的力612。长度减小对应于施加到传播结构602的较高的力。相反,长度增大对应于施加到传播结构602的力612的下降。传播结构602的长度被测量并通过已知的长度与力的关系转换成力。

换能器604是处于连续波模式的发射装置。用于测量参数的传感器包括联接到传播结构602的第一位置处的换能器604。换能器606被联接到传播结构602的第二位置处。换能器606是用于捕获传播能量波的接收换能器。在一个实施例中,所捕获的所传播的能量波是由换能器606输出的正弦电波634。

当控制电路618闭合将振荡器622的振荡器输出端624联接到放大器626的输入端上的开关620时,测量序列被发起。提供给放大器626的一个或多个脉冲启动使具有简单或复杂波形的能量波610传播穿过能量传播结构或介质602的动作。放大器626包括数字驱动器628和匹配网络630。在一个实施例中,放大器626将振荡器622的振荡器输出转变成电波的正弦波632,这些正弦波具有与振荡器输出端624相同的重复率和足以激励换能器604的振幅。

发射换能器604将正弦波632转换成具有相同频率的能量波610,并在第一位置处将它们发射到能量传播结构或介质602中。这些能量波610传播穿过该能量传播结构或介质602。在到达第二位置处的换能器606时,能量波610被捕获、感测或检测。所捕获的能量波是由换能器606转换成正弦波634,这些正弦波是具有相同频率的电波。

放大器636包括前置放大器634和零交叉接收器640。放大器636将正弦波634转换成具有足以持续闭环电路的行为的持续时间的数字脉冲642。控制电路618通过断开开关620和闭合开关644来对来自放大器636的数字脉冲642作出响应。断开开关620使振荡器输出端624与放大器626的输入端去耦。闭合开关644造成闭环电路,该闭环电路使放大器636的输出端联接到放大器626的输入端上并持续穿过能量传播结构或介质602的能量波的发射、传播以及检测。

通过在这条闭环电路周围维持单位增益来获得平衡状态,其中输入到换能器604中的正弦波632和由换能器606输出的正弦波634是同相的,具有较小但恒定的偏移。如上所披露,换能器606在检测到传播到第二位置的能量波时,输出正弦波634。在该平衡状态下,整数数量的能量波610传播穿过能量传播结构或介质602。

能量传播结构或介质602的移动或物理特性上的变化改变能量波610的渡越时间608。渡越时间608包括能量波从传播结构602的第一位置传播到第二位置的时间。因此,传播结构602的物理特性上的变化造成能量波610在能量传播结构或介质602内的相应时间间隔变化。能量波610的时间间隔上的这些变化改变闭环电路的平衡点和该闭环电路的操作频率。闭环电路进行调整以使得正弦波632和634对应于新的平衡点。正弦波610的频率和频率的变化与能量传播结构或介质602的物理属性上的变化相关。

可以通过外力或条件612将物理变化强加在能量传播结构602上,由此将一个或多个所感兴趣的参数的水平和变化转化成可以被数字化以用于随后处理、存储、以及显示的信号。操作频率转化成数字二进制数促进了关于所感兴趣的物理参数的水平和变化的信息的传达、另外的处理、存储、以及显示。类似地,能量波610在闭环电路操作过程中的频率、以及在此频率下的变化可以用于测量能量传播结构或介质602的移动或物理属性上的变化。

在频率的测量或传播调谐振荡器的操作之前,控制逻辑618将存储在计数寄存器648中的循环计数加载到数字计数器650中。第一数字脉冲642在传播调谐振荡器和信号控制电路618内发起闭环操作以开始测量操作。在开始闭环操作时,控制逻辑618启用数字计数器650和数字计时器652。在一个实施例中,数字计数器650在由零交叉接收器640输出的每个数字脉冲的上升沿上递减其值。数字计时器652在时钟脉冲656的每个上升沿上递增其值。当数字脉冲642的数量使数字计数器650内的值递减至零时,从数字计数器650输出停止信号。该停止信号禁用数字计时器652并触发控制电路618以输出加载命令给数据寄存器654。数据寄存器654加载来自数字计时器652的二进制数,该二进制数等于能量波或脉冲的间隔乘以计数器648中的值除以时钟间隔656。在具有恒定时钟间隔656的情况下,数据寄存器654中的值是与在测量操作过程中累加的能量波或脉冲的合计间隔成正比的。测量操作的持续时间和测量分辨率可以通过增大或减小计数寄存器648中所预设的值来调整。

图7是根据一个示例性实施例将集成零交叉接收器200结合在脉冲复用安排中以用于维持正闭环反馈的传感器接口图。在一个实施例中,除传感器之外的电路也是集成在专用集成电路(asic)上。正闭环反馈是由粗线路径示出。最初,复用器702被启用来将一个或多个数字脉冲704耦合到换能器驱动器706。换能器驱动器706生成对应于数字脉冲704的脉冲序列708。模拟复用器710被启用来将脉冲序列708耦合到发送器换能器712上。换能器712被联接到介质的第一位置处。换能器712对脉冲序列708作出响应并生成在第一位置处被发射到介质中的相应能量脉冲714。这些能量脉冲714传播穿过介质。接收器换能器716位于介质的第二位置处。接收器换能器716捕获这些能量脉冲714并生成电脉冲718的相应信号。换能器716被联接到复用器720上。复用器720被启用来联接到零交叉接收器200上。来自换能器716的电脉冲718被耦合到零交叉接收器200。零交叉接收器200对电脉冲718的零交叉进行计数以确定这些能量脉冲的相位和频率上响应于施加的力的变化,如先前所解释。零交叉接收器200输出对应于所检测的信号频率的脉冲序列722。脉冲序列722被耦合到复用器702。在检测到脉冲722时,复用器702被去耦以免将数字脉冲704联接至驱动器706。相反,在检测到脉冲722时,复用器702被启用来将脉冲722耦合到驱动器706,从而形成正闭环反馈路径。因此,在脉冲模式下,零交叉接收器200是闭环反馈路径的部分,继续在第一位置处将能量脉冲发射到介质中,并且在第二位置进行检测以测量脉冲穿过介质的渡越时间和渡越时间上的变化。

图8是用于以脉冲模式操作的结合有零交叉接收器640的传播调谐振荡器(pto)的示例性框图。具体来说,相对于图4,该图示出通过传播调谐振荡器416的操作对超声波414在波导408内的渡越时间412进行的闭环测量。此实例是用于以脉冲模式操作。该系统还能够以连续波模式和脉冲回波模式来操作。连续波模式使用一种连续波信号。脉冲回波模式使用反射来在能量传播介质内引导能量波。简言之,数字逻辑电路646将传播调谐振荡器的操作频率数字化。

在脉冲操作模式下,包括换能器604、传播结构602以及换能器606的传感器用于测量参数。总体上,有待测量的参数影响传播介质的特性。例如,外力或条件612被施加到传播结构602,从而改变传播能量波的路径中的波导的长度。长度上的变化对应于传播波的渡越时间608上的变化。传播结构602的长度被测量并通过已知的长度与力的关系转换成力。脉冲操作模式的一个益处是使用高幅值脉冲能量波。在一个实施例中,能量波的幅值在该能量波传播穿过介质时衰减。如果能量波必须横越相当大的距离或在该能量波在被传播时由于介质而遭受在幅值上的减小,那么使用高幅值脉冲是用于产生可检测信号的功率高效的方法。

当控制电路618闭合将振荡器622的振荡器输出端624联接到放大器626的输入端上的开关620时,测量序列被发起。提供给放大器626的一个或多个脉冲启动使具有简单或复杂波形的能量波610传播穿过能量传播结构或介质602的动作。放大器626包括数字驱动器628和匹配网络630。在一个实施例中,放大器626将振荡器622的振荡器输出转变成电波的模拟脉冲832,这些模拟脉冲具有与振荡器输出端624相同的重复率和足以激励换能器604的振幅。

发射换能器604将模拟脉冲832转换成具有相同频率的能量波610并在第一位置处将它们发射到能量传播结构或介质602中。这些能量波610传播穿过能量传播结构或介质602。在到达第二位置处的换能器606时,能量波610被捕获、感测或检测。所捕获的能量波是由换能器606转换成模拟脉冲834,这些模拟脉冲具有相同频率的电波。

放大器636包括前置放大器638和零交叉接收器640。放大器636将模拟脉冲834转换成具有足以持续闭环电路的行为的持续时间的数字脉冲642。控制电路618通过断开开关620和闭合开关644来对来自放大器636的数字脉冲642作出响应。断开开关620使振荡器输出端624与放大器626的输入端去耦。闭合开关644造成闭环电路,该闭环电路使放大器636的输出端联接到放大器626的输入端上并持续穿过能量传播结构或介质602的能量波的发射、传播以及检测。

平衡状态是通过在这条闭环电路周围维持单位增益来获得,其中输入到换能器604中的脉冲832和由换能器606输出的脉冲834是同相的,具有较小但恒定的偏移。如上所披露,换能器606在检测到传播到第二位置的能量波时,输出脉冲834。在该平衡状态下,整数数量的能量波610传播穿过能量传播结构或介质602。

能量传播结构或介质602的移动或物理特性上的变化改变能量波610的渡越时间608。渡越时间608包括能量波从传播结构602的第一位置传播到第二位置的时间。因此,传播结构602的物理特性上的变化造成能量波610在能量传播结构或介质602内的相应时间间隔变化。能量波610的时间间隔上的这些变化改变闭环电路的平衡点和该闭环电路的操作频率。闭环电路进行调整以使得脉冲832和834对应于新的平衡点。正弦波610的频率和频率的变化与能量传播结构或介质602的物理属性上的变化相关。

可以通过外力或条件612将物理变化强加在能量传播结构602上,由此将一个或多个所感兴趣的参数的水平和变化转化成可以被数字化以用于随后处理、存储、以及显示的信号。操作频率转化成数字二进制数促进了关于所感兴趣的物理参数的水平和变化的信息的传达、另外的处理、存储、以及显示,如上文中更详细地披露。类似地,能量波610在闭环电路操作过程中的频率、以及在此频率下的变化可以用于测量能量传播结构或介质602的移动或物理属性上的变化。

图9示出根据示例性实施例的边沿检测接收器电路900的框图。在第一实施例中,边沿检测接收器900被提供来检测能量波的脉冲的波前。这使得能够捕获多个参数,这些参数包括但不限于能量波的渡越时间、相位或频率。该集成边沿检测接收器900的电路提供快速开始(on-set)检测并且迅速地对能量脉冲的到达作出响应。此后,该集成边沿检测接收器可靠地在每个所捕获的能量脉冲或脉冲能量波的初始波前上的同一点处触发数字输出脉冲。该数字脉冲可以按最优方式被配置为以最小且恒定的延迟进行输出。边沿检测接收器900可以在存在干扰和失真信号的情况下孤立和精确地检测初始能量波或波前上的指定点,从而克服通常与检测能量传播介质中的多个所生成的复信号之一相关联的问题。边沿检测接收器900在包括非常低水平的能量脉冲的广泛范围的振幅内准确地执行这些功能。

在第二实施例中,边沿检测接收器900被结合在传播调谐振荡器(pto)内,以便在以脉冲模式或脉冲回路模式进行操作时维持正闭环反馈。边沿检测接收器900可以通过复用输入和输出电路与pto的其他电路集成,以实现超低功率和小型紧凑尺寸。pto的电路与边沿检测接收器的集成提供增大对低水平信号的灵敏度的益处。

该框图示出在低信号水平下具有优越性能的低功率边沿检测接收器电路900的一个实施例。边沿检测接收器900包括前置放大器912、微分器914、数字脉冲电路916以及去消隐电路(deblankcircuit)918。边沿检测接收器电路900可以离散模拟分量、数字分量或其组合来实现。在一个实施例中,边沿检测接收器900被集成到asic中,作为下文所述传感器系统的部分。边沿检测接收器电路900实践在指定位置处并且在指定条件下检测能量脉冲或脉冲能量波的测量方法,以使得能够捕获以下参数,这些参数包括但不限于能量脉冲的渡越时间、相位、频率或振幅。对操作方法的简要说明如下。在非限制性实例中,前置放大器响应于输入信号的斜率上的小变化而触发比较器电路。比较器和其他边沿检测电路以最小延迟快速地作出响应。输入信号上的小变化的检测保证快速检测到能量波的脉冲的到达。最小相位设计减少外来延迟,从而将较少变动引入到对进入能量脉冲的渡越时间、相位、频率或振幅的测量中。

边沿检测接收器900的输入端920被联接到前置放大器912上。作为实例,到边沿检测接收器电路900的进入波910可以是从电连接件、天线或换能器接收的。进入波910是由前置放大器912来放大,该前置放大器保证对小信号的充分灵敏度。微分器电路914监测前置放大器912的输出,并且每当检测到对应于脉冲能量波的信号变化时就触发数字脉冲电路916。例如,识别脉冲能量波的信号变化是该脉冲能量波的初始波前或前沿。在一个安排中,微分器914通过检测电流上的小变化而不是测量电压水平上的变化以实现对斜率的快速检测来检测电流,且更确切地说,检测能量波910的斜率上的变化。可替代地,微分器914可以被实现成在电压发生变化时触发。共同地,前置放大器912和微分器916针对一个或多个能量波910的波前的到达监测静态输入电流。前置放大器912和微分器916检测能量波的低水平脉冲以及能量波的较大脉冲的到达。这种检测方法实现对于非常低水平信号的优越性能。每当检测到由进入波910的初始信号斜坡驱动的电流时,微分器电路912就触发数字脉冲电路916。数字脉冲被耦合到使前置放大器912降低灵敏度的去消隐电路918上。例如,前置放大器912的降敏作用可以包括增益上的减小、输入端920与能量波910去耦、或改变频率响应。去消隐电路918还忽略电压或电流水平,持续指定或预先确定的持续时间,以便有效地跳过干扰段或能量波910的失真部分。总体上,能量波910在斜率上可以包括超过一个变化并且典型地是阻尼波形式。前置放大器912的输入端920上的脉冲能量波的另外的信号或波并不在预设消隐间隔过程中进行处理。在此实例中,数字输出脉冲928随后可以被耦,合到信号处理电路,如下文所解释。在一个实施例中,这些电子部件作为区块被可操作地联接集成电路内。如将在之后所示,这种集成安排用最少数量的部件来有效地执行其特定功能。这是因为这些电路部件被划分在集成电路内的结构与离散部件之间,并且模拟和数字的创新划分起作用,以便以最少数量的部件和最低功率消耗来实现所要求的性能。

图10示出联接到感测组件1000上的边沿检测接收器电路900的框图。示出前置放大器912和数字脉冲电路916以供参考和讨论。感测组件1000包括发送器换能器1002、能量传播介质1004以及接收器换能器1006。发送器换能器1002被联接到传播介质1004的第一位置处。接收器换能器1006被联接到能量传播介质1004的第二位置处。可替代地,反射表面可以代替接收器换能器1006。该反射表面朝向该第一位置反射能量波。换能器1006可以被启用以成为发送换能器和接收换能器,从而节约换能器的成本。如将在之后进一步详细解释,在一个实施例中,感测组件1000是评估负载(具体来说,该感测组件1000上的外部施加力1008)的传感装置的部分。换能器驱动电路(未示出)驱动感测组件1000的发送器换能器1002产生被引导进入能量传播介质1004中的能量波1010。在该非限制性实例中,能量传播介质1004由于外部施加力1008而引起的变化改变从能量传播介质1004的第一位置传播到第二位置的能量波1010的频率、相位以及渡越时间1012。集成边沿检测接收器电路900被联接到接收器换能器1006上来检测再生能量波910的边缘并触发数字脉冲928。总体上,数字脉冲928的定时(timing)输送与能量传播结构1004的因外部参数而引起的变化有关的所感兴趣的参数(例如,距离、力、重量、应变、压力、磨损、振动、粘度、密度、方向、位移等)。例如,感测组件1000被放置在如上所述的膝关节中。

依赖于能量脉冲的传播的测量方法要求在指定位置处或在指定条件下检测能量脉冲,以便使得能够捕获参数,这些参数包括但不限于这些能量脉冲的渡越时间、相位、频率或振幅。依赖于能量波1010或能量波脉冲的这种传播的测量方法是实现对能量波或脉冲进行高度准确且受控的检测所要求的。此外,能量波脉冲可能含有其中具有复杂波形的多个能量波,从而导致检测的潜在的模糊性。具体来说,将能量波1010引导到能量传播结构1004中可以生成由于波导的无效和共振、以及所生成的能量波1010的特性而引起的干涉图案。这些干涉图案可以生成导致原始能量波的边缘失真的多绕组励磁波形。为了可靠地检测能量波的脉冲的到达,边沿检测接收器900仅对每个脉冲内的第一能量波的前沿作出响应。这部分地通过使边沿检测电路900消隐持续每个能量脉冲的持续时间来实现。作为实例,去消隐(deblank)电路918忽略电压或电流水平,持续指定的持续时间,以便有效地跳过干扰段或波形的失真部分。

图11是根据一个示例性实施例将边沿检测接收器电路900结合在脉冲回波复用安排中以用于维持正闭环反馈的传感器接口图。正闭环反馈是由粗线路径示出。最初,复用器(mux)1102接收被传递给换能器驱动器1106以产生脉冲序列1108的数字脉冲1104作为输入。模拟复用器(mux)1110接收被传递给换能器1112以产生能量脉冲1114的脉冲序列1108。能量脉冲1114被发射到介质的第一位置中并且传播穿过该介质。在该脉冲回波实例中,能量脉冲1114被反射离开该介质的第二位置(例如,波导或反射器的末端)处的表面1116,并被回送回到换能器1112。换能器1112随后开始捕获所反射的脉冲回波。在脉冲回波模式下,换能器1112既作为发送器又作为接收器执行。如上所披露,换能器1112在发射能量波与接收能量波之间来回切换。换能器1112捕获所反射的回波脉冲,这些回波脉冲被耦合到模拟复用器1110并被引导至边沿检测接收器900。所捕获的反射回波脉冲是由电波1120指示。边沿检测接收器900锁定在对应于所传播的能量波的波前的脉冲边缘上,以便确定能量脉冲1114的相位和频率上响应于施加的力的变化,如先前所解释。除了其他参数,该边沿检测接收器生成对应于所检测的信号频率的脉冲序列1118。脉冲序列1118被耦合到复用器1102并被引导至驱动器1106以发起正由换能器1112发射到介质中的一个或多个能量波。脉冲1104被去耦以免被提供给驱动器1106。因此,形成正闭环反馈,该正闭环反馈可重复地将能量波发射到介质中,直到复用器1102阻止信号被提供给驱动器1106。边沿检测接收器900被联接到介质的第二位置上并且处于反馈路径中。当反馈路径闭合时,当在第二位置处检测到波前时,边沿检测接收器900发起在该介质的第一位置处被提供的脉冲能量波。

图12是结合有边沿检测接收器电路900的用于以脉冲回波模式操作的传播调谐振荡器(pto)的示例性框图。具体来说,相对于图4,图12示出通过传播调谐振荡器416的操作对超声波414在波导408内的渡越时间412进行的闭环测量。此实例是用于以脉冲回波模式操作。该系统还能够以脉冲模式和连续波模式来操作。脉冲模式并不使用反射信号。连续波模式使用连续信号。简言之,数字逻辑电路1246将传播调谐振荡器的操作频率数字化。

在脉冲回波操作模式下,包括换能器1204、传播结构1202以及反射表面1206的传感器用于测量参数。总体上,有待测量的参数影响传播介质的特性。例如,外力或条件1212被施加到传播结构1202,从而改变传播能量波的路径中的波导的长度。长度上的变化对应于传播波的渡越时间上的变化。类似地,传播结构1202的长度对应于施加的力1212。长度减小对应于施加到传播结构1202的较高的力。相反,长度增大对应于施加到传播结构1202的力1212的下降。传播结构1202的长度被测量并通过已知的长度与力的关系转换成力。

换能器1204在脉冲回波模式下既是发射装置又是接收装置。用于测量参数的传感器包括联接到传播结构1202的第一位置处的换能器1204。反射表面被联接到传播结构1202的第二位置处。换能器1204具有两种操作模式,包括发射模式和接收模式。换能器1204在发射模式下在第一位置处将能量波发射到传播结构1202中。能量波传播到第二位置并由反射表面1206反射。所反射的能量波被反射朝向第一位置,并且换能器1204随后在接收模式下生成对应于所反射的能量波的信号。

当控制电路1218闭合将振荡器1222的数字输出端1224联接到放大器1226的输入端上的开关1220时,测量序列在脉冲回波模式下被发起。提供给放大器1226的一个或多个脉冲起动将具有简单或复杂波形的能量波1210发射到能量传播结构或介质1202中的过程。放大器1226包括数字驱动器1228和匹配网络1230。在一个实施例中,放大器1226将振荡器1222的数字输出转变成电波的脉冲1232,这些脉冲具有与数字输出端1224相同的重复率和足以激励换能器1204的振幅。

换能器1204将电波的脉冲1232转换成具有相同重复率的能量波1210的脉冲,并将它们发射到能量传播结构或介质1202中。能量波1210的脉冲传播穿过能量传播结构或介质1202,如由朝向反射表面1206的箭头1214所示。在到达反射表面1206时,能量波1210被反射表面1206反射。所反射的能量波朝向换能器1204传播,如由箭头1216所示。所反射的能量波由换能器1204检测到并被转换成具有相同重复率的电波的脉冲1234。

放大器1236包括前置放大器1234和边沿检测接收器1240。放大器1236将电波的脉冲1234转换成具有足以持续闭环电路的脉冲行为的持续时间的数字脉冲1242。控制电路1218通过断开开关1220和闭合开关1244来对来自放大器1236的数字输出脉冲1242作出响应。断开开关1220使振荡器输出端1224与放大器1226的输入端去耦。闭合开关1244造成闭环电路,该闭环电路使放大器1236的输出端联接到放大器1226的输入端上并持续穿过能量传播结构或介质1202的能量脉冲的发射、传播、以及检测。

通过在这条闭环电路周围维持单位增益来获得平衡状态,其中输入到换能器1204中的电波1232和由换能器1204输出的电波1234是同相的,具有较小但恒定的偏移。如上所披露,换能器1204在检测到从反射表面1206反射的所反射的能量波时,输出电波1234。在该平衡状态下,整数数量的能量波1210的脉冲传播穿过能量传播结构或介质1202。

能量传播结构或介质1202的移动或物理特性上的变化改变能量波1210的渡越时间1208。渡越时间1208包括能量波从传播结构1202的第一位置传播到第二位置的时间和所反射的能量波从传播结构1202的第二位置传播到第一位置的时间。因此,传播结构1202的物理特性上的变化造成能量波1210在能量传播结构或介质1202内的相应时间间隔变化。能量脉冲1210的重复率的时间间隔上的这些变化改变闭环电路的平衡点和该闭环电路的操作重复率。闭环电路进行调整以使得电波1232和1234对应于新的平衡点。能量波1210的重复率和重复率的变化与能量传播结构或介质1202的物理属性上的变化相关。

可以通过外力或条件1212将物理变化强加在能量传播结构1202上,由此将一个或多个所感兴趣的参数的水平和变化转化成可以被数字化以用于随后处理、存储、以及显示的信号。操作频率转化成数字二进制数促进了关于所感兴趣的物理参数的水平和变化的信息的传达、另外的处理、存储、以及显示。类似地,能量波1210在闭环电路操作过程中的频率、以及在此频率下的变化可以用于测量能量传播结构或介质1202的移动或物理属性上的变化。

在频率的测量或传播调谐振荡器的操作之前,控制逻辑1218将存储在计数寄存器1248中的循环计数加载到数字计数器1250中。第一数字脉冲1242在传播调谐振荡器和信号控制电路1218内发起闭环操作以开始测量操作。在开始闭环操作时,控制逻辑1218启用数字计数器1250和数字计时器1252。在一个实施例中,数字计数器1250在由边沿检测接收器1240输出的每个数字脉冲的上升沿上递减其值。数字计时器1252在时钟脉冲1256的每个上升沿上递增其值。当数字脉冲1242的数量使数字计数器1250内的值递减至零时,从数字计数器1250输出停止信号。该停止信号禁用数字计时器1252并触发控制电路1218以输出加载命令给数据寄存器1254。数据寄存器1254加载来自数字计时器1252的二进制数,该二进制数等于能量波或脉冲的间隔乘以计数器1248中的值除以时钟间隔1256。在具有恒定时钟间隔1256的情况下,数据寄存器1254中的值是与在测量操作过程中累加的能量波或脉冲的合计间隔成正比的。测量操作的持续时间和测量分辨率可以通过增大或减小计数寄存器1248中所预设的值来调整。

图13是根据示例性实施例的感测模块1301的简化截面视图。感测模块(或组装件)是包括电部件和机械部件的机电组件,该机电组件在根据感测模式配置和操作时,作为正反馈闭环测量系统执行。该测量系统可以精确地测量机电组件上的施加的力,如负载。该感测模式可以是连续模式、脉冲模式、或脉冲回波模式。

在一个实施例中,这些电部件可以包括超声共振器或换能器405和406、超声波导403、以及信号处理电子器件1310,但不限于这些。这些机械部件可以包括偏置弹簧1332、弹簧保持件和支柱、以及负载平台1306,但不限于这些。这些电部件和机械部件可以被交互组装(或集成)到印刷电路板1336上,以便作为相干超声波测量系统在感测模块1301内并根据感测模式操作。如将在之后更详细解释,信号处理电子器件结合有传播调谐振荡器(pto)或锁相环路(pll)来控制超声共振器或换能器的操作频率,以便提供高精度感测。此外,信号处理电子器件结合有检测电路,该检测电路在能量波已传播穿过介质后始终检测该能量波。该检测通过联接到介质上以便传播穿过该介质的超声共振器或换能器发起新的能量波的生成。能量波穿过介质的渡越时间上的变化被测量,并且与该介质的因施加到其上的一个或多个参数而引起的材料属性上的变化相关。

感测模块1301包括一个或多个组装件401,这些组装件各自包括一个或多个超声共振器或换能器405和406。如所示,波导403被联接在一个或多个超声共振器或换能器405和406之间并被固定到承载表面或接触表面408上。在一个示例性实施例中,超声信号被耦合以用于传播穿过波导403。感测模块1301被放置、附接、或固定到身体、仪器或其他物理系统1318之上或之内,所述物理系统具有与感测模块401的承载表面或接触表面408相接触的一个或多个构件1316。这个安排促进将所感兴趣的参数转化成感测模块1301内的该一个或多个波导403的长度或压缩或伸展上的变化并且将这些长度上的变化转换成电信号。这促进捕获数据、测量所感兴趣的参数并将该数据数字化,并且随后通过天线1334将该数据传达至外部设备,其中对身体、仪器、器具、车辆、设备、或用于广泛范围的应用的物理系统1318的操作具有最小的干扰。

感测模块401支持能量波传播和测量的三种操作模式:反射、单向以及双向。这些模式可以在适当时用于每种单独应用。在单向和双向模式下,所选择的超声共振器或换能器被控制来将超声波的脉冲发射到超声波导中,并且一个或多个其他超声共振器或换能器被控制来在该声波导内的一个或多个指定位置处检测超声波的脉冲的传播。在反射或脉冲回波模式下,单个超声或换能器将超声波的脉冲发射到波导403中,并且随后在从该波导的所选择的特征或终端反射之后检测回波的脉冲。在脉冲回波模式下,这些脉冲的回波可以通过控制发射超声共振器或换能器在发射操作模式与检测操作模式之间交替的动作来进行检测。脉冲操作模式和脉冲回波操作模式可以要求在平衡状态下以在波导内传播的超过一个脉冲能量波进行操作。

物理系统或身体内的很多所感兴趣的参数可以通过评价能量脉冲的渡越时间上的变化来测量。频率(如由连续或不连续信号的平均间隔的倒数和能量脉冲的类型所定义)是由以下因素来确定:如测量的距离、信号在其中行进的介质、测量所要求的准确度、测量所要求的精度、将适用于系统的形状因子、功率限制、以及成本。一个或多个所感兴趣的物理参数可以包括但不限于负载、力、压力、位移、密度、粘度、局部温度的测量值。可以通过测量能量脉冲或波的传播时间上的变化,由定位在身体、仪器、器具、车辆、设备、或其他物理系统之上或之内的无线感测模块或装置来相对于取向、对准、方向、或位置以及沿一条轴线或多条轴线的组合的移动、旋转、或加速来对这些参数进行评价。

在非限制性实例中,超声能量的脉冲提供用于测量这些脉冲在波导403内的渡越时间的准确标记物。总体上,超声波信号是具有的频率高于人类听力范围(例如,>20khz)、包括深入兆赫范围内的频率的声信号。在一个实施例中,超声波能量脉冲的渡越时间上的变化对应于波导与先前状态在物理尺寸上的差异。例如,施加在膝关节上的力或压力将波导403压缩到新的长度并且改变能量脉冲的渡越时间。当集成为感测模块并且插入或联接到物理系统或身体上时,这些变化是与该系统或身体上的物理变化直接相关的并且可以作为压力或力容易地被测量出。

图14是根据示例性实施例的用于说明反射和单向操作模式的示例性组装件1400。该组装件包括一个或多个超声共振器或换能器(例如,超声共振器或换能器1402、1404、和1406)、一个或多个波导1414、以及一个或多个任选的反射表面1416。组装件1400示出在反射和单向操作模式下超声波1418在波导1414内的传播。超声共振器或换能器1402和1404中的任一个超声共振器或换能器结合一种或多种对接材料1408和1410(如果需要的话)可以被选择成将超声波1418发射到波导1414中。

在单向模式下,超声共振器或换能器1402和1404中的任一个超声共振器或换能器(例如,超声共振器或换能器1402)可以被启用来将超声波1418发射到波导1414中。非发射超声共振器或换能器1404被启用来检测由超声共振器或换能器1402发射的超声波1418。

在反射模式下,这些超声波1418是从波导1414的另一端处的表面、界面、或身体反射之后,由发射超声共振器或换能器1402来检测。在此模式下,超声共振器或换能器1402和1404中的任一个超声共振器或换能器可以被选择来发射和检测超声波。另外的反射特征1416可以被添加在波导结构内来反射超声波。这可以支持在单向模式和反射模式的组合下进行操作。在这种操作模式下,这些超声共振器或换能器1402和1404之一(例如,超声共振器或换能器1402)被控制来将超声波1418发射到波导1414中。另一个超声共振器或换能器1406被控制来继由发射超声共振器或换能器1402发射的超声波1418被反射特征1416反射之后,检测这些超声波。

图15是示例性组装件1500,说明超声波1510在这个组装件的双向操作模式下在波导1506内的传播。在此模式下,固定至对接材料1520和1522(如果需要的话)的两个单独的超声共振器(1502,1504)或换能器的角色的选择周期性地调换。在双向模式下,可以测量出超声波在波导1506内在任一方向上传播的渡越时间。这能够实现对多种应用中的多普勒效应的调整,在这些应用中,感测模块1508在处于运动1516中时操作。此外,通过捕获数据以用于计算调整值来抵消这个外部运动1516,这种操作模式帮助保证对施加的负载、力、压力、或位移的准确测量。在以下情况中提供优点,其中身体、仪器、器具、车辆、设备、或其他物理系统1514本身在负载、压力、或位移的感测过程中进行操作或移动。类似地,这种能力也可以在以下情况中进行校正,其中身体、仪器、器具、车辆、设备、或其他物理系统在负载、压力、或位移的感测过程中引起该身体、仪器、器具、车辆、设备、或其他物理系统的正被测量的部分1512处于运动1516中。考虑到对用于系统1514的物理变化的测量的其他调整并且能够以一种类似的方式进行补偿。例如,可以测量系统1514的温度,并且具有温度与渡越时间的关系的查找表或等式可以用于使测量值标准化。微分测量技术也可以用于消去本领域中为人所知的很多类型的公因子。

波导1506的使用使得能够使用标准部件和制造过程在广泛的尺寸范围内构建低成本感测模块和装置,包括高度紧凑的感测模块、用于生物医疗应用的一次性模块、以及装置。构建能够在广泛的尺寸范围内缩放的具有非常高水平的测量准确度、可重复性、以及分辨率的感测模块和装置的灵活性使得感测模块和装置能够被定制成配合并且收集关于一个或多个所感兴趣的物理参数的数据以用于广泛范围的医疗和非医疗应用。

例如,感测模块或装置可以被放置在广泛范围的物理系统(包括但不限于仪器、器具、车辆、设备或其他物理系统以及动物和人身体)之上或之内、或者附接或固定至该广泛范围的物理系统之上或之内,以用于实时地感测该一个或多个所感兴趣的参数,而不会干扰身体、仪器、器具、车辆、设备、或物理系统的操作。

除了非医疗应用之外,广泛范围的潜在医疗应用的实例可以包括但不限于:可植入装置,可植入装置内的模块,手术中植入物或试验插入物内的模块,被插入或摄入的装置内的模块,可佩戴装置内的模块,手持式装置内的模块,仪器、器具、设备、或所有这些的附件内的模块,或植入物、试验插入物、被插入或摄入的装置、可佩戴装置、手持式装置、仪器、器具、设备或这些装置、仪器、器具或设备的附件内的一次性用品。可以测量动物或人身体内的很多生理参数,这些生理参数包括但不限于:在遍及血管系统、淋巴系统、呼吸系统和消化系统的以及肌肉、骨、关节和软组织区域内的或影响肌肉、骨、关节和软组织区域的应用下,单独的关节内的负载、骨密度、移动、间隙液体的各种参数,这些间隙液体的参数包括但不限于粘度、压力、以及局部温度。例如,矫形应用可以包括但不限于承载假体部件;或者用于但不限于膝、髋、肩、肘、腕、踝以及脊柱的外科手术程序的临时或试验假体部件;任何其他矫形或肌肉骨骼植入物;或这些的任何组合。

图16是用于说明超声波1614的传播上的变化与波导1606的长度上的变化的传感器元件1600的示例性截面视图。总体上,对参数的测量是通过使位移与该参数有关来实现的。在一个实施例中,在整个测量范围内所要求的位移是以微米度量的。例如,外力1608压缩波导1606,从而改变波导1606的长度。感测电路(未示出)测量超声波信号在波导1606中的传播特性,以便确定波导1606的长度上的变化。这些长度上的变化与所感兴趣的参数成正比地改变,从而使得该一个或多个所感兴趣的参数上的变化能够转换成电信号。

如所示,外力1608压缩波导1606并且使换能器1602和1604移动,使彼此更靠近了距离1610。这使波导1606的在换能器1602与1604之间的波导传播路径的长度改变了距离1612。取决于操作模式,感测电路通过分析超声波在波导1606内的传播特性来测量该波导的长度上的变化。

对图16的一个阐释说明从波导1606的一端处的换能器1602发射并且传播至该波导1606的另一端处的换能器1604的波。该阐释包括波导1606的移动、和由此波在波导1606内传播的速度(在不改变单独波的形状或宽度的情况下)、以及因此在该波导的每一端处的换能器1602与1604之间的渡越时间的影响。该解释进一步包括对在相反方向上传播的波的相反影响,并被评价来估计波导的速度并且通过对在两个方向上传播的波的渡越时间求平均来除去该相反影响。

该一个或多个所感兴趣的参数上的变化是通过测量能量脉冲或波在传播介质内的渡越时间上的变化来测量的。对该一个或多个所感兴趣的参数上的变化的闭环测量是通过以下方式来实现的:根据弹性能量传播结构的传播特性来调节能量脉冲的重复率或能量波的频率。

在连续波操作模式下,相位检测器(未示出)对波导1606中的共振超声波的频率和频率上的变化作出评价。如下文将描述,在连续波(cw)模式下进行的正反馈闭环电路操作调整波导1606中的超声波1614的频率,以便在波导1606中维持相同数量或整数数量的间隔的超声波。cw操作持续进行,只要波导的长度的变化速率没有那么快速以使得在传播调谐振荡器(pto)的频率能够作出响应之前发生超过四分之一波长的变化。这种限制例示了pto与锁相环路(pll)的性能之间的一个有利差异。假设换能器正在以例如2.4mhz产生超声波,那么空气中的波长(假定速度为343微米每微秒)是约143μ,尽管与在不受限制的空气中相比,波导内的波长可能更长。

在脉冲操作模式下,相位检测器测量在由换能器1602发送超声波脉冲时与在换能器1604处接收该超声波脉冲之间的飞行时间(tof)。该飞行时间确定波导传播路径的长度,并且因此揭示波导1606的长度上的变化。在另一种安排中,微分飞行时间测量值(或相位差)可以用于确定波导1606的长度上的变化。脉冲由一个或多个波的脉冲组成。这些波可以具有相等的振幅和频率(方波脉冲)或它们可以具有不同的振幅,例如,衰减振幅(梯形脉冲)或某种其他复杂波形。pto正使传播穿过波导的脉冲的前沿的相位保持恒定。在脉冲模式操作下,pto通过边沿检测接收器而不是如在cw模式下所使用的零交叉接收器电路来检测每个脉冲的第一波的前沿。

图18示出根据示例性实施例的医疗感测系统1800的框图。该医疗感测系统类似于图4、图6、图8、以及图12中所述的系统进行操作以测量医疗参数。系统1800的传感器是电容器1802。电容器1802是随正被测量的医疗参数变化的可变电容器。电容器1802的电容值与参数的值相关。在第一实例中,正被测量的参数是温度。电容器1802的电容被耦合至有待测量的温度。电容器1802在“温度”下的电容可以由系统1800准确地测量并且反向关联到一个温度值。参数的另一个实例是力、压力、或负载。在一个实施例中,该力、压力、或负载可以被施加到电容器1802上。电容器1802在该“力、压力、或负载”下的电容是由系统1800测量并且反向关联到力、压力或负载值。在任一个实例中,电容将在参数测量范围内以已知的方式变化。总体上,电容在参数测量范围内的变化以常规的方式发生。参数系统1800内的电容变化的不规则性可以在参数测量范围内被校准,以便考虑到电容变化的任何不规则性,或以便进一步改善测量准确度。

系统1800包括电容器1802、信号发生器1804、数字时钟1806、数字计数器1808、数字计时器1810、计数寄存器1812以及数据寄存器1814。信号发生器1804被联接到电容器1802上并且具有用于提供信号的输出端。信号发生器1804生成对应于电容器1802的电容的信号1816或波形。信号1816随电容器1802的电容的改变而改变。例如,信号1816的测量周期的时间间隔可以与电容器1802的电容有关。

在一个实施例中,信号发生器1804是振荡器。数字时钟1806被联接到数字计数器1808和数字计时器1810上。数字时钟1806在测量序列过程中提供时钟信号给数字计数器1808和数字计时器1810。数字计数器1808联接到计数寄存器1812上并且联接到信号发生器1804的输出端上。计数寄存器1812提供对应于该测量序列的预先确定的计数。总体上,测量准确度可以通过增加预先确定的计数来提高。数字计数器1808接收来自计数寄存器1812的预先确定的计数。在发起测量序列后,数字计数器将信号发生器1804的输出端处的测量周期的数量与预先确定的计数进行比较。该测量序列在测量周期的计数等于预先确定的计数时结束。在一个实施例中,由信号发生器1804输出的每个测量周期使数字计数器1808递减,直到达到零计数,该零计数表示该测量序列结束。数字计时器1810测量该测量序列的时间间隔。换句话说,数字计时器1810测量信号发生器1804输出预先确定的计数的测量周期所要求的经过时间。数据寄存器1814联接到数字计时器1810上并且存储对应于测量序列的时间间隔或经过时间的值。测量序列的经过时间对应于电容器1802的在统计上大量的测量值。经过时间对应于预先确定的计数的测量周期的合计或电容测量值的合计。存储在数据寄存器1814中的值可以是经过时间到力、压力或负载值的转化。正被测量的参数应在测量序列的时间间隔过程中产生稳定的电容值。

图19示出根据示例性实施例的生成对应于电容器1802的信号的振荡器1900。振荡器1900对应于图18的信号发生器1804。振荡器1900是用于生成图18的信号1816的电路的实例。振荡器1900包括电流源1902、电流源1904、比较器1906、开关1908、开关1910、以及开关控制1912。电容器1802被联接到电流源1902和1904上。电流源1902和1904对应地提供电流和从电容器1802吸入电流。电流源1902提供电流i。电流源1904吸入电流2i或由电流源1902提供的电流的两倍。开关1910在联接到接地件上时,使得电流源1904能够吸入电流。比较器1906包括联接到电容器1802上的正输入端、联接到开关1908上的负输入端、以及输出端。比较器1906的输出端联接到开关控制1912上。开关控制1912联接到开关1908和1910上以控制开关位置。比较器1906的输出是开关控制1912的控制信号。

总体上,电流源1902和1904对应地对电容器1802进行充电和放电。电容器1802是在比较器1906的输出处于低状态下时由电流源1902充电。当比较器1906的输出过渡到低状态时,开关控制1912断开开关1910并且参考电压vref由开关1908耦合到比较器1906的负输入端。电容器1802上的电压在来自电流源1902的电流i对电容充电时升高。电容器上的电压变化的转换速率是与电容器1802的电容和电流i有关的。比较器1906的输出在电容器1802上的电压大于或等于参考电压vref时从低状态过渡到高状态。在比较器1906的输出过渡到高状态时,开关控制1912闭合开关1910并且参考电压vref/2由开关1908耦合到比较器1906的负输入端。电流源1904的吸入电流是2i或由电流源1902提供的电流的两倍大。电流源1904从电容器1802吸入电流i并从电流源1902吸入相等的电流。电容器1802上的电压在电荷被移除时下降。比较器的输出在电容器上的电压小于或等于参考电压vref/2时从高状态过渡到低状态。在该实例中,电容器1802上的电压将在参考电压vref与vref/2之间过渡。电容器电压的上升沿和下降沿的转换速率是对称的。由振荡器1900生成重复锯齿图案直到序列停止。测量周期对应于生成单个三角形波形的时间。该三角形波形构成将电容器1802上的电压从vref/2过渡到vref以及从vref过渡到vref/2的时间。应指出,测量周期与电容器1802的电容有关。增大电容器1802的电容相应地增大测量周期。相反,减小电容器1802的电容相应地减小测量周期。比较器1906的输出端处的信号还对应于信号1816。因此,由振荡器1900输出的信号建立了与电容器1802的电容的关系。

简要地参照图1,传感器100被联接到肌肉-骨骼系统上。在该实例中,示出假体膝关节并且传感器100被联接到膝区域上。传感器100可以是联接到肌肉-骨骼系统上的电容器1802。电容器1802可以被联接到假体膝关节的关节表面上以测量力、压力或负载。在一个实施例中,施加到关节表面上的力、压力或负载被联接到电容器1802上,借此,电容随施加到其上的力、压力或负载而变化。尽管示出膝关节,但图18的电容器1802和系统1800也可以用于医疗装置、工具、设备、以及假体部件中来测量影响电容器1802的电容的参数。类似地,尽管膝关节被作为实例来描述,但电容器1802可以被集成到肌肉-骨骼医疗装置、工具、设备、以及假体部件中来测量施加的力、压力或负载。此外,图18的电容器1802和系统1800并非限于膝,而是可以被集成到用于参数测量的假体部件中,如骨、组织、肩、踝、髋、膝、脊柱、肘、手以及脚。

回顾图18和图19,信号发生器1804输出对应于电容器1802的电容的重复波形。振荡器1900是振荡或生成重复波形的信号发生器1804的实现方式。在该实例中,振荡器1900输出具有对称上升沿和下降沿的重复锯齿波形。波形的测量周期是从vref/2过渡到vref以及过渡回vref/2所需要的时间。测量周期的时间对应于电容器的电容。如果电容器1802的电容在测量序列过程中保持恒定,那么每个测量周期的时间将是基本上相等的。在一个实施例中,计数寄存器1812被加载有预先确定的计数。该测量序列可以在波形的预先确定的点处被发起。例如,电压vref/2能够被检测来在波形上起动以便起动测量序列。每次检测到电压vref/2后,数字计数器1808递减。测量序列在数字计数器递减到零时结束。数字计时器1810测量对应于锯齿波形的测量周期的预先确定的计数的测量序列的经过时间。可替代地,比较器1906的输出可以用作振荡或重复波形。比较器1906的输出的上升沿或下降沿可以用于使数字计数器1808启动并且递减。该测量序列被配置成是在将要测量的参数以及通过关系式电容器1802的电容基本上恒定时的间隔过程中被发起。该过程测量电容1802等于预先确定的计数的次数。测量上的变动可以通过具有较大的预先确定的计数来平均掉(averagedout)。该过程还允许非常准确地测量出电容上的非常小的变化。测量的准确度可以通过增大测量周期的预先确定的计数来提高。在一个实施例中,所测得的电容是由所测得的经过时间和测量周期的预先确定的计数所确定的平均值。所测得的电容可以被转化为正被测量的参数,如力、压力或负载。数据寄存器1814可以够被配置用于存储参数测量值或对应于该参数测量值的数字。

图20披露用于测量力、压力或负载的方法2000。该方法描述涉及并且可以参考图1、图4、图6、图8、图12、图13、以及图19。在此所披露的实例使用假体部件实现方式,但方法2000可以在任何其他合适的系统或装置中实践。方法2000的步骤不限于所披露的顺序。此外,方法2000还可以具有与所示相比更大数量的步骤或更小数量的步骤。

在步骤2002,将力、压力或负载施加到电容器上。该力、压力或负载上的变化引起该电容器的电容上的相应变化。在步骤2004,生成重复信号。该重复信号的单个波形的时间间隔是测量周期。该测量周期的时间间隔对应于电容器的电容。在步骤2006,重复该波形或信号预先确定的次数。测量序列包括预先确定次数的重复波形。在步骤2008,测量该测量序列的经过时间。该经过时间是生成预先确定数量的波形所需要的时间。在步骤2010,在该测量序列过程中维持该力、压力或负载。总体上,联接到电容器上的力、压力或负载在该测量序列过程中应是恒定的。在步骤2012,使所测得的经过时间与该力、压力或负载测量值相关。典型地,测量范围对于正被施加到电容器上的力、压力或负载而言是已知的。正使用的电容器或电容器类型可以在使用之前在整个测量范围内使用已知的力、压力以及负载来表征。因此,电容与力、压力或负载之间的相关性是已知的。例如,电容与力、压力或负载之间的关系可以存储在查找表中或通过数学表达式来存储。在一个实施例中,电容器在整个测量范围内近似线性地作出响应。可以使用所测得的经过时间计算出电容器的平均电容,以便在测量序列过程中生成预先确定数量的波形。随后可以根据先前表征来确定力、压力或负载。可以通过在电容器的最终测试过程中使用校准技术来实现另外的改进。关于电容器的校准数据可以用于计算力、压力或负载,以便进一步降低测量误差。在步骤2014,可以增加预先确定数量的波形以便提高测量准确度。如果力、压力或负载在增加数量的预先确定数量的波形范围内是基本上恒定的,那么测量分辨率能够通过这种技术来提高。此外,在电容变化在该力、压力或负载测量范围内相当小的情况下,分辨率支持测量。

图21示出根据示例性实施例的电容器2100。总体上,用于医疗环境中的传感器是准确的、可靠的、低成本的,并且具有适合于应用的形状因子。产生电信号的传感器需要通向电子电路的有线或无线互连件,以便接收、分析并且提供测量数据。电容器2100满足以上列出的要求。电容器2100可以在用于测量不同医疗参数的医疗装置、工具以及设备中使用。在该实例中,电容器2100可以被集成到装置、工具、设备以及假体部件中,用于测量肌肉-骨骼系统的参数。电容器2100适用于手术中假体部件和可植入假体部件,这些部件支持对所安装结构的安装和长期测量。

电容器2100包括介电层2102、介电层2104、以及介电层2106。电容器2100包括超过两个机械串联的电容器。在一个实施例中,电容器2100包括3个机械串联的电容器。简要地参照图22,图21的电容器2100包括电容器2206、2204、以及2208。电容器2206、2204、以及2208是机械串联联接的。压缩力、压力、或负载2202被施加到串联联接的电容器2206、2204、以及2208上。回顾图21,第一电容器包括导电区域2108、介电层2102、以及导电区域2110。该第一电容器对应于图22的电容器2204。导电区域2108和2110具有预先确定的面积,这样该预先确定的面积、介电层2102的介电常数、以及介电层2102的厚度确定电容器2204的电容。在一个实施例中,导电层2108上覆于导电层2110之上、具有与该导电层2110基本上相等的面积、并且与该导电层2110对齐。

第二电容器包括导电区域2108、介电层2104、以及导电区域2112。该第二电容器对应于图22的电容器2206。在一个实施例中,导电区域2112上覆于导电区域2108之上、具有与该导电区域2108近似相等的面积、并且与该导电区域2108对齐。负载垫2114上覆于导电区域2112之上而形成。负载垫2114保护导电层2112并防止由于施加到电容器2100上的力、压力或负载而对该导电层造成损坏。

第三电容器包括导电区域2110、介电层2106、以及导电层2116。该第三电容器对应于图22的电容器2208。在一个实施例中,导电区域2116上覆于导电区域2110之上、具有与该导电区域2110近似相等的面积、并且与该导电区域2110对齐。负载垫2118上覆于导电区域2116之上而形成。负载垫2118保护导电层2116并防止由于施加到电容器2100上的力、压力或负载而对该导电层造成损坏。总体上,负载垫2114和2118包含不可压缩材料。负载垫2114和2218能够包含金属、复合材料、或聚合物。

电容器2100联接到电子电路上,如图18中所披露。电容器2100可以包括超过一个并联的电容器。在一个实施例中,导电区域2108和2110可以被联接在一起。在该实例中,导电区域2108和2110是由导电通路2120联接在一起。导电区域2112和2116也被联接在一起或被联接至公共电压电位。在一个实施例中,导电区域2112和2116被联接到接地件上形成屏蔽物。简要地参照图23,电容器2100包括电容器2206和2208。电容器2206和2208是并联电联接的,具有联接到接地件上的端子以及包括联接在一起的导电区域2108和2110的端子。电容器2204在电容器2100的电子等效电路中未示出,因为电容器2204的导电区域被短接在一起。回顾图21,可以形成具有基本上相等的电容的电容器2206和电容器2208。因此,电容器2100包括超过一个机械串联的电容器并且包括超过一个并联电联接的电容器。

在该实例中,电容器2100可以用作用于肌肉-骨骼系统的力、压力或负载传感器。电容器2100可以被集成到假体部件中来测量由肌肉-骨骼系统所施加的力、压力或负载。该测量支持对假体部件的安装并且可以用于在植入系统上进行长期数据收集。电容器2100的大小和形状对生物感测应用是有益的。电容器2100的形状因子可以被制成非常小。此外,电容器2100可以被制成非常薄,从而支持集成和放置在身体的常规传感器所不能达到的区域中。可以制造出厚度小于2.5毫米并且典型地小于1毫米的电容器2100。

在一个实施例中,可以使用多层互连件来形成电容器2100。多层互连件包括交替的导电层和介电层。导电层可以被图案化来形成导电区域和互连件。将力、压力或负载施加到多层互连件上可以使这些介电层变形。已经发现,对于小变形,互连件的介电层在刺激被去除时将弹性地回弹。介电层的变形改变电容器2100的介电厚度及其电容值。图18的系统1800支持电容上的小变化的高分辨率,这使得使用电容器2100可行。

总体上,用于互连件的介电材料可以包括聚合物、聚酯、芳族聚酰胺、粘合剂、硅、玻璃、或复合材料。电容器2100包括包含聚酰亚胺的至少一个介电层。在一个实例中,介电层2102、2104、以及2106包含聚酰亚胺。可替代地,层2102可以是将电容器2206和2208联接在一起的胶粘层。在测试下,已经证明聚酰亚胺在对于假体部件负载测量来说典型的负载值下弹性地压缩。总体上,电容器2100压缩了小于每个电容器的厚度的20%以便在电介质的弹性区域中维持操作。在一个实施例中,在操作范围内,电容器2100的电介质被压缩了小于电介质厚度的10%。例如,聚酰亚胺层可以是近似0.0254毫米厚。在假体膝应用的整个负载测量范围内,聚酰亚胺的压缩可以是小于0.0022毫米。互连件可以是柔性的,从而允许放置在非平面区域上。此外,如果要求的话,电容器2100可以是与不同的表面形状共形的。可替代地,电容器2100可以被形成为不会挠曲或符合的可压缩结构。

如先前所提及的,电容器2100被联接到电子电路上,该电子电路如图18所披露的电子电路。使用互连件形成电容器2100提供能够使电容器2100与联接到电子电路上的互连件集成的另外的益处。这消除了传感器与互连件之间的连接,因为它们被形成为单个结构。集成的电容器和互连件还提高了传感器可靠性、降低了成本、并且简化了组装。

简要地参照图24,俯视图示出上覆于介电层2104之上而形成的导电区域2112。总体上,力、压力或负载被均匀地施加在传感器电容器的导电区域上。负载垫可以支持该力、压力或负载在整个导电区域上的分布。导电区域的面积具有足以在应用的整个力、压力负载范围内维持介电材料的弹性压缩的大小。可以增大导电区域的面积以减少每单位面积的力、压力或负载,从而降低整个测量范围内的介电压缩,以便提高可靠性。在膝假体部件实例中,导电区域2112可以具有圆形形状。导电区域2112的面积是正被测量的力、压力、或负载范围的函数。对于用于膝应用的传感器来说,导电区域2112的直径是近似2.0毫米。虚线指示位于导电区域2112之下的导电区域2108的外周。在该实例中,导电区域2108具有近似2.2毫米的直径。传感器中的超过一个可以配合在膝的假体部件内。互连件2124被联接到导电区域2112上。互连件2124可以与导电区域2112形成在同一层上。回顾图21,导电区域2116可以具有与导电区域2112类似的圆形形状。对于用于膝应用的传感器来说,导电区域2116的直径是近似2.0毫米。上覆于导电区域2112之上的导电区域2110的直径是近似2.2毫米。互连件2126可以上覆于聚酰亚胺层2106之上而形成并且联接到导电区域2116上。

在该实例中,力、压力或负载是由肌肉-骨骼系统施加到负载垫2114和2118上。该力、压力或负载压缩机械串联的、构成电容器2100的电容器2206、2204、以及2208。介电层2202、2204、以及2206在该力、压力或负载下压缩。电容器2204的板被联接在一起并且不对电容器2100的电容有影响。电容器2100的结构使得寄生电容的影响最小化。导电区域2112和2116被联接到接地件上。导电区域2112和2116对应地上覆于导电区域2108之上和位于导电区域2110之下,从而充当接地屏蔽物。该屏蔽物最小化或阻止可能与导电区域2112和2116发生的可能影响测量准确度的外部电容交互。

简要地参照图25,提供了在示例性实施例中的互连件2122、2124、以及2126的截面视图。如上文所述,导电区域2108和2110是由通路2120联接在一起。互连件2122联接到导电区域2108和2110上。互连件2122、2124、以及2126可以将电容器2100联接到图18的系统1800上。互连件2124和2126被联接到接地件上。互连件2124和2126上覆于互连件2122之上和位于互连件2122之下,从而充当屏蔽物。在一个实施例中,互连件2122具有小于互连件2124和2126的宽度。当互连件2122被路由并联接到图18的系统1800上时,互连件2124和2126屏蔽并阻止与互连件2122的潜在电容交互。

回顾图21,与电容器2100有关的寄生电容在整个参数测量范围内保持基本上恒定。第一寄生电容包括互连件2124、介电层2104、以及互连件2122。第二寄生电容包括互连件2126、介电层2106、以及互连件2122。该第一寄生电容和该第二寄生电容加在一起,增大了电容器2100的电容。力、压力或负载未被施加到第一寄生电容和第二寄生电容上,从而在测量过程中保持恒定。因此,电容器2100的电容上的变化可以由系统1800在力、压力、或负载范围内使用在此所披露的方法来测量,其中由于寄生电容上的变化所造成的二次影响正被最小化。

图26披露用于测量力、压力或负载的方法2600。该方法描述涉及并且可以参考图1、图4、图6、图8、图12、图13、图19、以及图21至图25。方法2600的步骤不限于所披露的顺序。此外,方法2600还可以具有与所示相比更大数量的步骤或更小数量的步骤。在步骤2602,压缩超过一个串联的电容器。传感器电容器可以包括超过一个串联联接的电容器。在串联联接的电容器上施加力、压力或负载。在步骤2604,测量超过一个并联的电容器的电容。传感器电容器可以包括超过一个并联电联接的电容器。

在步骤2606,生成重复信号,该重复信号具有对应于该超过一个并联的电容器的电容的测量周期。在一个实施例中,该超过一个并联的电容器被联接到信号发生器电路上。联接到该超过一个并联的电容器上的该信号发生器电路被配置用于振荡。该重复信号包括重复测量周期。由该信号发生器生成的每个测量周期的时间间隔对应于该超过一个并联的电容器的电容。

在步骤2608,测量重复信号的经过时间。在一个实施例中,重复该重复信号预先确定的次数。换句话说,重复测量周期该预先确定的次数并且测量该预先确定次数的测量周期的经过时间。在步骤2610,使经过时间与超过一个并联的电容器的电容相关。如在此所披露,超过一个并联的电容器的电容对应于所施加的力、压力或负载。在所施加的力、压力或负载基本上恒定时测量大量测量周期支持电容与该力、压力或负载之间的准确的相关性。

图27示出根据一个示例性实施例的具有多个传感器的医疗装置。总体上,本发明的实施例广义上针对物理参数的测量。该医疗装置包括机电系统,该机电系统被配置用于测量医疗参数,并且在该实例中涉及肌肉-骨骼系统的测量。由于大小、成本、时间、或测量精度,当前尚未测量物理系统或身体内的许多所感兴趣的物理参数。例如,关节植入物如膝、髋、脊柱、肩、以及踝植入物将基本上受益于在外科手术过程中取得以便帮助外科医生安装和精调假体系统的现场测量值。测量值可以补充外科医生的主观反馈以确保最优安装。最终假体部件中的参数传感器可以提供与在使用中的植入物的状态相关的周期性数据。手术中和长期收集的数据可以用于确定用于外科手术安装的参数范围并且改进未来假体部件。

一个或多个所感兴趣的物理参数可以包括但不限于负载、力、压力、位置、位移、密度、粘度、ph、伪加速度(spuriousacceleration)、以及局部温度的测量值。通常,测量的参数与另一个测量的参数结合使用以便进行定性评估。在关节重建中,使肌肉-骨骼系统的多个部分准备好接收假体部件。准备包括骨切割或骨成形以便与一个或多个假体配合。可以通过定位在身体、仪器、器具、车辆、设备或其他物理系统之上或之内的无线感测模块或装置来相对于取向、对准、方向、位移、或位置以及沿一条轴线或多条轴线的组合的移动、旋转、或加速对参数进行评价。

在本发明中,参数是使用集成无线感测模块或装置来测量的,该集成无线感测模块或装置包括:i)支撑多个传感器和接触表面的封装结构,以及ii)电子组装件,该电子组装件集成电源、感测元件、加速度计、天线、控制和处理测量序列的电子电路、以及无线通信电路。该无线感测模块或装置可以被定位在广泛范围的物理系统之上或之内、或与广泛范围的物理系统接合、或附接或固定至广泛范围的物理系统之上或之内以用于实时地感测和传达所感兴趣的参数,这些物理系统包括但不限于仪器、设备、装置、器具、车辆、设备或其他物理系统以及动物和人身体。

披露可以间接地测量参数的多个传感器,如具有的电容随参数变化的电容器。电容或相关因素(例如,时间)被测量并且随后被转换成该参数。测量系统具有与人体动力学相容的形状因子、功率使用、以及材料。一个或多个所感兴趣的物理参数可以包括但不限于负载、力、压力、位移、密度、粘度、ph、距离、体积、疼痛、感染、伪加速度、以及局部温度等等的测量值。可以由定位在身体、仪器、器具、车辆、设备、或其他物理系统之上或之内的无线感测模块或装置通过传感器测量、对准、方向、或位置以及沿一条轴线或多条轴线的组合的移动、旋转、或加速对这些参数进行评价。

在该实例中,插入物2700示出具有用于测量肌肉-骨骼系统的参数的医疗传感器的装置。假体插入物2700是允许肌肉-骨骼系统的关节连接的关节置换系统的部件。假体插入物2700是该关节置换系统的磨损部件。假体插入物2700具有允许关节连接的一个或多个关节表面。在关节置换中,假体部件具有联接到插入物2700的关节表面上的表面。该关节表面是低摩擦的并且可以吸收基于位姿或体位自然发生的负载。关节连接关节的表面之间的接触面积可以在运动范围内变化。由于在关节的移动过程中通过假体部件表面接触关节表面所产生的摩擦,插入物2700的关节表面将随时间推移而磨损。韧带、肌肉以及肌腱一起保持关节并且在整个运动范围中激励关节。

插入物2700是假体部件的本体内的有源装置,该有源装置具有电源2702、电子电路2704、负载垫2722、传送能力、以及传感器。电子电路2704包括图18和图19的电路。在该实例中,传感器位于负载垫2722之下。这些传感器是形成于联接到电子电路2704上的互连件2718中的电容器。互连件2718可以是柔性的并与非平面形状共形。在一个实施例中,插入物2700在手术中用于测量肌肉-骨骼系统的参数以帮助安装一个或多个假体部件。如下文将披露,插入物2700的操作被示出为膝插入物以说明操作和对参数(如负载和平衡)的测量。简要地参照图1,典型的膝关节置换系统包括插入物、股骨假体部件104、以及胫骨假体部件106。虽然容纳在该插入物中,但传感器电容器也可以被容纳在股骨假体部件104或胫骨假体部件106之内或联接到股骨假体部件104或胫骨假体部件106之上。回顾图27,插入物2700可以被适配成用于在具有关节表面的其他假体关节(髋、脊柱、肩、踝及其他)中使用。可替代地,插入物2700可以是可用于在植入物的寿命内进行参数测量的永久有源装置。感测系统不限于假体部件实例。该系统还可以在医疗工具、装置、以及设备中实施。

插入物2700在尺寸上基本上等于无源最终假体插入物。基本上相等的尺寸对应于允许插入物2700基本上与无源最终假体插入物相等地配合在胫骨假体部件中的大小和形状。在手术中实例中,使用插入物2700作为试验插入物所测量的负载和平衡将基本上等于由最终无源插入物在相等条件下所经历的负载和平衡。应指出,用于手术中测量的插入物2700可以是在形状上不相似的,或在操作过程中丢失不利于试验的特征。插入物2700在与最终插入物相等的整个运动范围中应是在位置上稳定的。

插入物2700的外部结构包括两个部件。在所示实施例中,插入物2700包括支撑结构2706和支撑结构2708。支撑结构2706和2708具有由肌肉-骨骼系统施加负载的主要支撑表面。如先前所提及的,插入物2700被示出为膝插入物以说明一般概念,但不限于这种构型。支撑结构2706具有关节表面2710和关节表面2712。股骨假体部件的髁与表面2710和2712关节连接。假体膝关节上的负载分布在关节表面2710和2712的接触区域上。支撑结构2708包括承载表面2724。承载表面2724联接到胫骨假体部件上。由于更大的表面面积用于分布力、压力或负载,承载表面2724上的负载比施加给关节表面的负载要低得多。

支撑结构2706的区域2714在运动范围内是无载的或轻负载的。区域2714位于关节表面2710与2712之间。应指出,在关节表面2710与2712上存在最小接触面积,以便在维持关节性能的同时使磨损最小化。接触位置和接触面积大小可以根据肌肉-骨骼系统的位置而变化。如果接触面积落在关节表面2710和2712内在运动范围内落内的预先确定的面积范围之外,那么可能出现问题。在一个实施例中,负载被施加在关节表面2710和2712上的位置可以由感测系统确定。这是有益的,因为外科医生现在具有负载被施加在何处的定量信息。外科医生随后可以使用来自感测系统的实时反馈来追踪每次校正的结果进行在预先确定的区域内移动所施加负载的位置的调整。

支撑结构2708可以被形成来支撑测量插入物2700的每个关节表面上的负载的这些传感器和电子电路2704。负载板2716位于关节表面2710之下。类似地,负载板2720位于关节表面2712之下。互连件2718位于负载板2720之下。电容器传感器位于负载垫2722之下,在支撑结构2708中的三角形互连件2718的顶点中。在一个实施例中,这些电容器传感器形成于互连件2718中。互连件2718将这些传感器联接到电子电路2704上。屏蔽件形成于互连件2718中,该屏蔽件使寄生电容和耦合最小化以便确保测量范围内的准确度。负载板2720通过负载垫2722联接到电容器传感器上。负载垫2720将施加给关节表面2712的负载分布到在插入物2700内的预先确定的位置处的电容器传感器上。来自位于关节表面2712之下的三个传感器的测量值可以用于确定施加到插入物2700的负载的位置。负载板2716在关节表面2710之下类似地操作。虽然负载板2716和2720的表面(如所示)是平面的,但它们在传感器符合非平面表面的情况下可以是非平面的。类似地,电容器传感器可以形成为具有非平面形状。

由肌肉-骨骼系统施加的力、压力或负载被联接到假体部件插入物2700的关节表面2710和2712上,这些关节表面对应地联接到板2716和2720上。在一个实施例中,每个电容器由于该力、压力或负载而弹性地压缩。电子电路2704可操作性地联接到位于负载板2716和2720之下的电容器传感器上。对应于正被测量的电容器的电容的信号被生成。该信号被重复预先确定数量的次数或达到预先确定的计数。测量该预先确定的计数的经过时间。该经过时间对应于电容器的电容。电容与力、压力或负载之间的关系是已知的并且用于确定测量值。此外,测量数据可以被处理并传送到插入物2700外部的接收器以用于显示和分析。

在一个实施例中,传感器和电子电路2704的物理位置被容纳在插入物2700中,从而保护有源部件免受外部环境影响。电子电路2704可以位于关节表面2710与2712之间,在支撑结构2700的区域2714之下。用于容纳电子电路2704的空腔可以位于区域2714之下。支撑结构2708在该空腔内具有表面,该表面具有从其延伸以将电子电路2704定位并且固持在该空腔内的固持特征。区域2714是插入物2700的无载或轻负载区域,从而降低在外科手术过程中或在由患者使用关节时由于高压缩力而损坏电子电路2704的可能性。在一个实施例中,临时电源(如电池、电容器、电感器、或其他存储介质)位于插入物2700内以便为这些传感器和电子电路2704供电。

支撑结构2706附接到支撑结构2708上以形成插入物外壳或壳体。在一个实施例中,支撑结构2706和2708的内部表面配合在一起。此外,支撑结构2706和2708的内部表面可以具有用于容纳和固持感测系统的部件的空腔或挤压件(extrusion)。在外部,支撑结构2706和2708提供对接到关节的其他假体部件上的承载表面和关节表面。支撑结构2708的承载表面2724联接到胫骨假体部件上。承载表面2724可以具有支持联接到胫骨假体部件上的一个或多个特征或形状。

支撑结构2706和2708可以被暂时地或永久地联接、附接、或紧固在一起。如所示,插入物2700可以被拆开以使支撑结构2706与2708分离。密封件可以外周地位于支撑结构2708的内部表面上。在一个实施例中,该密封件可以是包含顺应性且可压缩材料的o形环。当支撑结构2706和2708被附接在一起时,该o形环压缩并抵靠在这些支撑结构的内部表面上形成密封件。支撑结构2706和2708形成壳体,借此,使该密封件的边界内的空腔或凹陷与外部环境隔离。在一个实施例中,当o形环被充分地压缩以使多个紧固元件互锁时,支撑结构2706和2708被联接在一起。支撑结构2706和2708是由这些紧固元件在由o形环或其他装置(如弹簧)提供的力或压力下保持在一起。

在一个实施例中,支撑结构2700包含常见地用于无源插入物的材料。例如,可以使用超高分子量聚乙烯。该材料可以被模制、成形、或机械加工以便为最终插入物提供适当的支撑和关节表面厚度。可替代地,支撑结构2706和2708可以由对于试验应用来说具有足够强度的金属、塑料、或聚合材料制成。在手术中实例中,支撑结构2706和2708可以由聚碳酸酯形成。应指出,关节表面的长期磨损对于关节安装的短持续时间来说是较小问题。当通过聚碳酸酯关节表面在整个运动范围内移动时,关节与最终插入物类似地移动。支撑结构2706和2708可以形成为复合结构,其中支承材料(如超高分子量聚乙烯)是允许感测系统既在手术中使用又用作最终插入物的复合材料的部分。

图28示出根据示例性实施例的具有联接到非平面表面上并且与这些非平面表面相符的多个传感器的一个或多个假体部件。髋关节假体部件用作用于说明非平面传感器的实例。该髋关节假体包括髋臼杯2806、插入物2808、以及股骨假体部件2810。髋臼杯2806联接到骨盆上。杯2806可以被胶合到骨盆2802上,从而在永久空间取向上紧固假体部件以用于接收股骨假体部件2810。插入物2808被插入具有暴露关节表面的髋臼杯2806中。股骨假体部件2810的股骨头可以被放置到插入物2808中。插入物2808固持该股骨头。插入物2808的关节表面联接到股骨假体部件2810的股骨头上,从而允许关节的旋转。负载被分布在插入物2808的关节表面的取决于腿位置而变化的区域上。股骨假体部件2810的轴被联接到股骨2804上。胶合剂可以用于将股骨假体部件2810的轴紧固到股骨2804上。组织(如肌腱、韧带以及肌肉)联接到骨盆2802和股骨2804上以便保持和支持髋关节的移动。在此所披露的传感器和电子电路不限于假体髋部件并且可以被类似地应用于解剖结构的其他部分,这些部分包括但不限于肌肉-骨骼系统、骨、器官、颅骨、膝、肩、脊柱、踝、肘、手、以及脚。

在一个实施例中,股骨假体部件2810可以容纳电子电路2812,从而保护有源部件免受外部环境影响。该电子电路2812可以包括图18和图19中所披露的用于测量电容器传感器的电容的电路。该电子电路2812可以进一步包括电源、功率管理电路、转换电路、数字逻辑、处理器、多输入/输出电路、以及通信电路。该电子电路2812可以是具有可配合在假体部件内的形状因子的模块。类似地,电子电路2812可以被集成到工具、装置、或设备中。可替代地,电子电路2812可以是通过有线或无线连接联接到传感器上的单独部件。

假体部件2810的股骨头在形状上是球形的。电容器2814是符合并联接到股骨头的弯曲表面的传感器。在第一实施例中,电容器2814可以位于股骨头的外部表面之下。施加给股骨头的力、压力或负载联接到电容器2814上并且可以弹性地压缩该电容器。保护电容器2814和电子电路2812免受外部环境影响,以使得假体部件适用于关节的长期监视。在第二实施例中,电容器2814可以在符合股骨头的球形形状的表面的多个部分上暴露。在第三实施例中,电容器2814可以形成为具有非平面形状。电容器2814可以位于在单次使用后被处置掉的试验假体部件中。如在此所披露,电容器2814可以形成于如图21至图25中所披露的互连件中。该互连件可以是柔性的并且可以符合非平面表面。在该实例中,电容器2814形成于联接到电子电路2812上的连接件中以接收并处理测量数据。该连接件以及更确切地说电容器2814被定位在球形股骨头表面内并联接到该表面上,借此,可以在预先确定的位置处测量力、压力或负载。因此,传感器系统可以被完全容纳在假体部件内。类似地,这些传感器可以被放置在髋臼杯2806与插入物2808之上、之内或之间。作为实例,电容器2816被示出为被放置在髋臼杯2806与插入物2808之间。电容器2816还可以位于插入物2808的关节表面的一部分之下或构成该部分。类似地,电容器2816可以位于髋臼杯2806的弯曲表面的一部分之下或构成该部分。电容器2816可以被配置用于测量施加给插入物2808的关节表面的不同区域的力、压力或负载。联接到电容器2816上的电子电路可以邻近髋臼杯2806、插入物2808或被容纳在髋臼杯2806、插入物2808中。骨上的力、压力或负载测量可以由该系统支持。电容器2822可以被嵌入骨(如盆骨2802)中以测量施加到其上的力。

在该实例中,电容器2814位于股骨假体部件2810的股骨头的预先确定的位置处。电容器2814的电容与由肌肉-骨骼系统施加给股骨头的力、压力或负载有关,从而提供股骨头的不同位置处的测量数据。在一个实施例中,来自电容器2814的测量数据可以被实时地无线传送到远程系统2818上。远程系统2818包括被配置用于显示测量数据的显示器2820。远程系统2818可以是进一步处理测量数据的计算机。测量数据可以允许用户快速地评估信息的听觉、视觉或触觉形式来提供。在运动范围内旋转和移动腿可以提供关于负载在髋关节的运动范围内如何变化的定量数据以用于安装。腿移动将电容器2814联接到插入物2808的关节表面的不同区域上。在腿在恒定平面中移动时,电容器2814沿弧线移动。测量数据可以指示可能要求对关节安装进行修改的负载上的变动。安装可以按照由远程系统2818支持的工作流程步骤进行。此外,来自对在统计学上显著数量的患者的定量测量的临床证据用作最优配合的目标值或范围。外科医生可以基于实际测量的定量数据和来自患者安装的主观反馈进一步精调安装。

图29示出根据示例性实施例的具有联接到非平面表面上的一个或多个屏蔽传感器的工具。扩孔钻2902用作具有一个或多个传感器的医疗装置、工具、设备、或部件的实例。扩孔钻2902可以用于髋假体关节置换外科手术中,用于去除盆骨2908中的骨,以便接纳假体部件(如髋臼杯)。扩孔钻2902具有球形表面2904,该球形表面具有切削片或砂轮(abrasive),这些切削片或砂轮用于去除髋臼区域2910中的骨以便形成球形骨区域。扩孔钻2902的切削头的大小被确定成切削髋臼区域2910区域,该髋臼区域2910区域在尺寸上基本上等于有待配合到该髋臼区域中的髋臼杯。

在一个实施例中,超过一个传感器可以被联接到扩孔钻2902的切削头上。在非限制性实例中,这些传感器可以用于测量力、压力或负载。更确切地说,这些传感器可以与切削头的表面2904上的多个位置相应地定位。这些传感器被联接到表面2904上,但位于扩孔钻2902的切削头的内部。力、压力、或负载是从表面2904联接到这些传感器。这些传感器提供关于施加到表面2904的不同位置的力、压力或负载的定量数据。定量数据可以作为对材料去除过程的反馈以用于髋臼杯的最优配合。例如,在一个方向上放置太多的力可能会导致在一个位置中去除太多的材料,从而影响骨切削的形状。

电容器2906是用于测量力、压力或负载的多个传感器的实例。电容器2906是在扩孔钻2902的可测量范围内弹性可压缩的。更确切地说,构成电容器2906的介电材料在施加的力、压力或负载下压缩。电容器的电容在介电材料的厚度由于力、压力或负载而减小时增大。相反,介电材料的厚度在施加到电容器上的力、压力或负载减小时增大,从而减小电容值。多个电容器2906被联接到扩孔钻2902的切削头的表面2904的不同位置。这些电容器2906被分布在表面2904上以便在材料去除过程中提供不同表面区域的力、压力、或负载大小以及差分力、压力、或负载大小。正由电容器2906测量的表面区域将随着扩孔钻2902的轨迹发生变化。测量数据可以用于支持用于最优假体部件配合的骨扩孔过程。

在一个实施例中,电容器2906形成于如图21至图25所披露的互连件中。该互连件可以包括包含聚酰亚胺的一个或多个介电层或基板。这些聚酰亚胺层是柔性的、可以符合非平面表面、或形成为具有预先确定的形状。电容器2906包括用于减少与装置的电容耦合的一个或多个屏蔽件。屏蔽件可以被联接到接地件上并且在物理上位于电容器2906的导电区域与互连件的外部环境之间。该屏蔽件可以是电容器的导电区域。在一个实施例中,第一屏蔽件形成为上覆于电容器的导电区域之上,并且第二屏蔽件形成为位于该电容器的该导电区域之下。屏蔽件使可改变电容器2906的电容值的寄生电容最小化。

互连件可以形成于联接到电容器2906的导电区域上的一个或多个聚酰亚胺层上。该互连件可以将电容器2906联接到电子电路(未示出)上以用于生成对应于每个电容器的电容的信号。电容器2906联接到扩孔钻2902的切削头的表面2904上。在该实例中,电容器2906符合对应于表面2904的形状的弯曲或非平面表面。在一个实施例中,该互连件和这些电容器2906位于切削头的内部,从而与外部环境隔离。该互连件联接到电子电路上以用于测量电容器2906的电容。该电子电路可以被容纳在扩孔钻2902的切削头或手柄中。该电子电路可以包括电源,如电池、感应电源、超级电容器、或其他存储介质。如先前所提及的,电容器2906的电容可以与施加到其上的力、压力、或负载有关。在该实例中,电子电路针对电容器2906中的每个电容器生成与电容值有关的信号。该电子电路可以包括用于发送来自电容器2906的测量数据的传送和接收电路。在一个实施例中,测量数据被传送到远程系统2818上。远程系统2818可以包括用于呈现测量数据的显示器2820。数据处理可以由远程系统2818执行,以便将测量数据转换为力、压力或负载。轨迹数据和力、压力或负载测量值可以按一种允许快速评估信息的视觉形式来提供。当用户要求直接观察操作面积时,可以提供可听反馈来补充显示器2820。远程系统2818可以分析定量测量数据并将信息传送到扩孔钻2902,该扩孔钻提供触觉或其他类型的反馈给装置,该反馈影响如由用户引导的轨迹或力、压力、或负载。由扩孔钻2902提供的定量数据被实时地提供,从而允许用户在显示器2820上看见这些改变如何影响在盆骨2908上去除骨。

图30披露一种用于测量力、压力或负载的方法3000。该方法描述涉及并且可以参考图1、图4、图6、图8、图12、图13、图19、图21至图25、以及图27至图29。方法3000的步骤不限于所披露的顺序。此外,方法3000还可以具有与所示相比更大数量的步骤或更小数量的步骤。在步骤3002,将力、压力或负载施加到电容器上。该力、压力或负载上的变化引起该电容器的电容上的相应变化。在一个实施例中,电容器形成于互连件之上或之中。电容器的介电材料可以是弹性可压缩的。在步骤3004,电容器的至少一个导电区域被屏蔽以便减少电容耦合。在一个实施例中,屏蔽件可以包括电容器的导电区域,该导电区域是该电容器的板。可替代地,屏蔽件可以是单独结构。屏蔽件可以是接地的,以便使寄生电容或与电容器的耦合最小化。屏蔽件可以位于电容器的外部环境与正被屏蔽的电容器的有源导电区域或板之间。此外,屏蔽件减小了可影响测量准确度的可变寄生电容。接地的导电区域可以位于有源导电区域与外部环境之间。在步骤3006,将电容器联接到电子电路上的互连件被屏蔽,以便进一步减少电容耦合。该屏蔽件可以是该电容器的互连件。例如,接地的互连件可以被放置在携带信号的互连件与外部环境之间,以便防止与该外部环境中的电路电容耦合。可替代地,屏蔽件可以是单独结构。对电容器和互连件的屏蔽支持对非常小的电容值的测量。所测量的电容上的变化与总电容相比可以是小的。屏蔽防止总电容发生变化,从而允许测量到小于10皮法的电容变化。

因此,在此提供用于测量小电容值和电容上的小变化的系统。该系统进一步支持小形状因子、高可靠性、测量准确度、以及低成本。用于力、压力以及负载测量的电容器可以形成于用于将电容器联接到电子电路上的互连件中。这些电容器在介电材料的基本上弹性可压缩区域内进行操作。在互连件中形成电容器降低系统复杂性,提高可靠性、产品相容性,并且减少组装步骤。

在力、压力、或负载下生成对应于电容器的电容的信号。重复该信号预先确定的计数。当正被测量的参数上的变化相对于生理变化(如发生在肌肉-骨骼系统中)缓慢地发生时,测量大量测量周期的经过时间可以用于生成测量周期的平均时间间隔。可以分析测量数据以获得准确的、可重复的、高精度的以及高分辨率的测量值。在此所披露的系统使得所捕获数据的精度或分辨率的水平设置能够最优化测量分辨率与频率(包括感测和数据处理操作的带宽)之间的权衡,从而使得感测模块或装置能够在其最优操作点下操作,而不会折损测量的分辨率。这是通过励磁和渡越时间的多个周期的累加而不是对多个单独励磁和渡越周期的渡越时间求平均来实现的。结果是物理系统中所感兴趣的参数的准确的、可重复的、高精度的以及高分辨率的测量值。

使用弹性可压缩电容器进行的测量实现高灵敏度和高信噪比。基于时间的测量在很大程度上对于可能会影响电压或电流驱动的感测方法和装置的大多数误差源不敏感。所得操作的渡越时间上的变化对应于可以快速测得的频率,并且具有高分辨率。这实现了所要求的测量准确度和精度,从而捕获所感兴趣的物理参数上的变化并且使得能够分析它们的动态和静态行为。

此外,在除法之前对单独电容测量值进行求和以估计平均测量值数据值比对相同数量的样本求平均产生更优良的结果。从数字计数器收集的计数数据的分辨率是由计数器中的最低有效位来限制。捕获一系列计数并对它们求平均不会产生比这个最低有效位(也就是说,单个计数的精度)更大的精度。如果在单独测量值之间存在随机变动,那么求平均确实降低最终估计值的随机性。对大量测量周期的计数求和以便获得累计计数、随后计算整个测量间隔内的平均值通过内插小于计数器的最低有效位的测量值分量来提高测量值的精度。由这个程序获得的精度大约是计数器的最低有效位的分辨率除以测量周期的总计数量。

图31示出根据示例性实施例的具有多个传感器的假体部件3100。总体上,对于支持假体关节和假体部件的安装的短期手术中带传感器的假体部件存在需求。类似地,需要假体关节包括传感器以长期监视关节。假体部件3100可以用作试验假体部件或用作永久假体部件,以供在体内长期使用。在该实例中,假体部件3100被示出为胫骨假体部件。假体部件3100可以被适配用于在髋、膝、肩、脊柱、踝、肘、趾、手、或骨植入物中使用。假体部件3100包括结构3102、结构3104、互连件3106、负载垫3108、以及电子电路3110。

假体部件3100典型地包含金属,如钛、钛合金、钴、钴合金、钢或钢合金。该材料适用于运送由肌肉-骨骼系统在关节上产生的负载。可替代地,假体部件3100可以由聚合材料形成。一种这样的合适材料是peek(聚醚醚酮)。peek是具有高抗拉强度并且耐热、耐水、或抗生物降解的半晶状热塑性塑料。peek可以被模制以形成假体部件所要求的复杂形状。peek是轻质的并且可以通过胶结紧固到骨上。peek部件可以被焊接在一起以形成气密密封。peek具有另外的益处:它是用于通信或用于传感器检测的信号可透过的。

结构3102具有至少一个支撑表面。如所示,结构3102包括支撑表面3112和支撑表面3114。这些支撑表面3112和3114接收插入物3116。插入物3116包括支持关节移动的关节表面3118和关节表面3120。关节表面3118和3120对应地上覆于支撑表面3112和3114之上。施加到关节表面3118和3120上的力、压力或负载将相应的力、压力或负载施加到支撑表面3112和3114上。轻负载区域位于支撑表面3112与3114之间。在一个实施例中,壳体3122在结构3102中形成于该轻负载区域中。壳体3122包括用于接收电子电路3110的空腔,该电子电路控制对假体部件3100进行的测量活动。

结构3104包括联接到骨上的至少一个特征。在该实例中,胫骨的近端被准备好以接收结构3104。杆部3124可以被插入胫骨的骨髓管中。杆部3124使结构3104与胫骨对准并且将该结构支撑到胫骨上。结构3104可以被胶结到胫骨上以便将假体部件3100牢固地紧固在适当位置。可替代地,包含peek的结构3104或金属结构可以包括支持骨生长的点。结构3104将包括锚定骨并提供骨生长激素的特征。骨可以生长到假体部件之中和周围,从而使结构3104融合到胫骨上。利用骨生长进行紧固还可以结合胶水或其他粘结剂一起使用。

在一个实施例中,三个传感器构成传感器阵列。每个膝室存在传感器阵列。每个传感器阵列用于测量膝室的负载和负载值位置。插入物3116的关节表面3118对应于假体部件3100的第一膝室。类似地,插入物3116的关节表面3120对应于假体部件3100的第二膝室。施加到关节表面3118和3120上的力、压力或负载被对应地施加到结构3102的支撑表面3112和支撑表面3114上。这些支撑表面3112和3114将该力、压力或负载传输到相应传感器阵列上。负载垫3108是处于对应于关节表面3118和3120的预先确定的位置处。负载垫3108将预先确定位置处的力、压力或负载传输到在下面的传感器上以用于测量。因此,力、压力或负载大小以及所施加的力、压力或负载的位置可以根据由第一膝室和第二膝室中的三个传感器获得的测量值来计算。负载的位置可以被反向转化成关节表面3118和3120上的位置。这些传感器上覆于结构3104的支撑表面3126和支撑表面3128之上。支撑表面3126和3128对应地对应于第一膝室和第二膝室。在一个实施例中,支撑表面3126和3128在负载下是刚性的。

用于测量负载的传感器可以是如以下各项的装置:超声波波导、压阻传感器、微机电系统传感器、应变仪、聚合物传感器、机械传感器以及电容传感器。在该实例中,假体部件3100的形状因子限制传感器的高度。在无源假体部件(例如,不具有传感器)中,该结构被形成为单个装置。这些支撑表面的厚度是近似2毫米。总体上,联接到支撑表面3126和3128上的支撑表面3112和3114的组合厚度在其间具有传感器的情况下可以维持在2毫米或更小。因此,传感器要求基本上小于2毫米厚的形状因子。在一个实施例中,传感器是弹性可压缩电容传感器。传感器的面积是由有待测量的负载范围和可压缩范围(在该可压缩范围中,传感器保持有弹性)来确定。如上文所披露,可以应用允许测量准确度、精度、以及可重复性的且对电容上的小变化敏感的测量技术。在一个实施例中,这些弹性可压缩电容器形成于互连件3106中。

电子电路3110可以被配合在由结构3102的壳体3122形成的空腔中。在一个实施例中,该空腔形成于假体部件3100的无载或轻负载区域中。壳体3122的无载或轻负载区域是在支撑表面3112与3114之间。因此,保护电子电路3110免受冲击力和在关节的正常操作下发生的负载。互连件3106和其中的这些传感器联接到电子电路3110上。互连件3106包括将这些传感器联接到电子电路3110上的互连件。多个空腔3130形成于结构3104的表面上。空腔3130支持互连件3106从结构3104的支撑表面3126和3128到电子电路3110的联接。空腔3130为互连件3106提供到壳体3122中的路径。

总体上,结构3102联接到结构3104上以形成假体部件3100。在一个实施例中,结构3102和3104围绕外周被焊接在一起以形成气密密封。电子电路3110、传感器、以及互连件3106被容纳在假体部件3100内并且与外部环境气密隔绝。可替代地,结构3102和3104可以被胶结或机械紧固在一起以便维持气密性。结构3102和3104可以进一步包括防止气体、液体或固体进入或排出的密封件或o形环。

互连件3106对应地联接到结构3104的支撑表面3126和表面3128上。如先前所提及的,负载垫3108将每个传感器联接到支撑表面3112和支撑表面3114上的对应位置。在该实例中,负载垫3108在每个膝室中限制对应于插入物3116的关节表面3118和3120的区域。施加到关节表面3118和3120上的力、压力或负载被对应地传输到结构3102的表面3112和3114上。应指出,表面3112和表面3114是顺应性的并且不是刚性的。每个表面均具有允许在下面的传感器压缩的足够的顺应性。在一个实施例中,表面3112和表面3114变薄或被制成薄的以便实现顺应性。结构3102的表面3112或3114和结构3104的表面3126或3128的组合厚度可以是近似2毫米。结构3102的表面3112和3114可以是小于1毫米厚以便具有顺应性。可替代地,支撑结构3112和3114可以包括顺应性的材料,如聚合材料。

在该实例中,施加到每个传感器上的负载可以被计算出来。负载大小对应于三个单独测量值的组合。所施加负载的位置可以根据在这些传感器的固定位置处所测得的负载大小来计算。电子电路3110包括输入/输出电路、定时电路、转换电路、逻辑电路、功率管理电路、传送和接收电路的多个通道。电子电路3110可以进一步包括用于存储用以操作或控制测量过程的软件程序的存储器。在一个实施例中,asic用于在低功率解决方案中组合模拟电路和数字电路。asic减小电子电路3110的形状因子,从而允许该电子电路配合在结构3102的壳体3122中。电子电路3110可以包括在此和通过引用而结合的披露内容所描述的电路。电子电路3110包括用于从这些传感器向远程系统传送数据的传送电路和天线。电子电路3110可以进一步包括用于接收来自该远程系统的信息和编程指令的接收电路。该远程系统可以是具有用于报告数据的显示器的便携式装置。该远程系统可以将数据传送给数据库以用于进一步审查和分析。

图32示出根据示例性实施例的结构3102的截面视图。该截面视图是属于第一膝室与第二膝室之间的轻负载区域。该视图包括上覆于电子电路3110之上的壳体3122的一部分。壳体3122保护电子电路并使该电子电路与外部环境隔离。

图33示出根据示例性实施例的假体部件3100和插入物3116。结构3102被联接到结构3104上。在一个实施例中,形成联接结构3102和3104的气密密封3302。结构3102和3104可以具有支持组装的位置和对准特征。结构3102和3104的外周可以在整个周边周围彼此邻近。在一个实施例中,结构3102和3104包含钢或钛的合金。气密密封3302是通过将结构3102焊接到结构3104上来形成。焊缝对于假体部件3100是周向的,从而使这些传感器和电子电路与外部环境隔绝。焊接将结构3102的金属连结到结构3104上,从而形成连续结构。这些传感器和电子电路3110与外部环境隔离、被完全封闭在假体部件3100内。形成焊缝,借此很少或无压力被施加到这些传感器上。由于联接结构3102和3104所引起的任何偏移都可以在装置校准过程中得到补偿。假体部件3100适用于用作用于提供关于关节状态的周期性数据的长期植入物。如果这些结构是由peek形成,则可以执行类似的方法。可替代地,使用粘合剂、机械联接、以及密封件的其他方法可以用于将结构3102和3104连结在一起以形成气密密封。

插入物3116配合到假体部件的盘中。假体部件3100的盘可以具有用于固持插入物3116的一个或多个特征。插入物3116典型地包含聚合材料,如超高分子量聚乙烯。关节表面3118和3120与关节的另一个假体部件(未示出)对接。在该实例中,关节表面3118和3120将与股骨假体部件的髁表面对接。肌肉、肌腱以及韧带激励假体关节,借此关节表面3118和3120允许这些部件相对于彼此移动。插入物3116可以是无源部件或包括一个或多个传感器。

图34示出根据示例性实施例的联接到互连件3106上的电子电路3110。电子电路3110可以包括用于联接到互连件3106上的一个或多个连接器。在一个实施例中,这些传感器是弹性可压缩的电容传感器。这些电容器形成于互连件3106中的多个负载垫3108之下。简要地参照图21至图25,描述传感器结构。多个负载垫3108可以包含非导电材料或导电材料。在该实例中,多个负载垫3108是刚性的且不可压缩的,以便将力、压力或负载传输到在下面的电容器。非导电负载垫可以包含聚合材料。在一个实施例中,负载垫3108包含导电金属(如铜或铜合金),该导电金属被镀到互连件3106的表面上。这些导电负载垫3108电联接到在下面的电容器的板上。

在一个实施例中,这些电容器可以形成于柔性聚酰亚胺基板之上或之中。这些负载垫、电容器、以及该互连件可以使用平版印刷技术来准确地且重复地形成。该聚酰亚胺基板可以被制成非常薄,以适用于配合在假体部件内。该电容器在其弹性可压缩的范围内操作。位于负载垫3108之下的每个电容器类似于图21的电容器2100。电容器2100包括机械串联的3个电容器和电并联的2个电容器。力、压力或负载被施加在电容器2204、2206、以及2208上。在一个实施例中,电容器2204在电路中并不用电,因为电容器2204的两块板被联接在一起。在电学上,传感器电容器包括并联电联接的多个传感器2206和2208。在一个实施例中,电容器2206的板和电容器2208的板被联接到接地件上。接地板2112和2116对应地位于互连件的外部环境与板2108和2110之间。类似地,从电容器2100到电子电路的互连件具有类似的拓扑结构。接地互连件2124和2126位于外部环境与联接到板2108和2110上的携带信号的互连件2122之间。因此,寄生耦合通过屏蔽件被最小化。此外,任何寄生电容都是恒定且不可变的。

电容大小和大小上的变化可以使用图18和图19中所披露的电路和方法来准确地测量。简要地参照图33和图34,力、压力或负载被施加到关节表面3118和3120上。该力、压力或负载被对应地从关节表面3118和3120传输到支撑表面3112和3114上。如先前所提及的,支撑表面3112和3114是顺应性的,以使得力、压力或负载通过负载垫3108被传输到在下面的传感器。这些传感器是由支撑表面3126和3128来支撑,这些支撑表面是刚性的且非顺应性的。施加到传感器电容器上的力、压力或负载压缩该结构。电容器板之间的介电层被压缩。传感器电容器的电容值是与介电层的厚度有关。因此,测量电容和电容上的变化可以是与施加到其上的力、压力或负载有关。

重复信号被施加到传感器电容器上。总体上,该传感器是在时间间隔内在预先确定的电压水平之间被充电和放电。该重复信号的单个波形的时间间隔是测量周期。该测量周期的时间间隔对应于电容器的电容。该波形或信号被重复预先确定的次数。测量序列包括预先确定次数的被重复波形。测量该测量序列的经过时间。该经过时间是生成预先确定数量的波形所需要的时间。在测量序列过程中维持该力、压力或负载。所测得的传感器电容器的经过时间与力、压力或负载测量值相关。电容与力、压力或负载之间的关系是已知的。在一个实施例中,可以在假体部件的组装之后针对已知的力、压力或负载值来测量每个电容传感器。这些测量值可以被存储在存储器中,该存储器是容纳在假体部件中的电子电路的一部分。可以通过在每个电容器的最终测试过程中使用校准技术或算法来实现另外的改进,这些校准技术或算法可以将测量值之间的插值和电介质的非线性压缩考虑在内。如果力、压力或负载在增加数量的预先确定数量的波形范围内是基本上恒定的,那么测量分辨率能够通过这种技术来提高。此外,在电容变化在该力、压力或负载测量范围内相当小的情况下,分辨率支持测量。

图35示出根据示例性实施例的已组装假体部件3100。假体部件3100包括联接到结构3104上的结构3102。假体部件3100容纳电子电路和传感器。气密密封3302将结构3102联接到结构3104上。在一个实施例中,气密密封3302是围绕外周的连续焊缝。如所提及的,焊缝并不对位于支撑表面之下的传感器施加负载或轻负载。在该实例中,假体部件3100是胫骨假体部件。结构3102包括用于接收具有至少一个关节表面的插入物的盘。该胫骨假体部件可以是单室装置或双室装置。结构3104包括用于联接到骨上的杆部3124。在该实例中,杆部3124联接到胫骨上。

图36示出根据示例性实施例的假体部件3100的部分截面视图。该截面视图是在外周(其中气密密封3302将结构3102和3104联接在一起)附近的区域。在该实例中,包括了传感器2100。该传感器2100形成于互连件3106中。负载垫3108形成于传感器2100上。互连件3106进一步说明屏蔽传感器以使信号耦合和寄生电容最小化。

截面说明了假体部件3100的传感器2100的放置以用于负载感测。结构3104的支撑表面3128支撑传感器2100。在该实例中,支撑表面3128是刚性的。导电区域2116是形成于互连件3106中的电容器的板。互连件2126将导电区域2116联接到电子电路3110上。导电区域2116和互连件2126联接到支撑表面3128上。在该实例中,导电区域2116和互连件2126被联接到接地件上。导电区域2116充当用于防止到传感器2100的导电区域2110和2108的信号耦合或寄生耦合的屏蔽件。类似地,互连件2126充当用于互连件2124的屏蔽件,以便防止信号耦合或寄生耦合。在一个实施例中,支撑表面3128包含导电材料,如金属。因此,结构3104通过导电区域2116和互连件2126联接到接地件上。结构3104充当用于防止与这些电容传感器的信号耦合或寄生耦合的屏蔽件。

结构3102的支撑表面3114是由负载垫3108和传感器2100来支撑。负载垫3108将负载分布到传感器2100上。支撑表面3114对于放置到其上的负载是顺应性的。在一个实施例中,支撑表面3114被制成薄的以允许挠曲。总体上,支撑表面3114在整个负载范围内弯曲短距离。传感器2100可以弹性地压缩总介电厚度的近似20%。在一个实施例中,传感器2100的压缩限于总介电厚度的10%或更少。例如,如在此所披露的电容器可以在典型的假体部件负载传感器的负载范围内压缩近似0.00254毫米。在一个实施例中,三个串联电容传感器、层压材料以及绝缘材料的堆叠将在最大负载下产生近似0.0076毫米的总压缩。因此,支撑表面3112或3114在整个负载范围内不会显著地挠曲。负载垫3108联接到支撑表面3114上的已知位置。该已知位置还与插入物的关节表面上的点有关。这些传感器中的每一个的已知位置用于通过比较所测得的负载大小来确定负载在何处联接到关节表面上。尽管单个传感器被示出,但形成于互连件3106中的其他传感器被类似地联接到结构3102和3104上。气密密封3302将结构3102与3104联接在一起。气密密封3302可以是熔化并连结结构3102和3104的材料的焊缝。

导电区域2112是形成于互连件3106中的电容器的板。互连件2124将导电区域2112联接到电子电路3110上。在该实例中,导电区域2112和互连件2124被联接到接地件上。导电区域2108和导电区域2110是形成于互连件3106中的电容器的板。传感器2100的导电区域2108和2110是由通路2120联接在一起。互连件2122将导电区域2108和2110联接到电子电路上。互连件2122将来自该电子电路的信号携带到传感器2100以测量电容器。导电区域2112是通过介电层2104与导电区域2108分离的。类似地,导电区域2116是通过介电层2106与导电区域2110分离的。导电区域2108和2110是通过介电层2102分离的,但如先前所提及的,它们被联接在一起。在一个实施例中,介电层2102、2104、以及2106包含聚酰亚胺。可使用其他电介质,如二氧化硅、氮化硅、聚酯薄膜、以及其他聚合物。互连件3106和传感器2100可以通过沉积、电镀、以及平版印刷技术而形成于基板上。

传感器2100的电容器包括三个机械串联的电容器。施加到支撑表面3114上的力、压力或负载压缩这三个电容器。第一电容器包括导电区域2112、介电层2104、以及导电区域2108。第二电容器包括导电区域2108、介电层2102、以及导电区域2110。第三电容器包括导电区域2108、介电层2106、以及导电区域2116。在电学上,传感器2100的电容器包括并联联接的第一电容器和第三电容器。该第一电容器和该第三电容器具有联接在一起的导电区域2108和2110。类似地,该第一电容器和该第三电容器的导电区域2112和2116被联接到接地件上。导电区域2112和2116对应地屏蔽导电区域2108和2110免受互连件3106外部的耦合和寄生电容。类似地,互连件2124和2126屏蔽互连件2122免受互连件3106外部的信号耦合和寄生电容。

结构3102和3104可以包含导电材料。例如,钛、钴以及钢合金是用于制造假体部件3100的导电材料。将互连件3106放置在支撑表面3128上将导电区域2116和互连件2126联接到结构3104上。导电区域2116和支撑表面3128被一起联接到接地件上。类似地,负载垫3108可以包含导电材料。在一个实施例中,材料(如铜或铜合金)可以沉积或电镀到互连件3106的表面上。负载垫3108被联接到导电区域2112和互连件2124上。支撑表面3114是由负载垫3108联接到导电区域2112和互连件2124上。如先前所提及的,导电区域2112和互连件2124被联接到接地件上。因此,结构3102和3104被联接到接地件上。可替代地,结构3102和3104可以通过除了传感器2100之外的替代路径联接到接地件上。在一个实施例中,电子电路和传感器2100被容纳在假体部件3100中。结构3102和3104形成使电子电路3110和传感器2100与外部环境中的寄生耦合和寄生电容隔离的屏蔽件。该设计进一步结合有内置在电容器中的内部屏蔽件,该屏蔽件防止或最小化互连件3106外部的寄生耦合和寄生电容。尽管在该实例中使用电容传感器,但假体部件3100中的负载传感器可以包括应变仪、微机电系统装置、压阻传感器、机械传感器、聚合物传感器、以及超声波传感器中的一种。

图37示出根据示例性实施例的结构3102。当安装在患者的关节区域中时,假体部件3100的结构3102包括暴露于关节外部的至少一个区域。该视图示出结构3102的包括可透过区域3702的壳体3122。在一个实施例中,可透过区域3702包含玻璃、peek、塑料、或聚合物。可透过区域3702可以被结合到包含钢合金、钛、钴、合金或金属的壳体3122的壁中的开口。在一个实施例中,壳体3122容纳电子电路。可替代地,结构3102的一部分或全部可以包含聚合物(如peek),该聚合物是光谱中的一些可透过的。在一个实施例中,可透过区域3702是传感器信号和通信信号可透过的。例如,当结构3102包含导电材料并且该导电材料接地时,信号可能被阻塞。假体部件3100可以充当容纳在该装置内的电子电路和传感器的屏蔽件。可透过区域3702可以是信号(如声信号、超声波信号、射频信号、红外线信号、以及光信号)可透过的。可透过区域3702暴露于关节区域周围和邻近的区域。在一个实施例中,窗口3702可以用于监测驻留在关节之中和周围的滑液。

传感器还可以位于可透过区域3702处或附近。这些传感器可以与电子电路3110一起安装。电子电路3110可以包括具有互连件和连接器的一个或多个印刷电路板。集成电路、asic装置、电源、通信电路、数字逻辑、转换器、功率管理、以及其他系统可以按小的形状因子联接在一起。在一个实施例中,asic组合这些特征中的许多特征以便使形状因子最小化并且降低功率消耗。传感器和通信电路位于电子电路3110上、邻近可透过区域3122,从而允许传送和接收信号。定向天线可以邻近可透过区域3702放置,以便向远程系统发送信息并且接收信息。

总体上,传感器可以用于监测邻近关节区域的滑液。滑液是在肌肉-骨骼关节中发现的天然润滑剂。滑液是在多个关节(如肘、膝、肩、髋及其他)中发现的。滑液包含粘蛋白、白蛋白、脂肪、上皮细胞、以及白细胞。该润滑剂还滋养无血管关节软骨。在骨与软骨在运动范围内彼此接触时,滑液缓冲关节冲击并减小摩擦。滑液还可以将氧气和其他营养物携带到软骨和关节的其他区域。类似地,滑液充当用于从关节区域中去除废弃材料的运输工具。滑液保留在关节之中和周围。滑液可以由将润滑剂保持在适当位置的滑膜固持。

在关节的健康与滑液的状况之间存在很强相关性。测量温度、ph、颜色、浊度、粘度、葡萄糖、以及蛋白质的传感器可以用于分析滑液。这些传感器可以单独地或彼此协调使用来确定关节健康。假体部件3100包括用于监测关节的这些传感器中的一个或多个。在该实例中,针对感染对关节进行监测。新植入的关节中的感染是严重问题。具有关节植入物的患者通常难以确定他或她是否已感染。外科手术本身和关节复原可以掩盖感染的早期迹象。假体关节是感染增长而无减缓的理想场所。在假体关节中存在是隔离的、但具有可以庇护细菌和促进生长的营养物的区域。感染可能导致巨大健康风险、抗生素治疗、增长的复原、长期住院、以及巨大成本。如果感染是显著的,那么存在要求移除假体关节的情况。患者被固定直到感染减退,并且随后植入新的假体关节。此类情况下的患者创伤可能是显著的。假体关节3100可以检测到关节局部的感染,通知医生或卫生保健提供者或及时采取适当行动。

在一个实施例中,可以监测温度。温度传感器3704可以邻近可透过区域3702安装。温度传感器3704被联接到电子电路3110上以用于接收温度数据。在一个实施例中,电子电路3110具有用于联接到多个传感器上的多个i/o通道。温度传感器3704监测关节的温度。在一个实施例中,温度传感器3704测量滑液的温度。对滑液的测量可以周期性地发生。

可以检测健康膝盖与被感染膝盖之间的温度差。在该实例中,将温度传感器3704校准到滑液的正常温度。这些校准可以周期性地发生,因为该正常温度将根据患者状况而发生变化。监测绝对温度和温度上的变化。从正常温度在温度上的变化可以指示感染。在该实例中,温度传感器可以是微机电系统传感器、热电偶、热敏电阻或其他温度测量装置。

在一个实施例中,可以监测ph。ph传感器3706可以邻近可透过区域3702安装并被联接到电子电路3110上用于接收ph数据。与温度类似,ph传感器3706可以被初始地校准到正常ph并且被周期性地重新校准。比正常值更低的ph可以指示存在感染。对随时间推移的绝对ph和差分ph的测量可以用于检测细菌的增加。总体上,健康膝盖具有近似7.23的ph。被感染膝盖具有近似7.06的ph。该装置可以针对个别患者的详情被校准。ph传感器可以是微机电系统ph传感器、可植入的ph微传感器、静电ph传感器、或其他ph测量装置。

在一个实施例中,可以监测浊度和颜色。浊度是对由于颗粒悬浮在流体内而引起的混浊或模糊的度量。例如,滑液随感染增长而变得浑浊。细菌、细菌废产物、以及白细胞只是可以悬浮在滑液中的微粒中的一些。浊度在感染由于细菌生长增强而恶化时增大。类似地,滑液的颜色在感染增长时发生变化。例如,健康滑液是相对清澈的流体。滑液在关节状态从健康变成非炎症性、从非炎症性变成炎症性、以及从炎症性变成败血性时改变颜色。非炎症性滑液是指示关节相关问题(如骨关节炎)的浅黄色的清澈液体。滑液将是粘性的,从而保持其润滑和阻尼特性。炎症性滑液在颜色上是浅黄色的。该炎症性滑液是模糊且不清澈的。该炎症性滑液还将失去其粘性特性中的某一些,从而具有水样稠度。该炎症性滑液可以指示问题,如类风湿关节炎或感染。败血性滑液在颜色上可以是暗黄色至红色的。此外,败血性滑液是不透明的。该滑液可以含有高计数的细菌、真菌、白细胞、以及红细胞。测量颜色、浊度、或两者的组合可以用于确定关节健康。

在该实例中,光学传感器如led3708(发光二极管)和光电二极管阵列3710可以用于测量颜色和浊度。在一个实施例中,led3708和光电二极管阵列3710被定位在可透过区域3702之后。led3708和光电二极管阵列3710被容纳在假体部件3100之内并且可以联接到电子电路3110上或成为该电子电路的一部分。如先前所提及的,可透过区域3702可以是光可透过的玻璃。led3708可以直接将白光传送到光电二极管上。该光电二极管可以是光电二极管阵列3710的一部分或是单独装置。该光电二极管可以用于校准led3708并且用于检测由该装置输出的光或强度上的变化。led3708还照亮滑液的样品。如所示,由led3708发射的光是穿过可透过区域3702被传送到邻近假体部件3100的滑液中。在一个实施例中,对应地具有红色、绿色、以及蓝色滤光器的三个光电二极管检测穿过滑液被传送的光。每个光电二极管测量红色、绿色、以及蓝色的相对贡献。贡献可以与对应于由校准光电二极管进行的测量的校准值按比例进行比较。该校准值对应于白光的红色、绿色、以及蓝色分量的总和。超过一个可透过区域可以用于发送和接收光。此外,一个或多个障碍物或可透过区域可以用于将光引导到滑液中,并且防止来自led3708的直射光辐射到光电二极管阵列3710上。

用于测量的等式可以如下:

a)r=红色,g=绿色,b=蓝色,c=校准

b)颜色=[r,g,b]/(r+g+b)

c)浊度=(r+g+b)/3c

可以将由光电二极管阵列3710测得的颜色与已知的感染颜色数据进行比较。类似地,可以将由光电二极管阵列3710得到的浊度测量值与已知的浊度颜色数据进行比较。颜色和浊度测量值两者均可以由假体部件3100取得。结合使用这两种测量值可以提供允许进一步精调假体的数据,从而提供更好的评估和治疗方法。此外,取得周期性测量值并比较颜色和浊度测量值可以得到变化率。该变化率可以用于确定感染是增长还是下降。比较随时间推移的测量值可以用于确定感染治疗是否成功。将传感器放置在假体部件中在预防感染方面具有实质益处。统计学上大多数感染在关节植入之后不久或在外科手术之后的头几个月内发生。感染不太可能在外科手术伤口已经愈合和关节已经复原之后发生。由于外科手术引起以及在复原过程中的疼痛也可能掩盖感染症状。如果感染发生,则该感染将作为邻近关节的局部感染开始。第一益处是,假体部件3100可以在关节局部的感染扩散到整个身体之前识别该感染。第二益处是,对感染的治疗可以在关节区域局部进行。第三益处是,假体部件3100还可以包括可被释放到关节邻近的抗生素。第四益处是,假体部件3100可以与远程系统和数据库进行通信。该远程系统可以向患者提供通知去看医生。该远程系统还可以向医生提供数据以供分析和治疗。

披露了使用假体部件3100的长期关节监测的方法。该方法可以通过多于或少于所示的步骤来实践,并且不限于所示的步骤顺序。该方法不限于示例性胫骨假体部件实例,但可以用于髋、肩、踝、肘、脊柱、手、脚以及骨。在第一步骤中,将电子电路和一个或多个传感器容纳在假体部件中。在第二步骤中,邻近该假体部件周期性地测量滑液的特性。该特性可以用于确定感染或其他问题的存在。所测量特性的实例是温度、ph、颜色、浊度、粘度、葡萄糖水平、以及蛋白质。在第三步骤中,比较测量值。在一个实施例中,将测量值彼此进行比较以便确定是否已发生变化。此外,随着时间推移获得的多个测量值可以指示趋势。在另一个实施例中,可以将所测量的特性与和正被识别的感染或其他问题有关的已知的或预先确定的值进行比较。

在第四步骤中,测量滑液的颜色。在第五步骤中,将滑液的颜色与已知的颜色范围进行比较。在第六步骤中,可以确定是否存在感染。在一个实施例中,该比较得到与已知的滑液颜色类似的颜色。例如,清澈的滑液是正常的。清澈的黄色滑液可以指示炎症性和其他问题。模糊的黄色滑液可以指示细菌或其他问题的存在。具有红色色调的滑液可以指示败血症和滑液中的血。

在第七步骤中,测量红色、绿色、以及蓝色的相对贡献。在第八步骤中,将每种颜色的贡献与这些相对贡献的总和按比例进行比较。滑液的颜色可以通过评估红色、绿色、以及蓝色的贡献来确定。在第九步骤中,确定颜色的变化率。该颜色的变化率可以用于确定感染的状态。例如,一旦检测到感染,则变化率对应于感染的减小或增长。该颜色的变化率还可以用于确定治疗的有效性。在治疗后,变化率应指示感染的减小。

披露了使用假体部件3100的长期关节监测的方法。该方法可以通过多于或少于所示的步骤来实践,并且不限于所示的步骤顺序。该方法不限于示例性胫骨假体部件实例,但可以用于髋、肩、踝、肘、脊柱、手、脚以及骨。在第一步骤中,将电子电路和一个或多个传感器容纳在假体部件中。在第二步骤中,邻近该假体部件周期性地测量滑液的浊度。浊度可以用于确定感染或其他问题的存在。其他所测量特性的实例是温度、ph、颜色、浊度、粘度、葡萄糖水平、以及蛋白质。在第三步骤中,将浊度测量值与已知的浊度测量值或预先确定的浊度范围进行比较。在一个实施例中,比较这些周期性测量确定是否已发生变化。此外,随着时间推移所取得的多个浊度测量值可以指示趋势。在另一个实施例中,可以将所测量的特性与和正被解决的感染或其他问题有关的已知的或预先确定的浊度值进行比较。在第四步骤中,可以确定是否存在感染。浊度是物质的混浊或模糊度的度量。例如,健康滑液是清澈的。相反,被感染滑液由于细菌的存在是模糊的或混浊的。此外,感染的严重程度可能与滑液中微粒的数量有关。微粒的数量越高,感染就可能越恶劣。

在第五步骤中,将浊度与先前的浊度测量值进行比较。在第六步骤中,确定浊度的变化率。总体上,如果浊度增大,那么感染或问题正在恶化,因为健康滑液是清澈的。可替代地,如果已经提供治疗并且浊度随着时间推移减少,那么患者健康正在改善。在第七步骤中,将数据无线传送到远程系统。在一个实施例中,该远程系统由于有限的传送范围而临近假体部件。该远程系统可以包括处理器和图形处理器。在第八步骤中,通过假体部件的可透过区域接收光。光被传送到邻近假体部件的滑液中。光照亮由光电二极管阵列检测到的滑液。光电二极管阵列的每个二极管可以具有滤波器,该滤波器用于过滤穿过假体部件的可透过区域的入射光。

图38示出根据示例性实施例的假体部件3100和远程系统3802。远程系统3802可以是设备、工具、计算机、记事本、移动电话、智能手机、或医疗装置。从假体部件3100传送的数据是由远程系统3802接收。类似地,远程系统3802可以将信息传送给支持操作和传感器测量的假体部件3100。远程系统3802可以包括逻辑电路、微处理器、微控制器、或数字信号处理器。在该实例中,远程系统3802是具有显示器的膝上型计算机。远程系统3802可以包括用于分析来自假体部件3100的定量测量数据并显示信息以用于评估的软件。远程系统3802包括用于联接到假体部件3100的电子电路3110上的传送电路、接收电路、或两者。类似地,电子电路3110包括传送电路、接收电路、或两者。在该实例中,电子电路包括具有传送和接收电路的asic。在一个实施例中,传送和接收电路穿过可透过区域3702进行传送。可替代地,其他可透过区域可以被添加到假体部件3100上以用于支持天线布局。此外,假体部件3100可以由聚合物(如peek)制成,该聚合物允许传送和接收信号。在一个实施例中,数据到远程系统3802的传送是短程的。传送范围典型地小于10米。在安装好的假体部件中,使得rf传送穿过组织。该短的传送距离减少了未经授权的数据接收。在一个实施例中,数据传送为了安全而被加密。数据可以由远程系统3802加密。

在该实例中,壳体3122包括电子电路3110和窗口3702。窗口3702可以是信号(如声信号、超声波信号、射频信号、红外线信号、以及光信号)可透过的。窗口3702可以包含玻璃,该玻璃被结合到假体部件的钢、钛、钴、合金、或金属上。可替代地,结构3102的一部分或全部可以包含塑料或聚合物(如peek),该塑料或聚合物是光谱中的一些可透过的。窗口3702未被假体关节的其他部件阻塞并且暴露于关节区域周围和邻近的多个区域。在一个实施例中,窗口3702可以用于监测邻近假体关节的区域。类似地,传感器可以被紧固到结构3102或3104上并且暴露于该区域。窗口3702可以用于测量与滑液的健康有关的一个或多个参数。在该实例中,光学传感器用于测量颜色和浊度。电子电路3110联接到这些传感器中的每一个上。在一个实施例中,通道被分配给每个传感器。这些通道可以串联地或并联地操作。电子电路3110中的逻辑电路控制何时取得测量值。测量数据可以被存储在电子电路3110上的存储器中,直到被传送。测量数据可以被转换成数字格式。定量参数测量值可以单独地或结合使用来确定健康组织。

披露了使用假体部件3100的长期关节监测方法。该方法可以通过多于或少于所示的步骤来实践,并且不限于所示的步骤顺序。该方法不限于示例性胫骨假体部件实例,但可以用于髋、肩、踝、肘、脊柱、手、脚以及骨。在第一步骤中,将电子电路和一个或多个传感器容纳在假体部件中。在第二步骤中,监测邻近假体部件的滑液。在第三步骤中,测量该滑液的特性。正被测量的特性的实例是温度、ph、颜色、浊度、粘度、葡萄糖水平、以及蛋白质。在第四步骤中,将数据发送到远程系统。该数据可以从该假体部件无线地传送到该远程系统。该远程系统可以包括数字逻辑、处理器、数字信号处理器、图形处理器、通信电路、或模拟电路。在一个实施例中,由于信号的功率限制以及信号在其中行进的介质,传送可能是小于10米。例如,传送必须穿过在假体部件与外部环境之间的多层组织来发送。

在第四步骤中,可以对由假体部件发送的数据进行分析。数据可以由远程系统来分析。数据还可以被发送到其他设备、装置、计算机、或数据库。数据可以与其他信息或数据结合以创建与关节或假体系统的研究有关的临床数据库。在第五步骤中,生成报告。该报告是基于由假体部件中的这些传感器提供的定量数据。在第六步骤中,将该报告发送给至少一个实体。总体上,该报告使用由假体部件中的这些传感器生成的定量数据。在该实例中,传感器数据可以是对邻近关节的滑液的分析。该报告可能导致采取动作。例如,检测到感染或状况(如关节炎)可导致治疗。这些传感器可以用于监测治疗的进展。在第七步骤中,可以测量滑液的温度。在第八步骤中,可以测量滑液的ph。在第九步骤中,可以测量滑液的颜色或浊度。该报告可能如同对患者的传感器数据的状态更新,或者如同所有所测量参数、趋势、以及发送给卫生保健提供者(如医生、外科医生、或医院)的数据的分析的详细列表那样简单。实体可以被广泛地解释为有权使用信息的任何东西或任何人。该报告可以被加密以维持信息的隐私性。类似地,传感器还可以包括负载和负载位置数据。此传感器数据可以用于解决有关关节以及患者如何适应假体的运动学问题。

图39是根据示例性实施例的电子电路3110和结构3104的图示。结构3104是在此所披露的假体部件3100的部件。结构3104可以包括用于容纳电子电路3110的空腔3902。电子电路3110被竖直地放置到空腔3902中。空腔3902延伸到结构3104的杆部3124中。总体上,电子电路可以被容纳在结构3102、3104、或两者之内。

图40是根据示例性实施例的电子电路3110和结构3104的图示。结构3104可以包括用于容纳电子电路3110的空腔4002。电子电路3110被水平地放置到空腔4002中。空腔4002居中地位于互连件3106之间、在假体部件3100的轻负载区域中。传感器(如温度传感器、ph传感器、光学传感器、葡萄糖传感器、以及其他传感器)可以被安装在壳体3122中并联接到电子电路3110上。空腔4002位于壳体3122之下并且提供用以收纳用于邻近假体部件3100进行测量的多个传感器的空间。互连件3106上覆于支撑表面3126和3128之上。每个互连件3106包括传感器阵列并且对应于膝的室。传感器位于互连件3106的负载垫3108之下用于测量力、压力或负载。电子电路3110可以包括用于提供关节的定位信息的加速度计。

图41描绘了呈系统4100形式的机器的示例性图形表示,在该系统内,指令集在被执行时可以使该机器进行以上所讨论的任何一种或多种方法。在一些实施例中,该机器作为独立装置进行操作。在一些实施例中,该机器可以(例如,使用网络)被连接到其他机器上。在网络化部署中,该机器可以作为服务器-客户端用户网络环境中的服务器或客户端用户机或作为点对点(或分布式)网络环境中的对等机进行操作。

该机器可以包括服务器计算机、客户端用户计算机、个人计算机(pc)、平板pc、膝上型计算机、台式计算机、控制系统、逻辑电路、传感器系统、asic、集成电路、网络路由器、交换机或网桥、或能够执行指定将由该机器采取的动作的指令集(顺序地或以其他方式)的任何机器。应当理解的是,本披露的装置广义上包括提供语音、视频或数据通信的任何电子装置。另外,虽然图解了单个机器,但术语“机器”还应当理解为包括单独地或联合地执行指令集(或多个指令集)以进行在此所讨论的任何一种或多种方法的的机器的任何集合。

系统4100可以包括经由总线4108而与彼此通信的处理器4102(例如,中央处理单元(cpu)、图形处理单元(gpu)或两者)、主存储器4104以及静态存储器4106。系统4100可以进一步包括视频显示单元4110(例如,液晶显示器(lcd)、扁平面板、固态显示器、或阴极射线管(crt))。系统4100可以包括输入装置4112(例如,键盘)、光标控制装置4114(例如,鼠标)、磁盘驱动单元4116、信号发生装置4118(例如,扬声器或遥控装置)以及网络接口装置4120。

磁盘驱动单元4116可以是其他类型的存储器(如闪存存储器)并且可以包括机器可读介质4122,在该计算机可读介质上存储有具体实施在此所描述的任何一种或多种方法或功能(包括以上所说明的那些方法)的一个或多个指令集(例如,软件4124)。指令4124还可以在其由系统4100执行期间,完全地或至少部分地驻留在主存储器4104、静态存储器4106内、和/或处理器4102内。主存储器4104和处理器4102还可以构成机器可读介质。

可以类似地构建专用硬件实施,包括但不限于:专用集成电路、可编程逻辑阵列以及其他硬件装置,以便实施在此所描述的方法。可以包括不同实施例的设备和系统的应用广泛地包括多种电子系统和计算机系统。一些实施例在两个或更多个特定互连的硬件模块或装置中实施功能,这些模块或装置带有在模块之间和通过模块传送的相关控制信号和数据信号,或作为专用集成电路的部分。因此,该示例性系统适用于软件、固件以及硬件实现。

根据本披露的不同实施例,在此所描述的方法旨在用于作为在计算机处理器上运行的软件程序进行操作。此外,还可以构建可包括但不限于分布式处理或部件/对象分布式处理、并行处理、或虚拟机器处理的软件实现,以实施在此所描述的方法。

本披露设想机器可读介质,该机器可读介质包括指令4124、或接收并执行来自被传播信号的指令4124,这样使得连接到网络环境4126的装置可以发送或接收语音、视频或数据,并且使用这些指令4124通过该网络4126进行通信。这些指令4124可以通过网络接口装置4120在网络4126上进一步被传送或接收。

虽然在示例性实施例中示出了机器可读介质4122是单一介质,但术语“机器可读介质”应被理解为包括存储该一个或多个指令集的单一介质或多重介质(例如,中心式或分布式数据库,和/或相关联高速缓冲存储器和服务器)。术语“机器可读介质”还应当被认为包括能够存储、编码或携带指令集的任何介质,该指令集用于由该机器执行并且引起该机器执行本披露的任何一种或多种方法。

术语“机器可读介质”因此应被理解为包括但不限于:固态存储器,如存储卡或容纳一个或多个只读(非易失性)存储器、随机存取存储器或其他可重写(易失性)存储器的其他包装;磁光介质或光介质如磁盘或磁带;以及载波信号,如具体实施传送介质中的计算机指令的信号;和/或电子邮件的数字文件附件或其他自我包含信息文档或文档集被认为是等效于有形存储介质的分布式介质。因此,认为本披露包括任何一种或多种机器可读介质或分布式介质,如在此所列举的并且包括本领域公认的等效物和后继介质,其中存储在此的软件实现。

虽然本说明书描述了参考具体标准和协议的实施例中实现的部件和功能,但本披露不局限于这类标准和协议。因特网和其他分组交换网络传输的每个标准(例如,tcp/ip、udp/ip、html、http)代表现有技术的实例。这类标准被具有大致相同功能的更快或更高效的等效标准周期性地取代。因此,具有相同功能的替代标准和协议被认为是等效物。

图42是根据示例性实施例的用于测量和报告的通信网络4200的图示。简单地说,通信网络4200将广泛数据连接性扩展至其他装置或服务。如所示的,测量和报告系统4255可以通信地联接至通信网络4200和任何相关联的系统或服务。

作为一个实例,测量系统4255可以与远程服务或提供商共享其所感兴趣的参数(例如,角度、负载、平衡、距离、对准、位移、移动、旋转、以及加速度),例如以便分析或报告外科手术状态或结果。可以与(例如)服务提供商共享此数据以便监测进展或与计划管理员共享此数据以用于外科手术监测目的或疗效研究。通信网络4200可以进一步连结至电子医疗记录(emr)系统以便实施健康信息技术实践。在其他实施例中,通信网络4200可以通信地联接至his医院信息系统、hit医院信息技术和him医院信息管理、ehr电子健康记录、cpoe计算机医嘱录入以及cdss计算机决策支持系统。这提供了不同的信息技术系统和软件应用程序进行通信,以便准确地、高效地、并且持续地交换数据以及使用所交换的数据的能力。

通信网络4200可以通过局域网(lan)4201、无线局域网(wlan)4205、蜂窝网络4214、和/或其他射频(rf)系统来提供有线或无线连接性(参见图4)。lan4201和wlan4205可以通过例如中心局而通信地联接至因特网4220。该中心局可以容纳用于分配电信服务的公共网络交换设备。电信服务可以包括传统的pots(普通老式电话服务)和宽带服务,如如有线(cable)服务、hdtv服务、dsl服务、voip(因特网协议电话)服务、iptv(因特网协议电视)服务、因特网服务等等。

通信网络4200可以利用常用计算和通信技术来支持电路交换和/或分组交换通信。因特网4220和其他分组交换网络传输的每个标准(例如,tcp/ip、udp/ip、html、http、rtp、mms、sms)代表现有技术的实例。这类标准周期性地被具有基本上相同功能的更快或更高效的等效物取代。因此,具有相同功能的替代标准和协议被认为是等效的。

蜂窝网络4214可以通过许多接入技术来支持语音和数据服务,这些接入技术如gsm-gprs、edge、cdma、umts、wimax、2g、3g、wap、软件定义无线电(sdr)以及其他已知技术。蜂窝网络4214可以在频率复用方案下联接至基站接收器4210以用于与移动装置4202进行通信。

基站接收器4210进而可以通过分组交换链路将移动装置4202连接至因特网4220。因特网4220可以支持用于将来自测量系统4255的数据分配至移动装置4202的应用服务和服务层。移动装置4202还可以使用无线通信通道通过因特网4220连接至其他通信装置上。

移动装置4202还可以通过wlan4205连接至因特网4220。无线本地接入网络(wlan)在局部地理区域内提供无线接入。wlan典型地是由接入点(ap)4204(也被称为基站)的群集组成。测量系统4255可以与基站区域内的其他wlan站(如膝上型电脑4203)进行通信。在典型的wlan实现中,物理层使用多种技术,如802.11b或802.11gwlan技术。物理层可以使用红外线、2.4ghz频段上的跳频扩频、2.4ghz频段上的直接序列扩频或(例如)5.8ghzism频段或更高ism频段(例如,24ghz等)上的其他接入技术。

通过通信网络4200,测量系统4255可以与网络上的远程服务器4230并且与其他移动装置建立连接以用于交换数据。远程服务器4230可以访问数据库4240,该数据库被本地或远程地存储并且可以包括专用数据。远程服务器4230还可以直接地、或通过因特网4220来托管应用服务。

应指出,非常少的数据存在于所植入的矫形装置上。通过分析已经用于人受试者中或模拟使用的矫形装置以根据经验获得大部分数据。对磨损情况、材料问题以及失效机理进行研究。虽然可以通过这种类型的研究取得信息,但从测量角度看,它确实产生关于初始安装、手术后使用、以及长期使用的实质性数据。就像每个人都是不同的,每个装置安装也是不同的,在初始负载、平衡以及对准上有所变动。已经测量数据并且使用该数据来安装矫形装置将大大增大植入物程序的一致性,从而减少返工并且最大化装置的寿命。在至少一个示例性实施例中,所测量的数据可以被收集至数据库,在该数据库中,该数据可以被存储和分析。例如,一旦收集了所测量的数据的相关样本,该相关样本就可以用于定义最优初始测量设置、几何形状以及对准以用于最大化植入的矫形装置的寿命和可用性。

本发明适用于广泛范围的医疗和非医疗应用,这些应用包括但不限于:频率补偿;对物理系统的控制、或报警;或者监测或测量所感兴趣的物理参数。高度紧凑感测模块或装置中可达到的准确度和重复性的水平可以适用于监测或测量整个人体内的生理参数的许多医疗应用,这些生理参数包括但不限于:在血管系统、淋巴系统、呼吸系统、消化系统、肌肉、骨和关节、其他软组织区域、以及间质液体中的应用下,骨密度、移动、粘度、以及各种流体的压力、局部温度等。

虽然已经参考具体实施例描述了本发明,但本领域的普通技术人员将认识到,可在不偏离本发明的精神和范围的情况下对本发明做出许多改变。这些实施例中的每一个及其明显变体被认为落在本发明的精神和范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1