药物洗脱支架和使用其用于使功能性内皮细胞层恢复的方法与流程

文档序号:15466999发布日期:2018-09-18 19:31阅读:745来源:国知局

本申请要求在2016年12月22日提交的美国临时专利申请号62/438,432的优先权,其全部内容通过引用并入本文。

技术领域

本公开涉及药物洗脱支架,制造和使用药物洗脱支架的方法,以及用于在植入药物洗脱支架后预测长期支架功效和患者安全性的方法。更具体且非限制性地,本公开涉及药物洗脱支架的设计,所述药物洗脱支架包含支架框架(stent framework)(例如,金属基的或用可生物降解材料制成的)和覆盖所述支架的全部或部分表面的一层或多层,所述层能够承载(host)药物并以持续的方式释放所述药物,从而使与所述药物洗脱支架植入相关的患者风险最小化或消除。本文公开的支架能够在植入后使内皮细胞层功能恢复。



背景技术:

多年来,用于医疗装置和药物递送的涂层的使用已经成为必要,尤其是为了增强医疗装置和植入物的能力。药物洗脱医疗装置已经成为用于治疗心血管疾病的主要生物医学装置。

心脏病和心力衰竭是美国和全世界最普遍的两种健康病症。在冠状动脉疾病中,心脏中的血管变得狭窄。当发生这种情况时,心脏肌肉的氧气供应减少。最初,通过手术例如CABG(冠状动脉旁路搭桥术(Coronary Artery Bypass Graft))进行冠状动脉疾病的主要治疗,这是由心脏外科医生进行的常规且有效的程序。然而,死亡率和发病率相当高。

在20世纪60年代,一些医生开发了通过使用医疗装置的侵入性较小的治疗。通过股动脉的小切口插入这些装置。例如,在患有冠状动脉疾病的患者中使用球囊血管成形术(其可以使用球囊导管(其膨胀以打开动脉)来扩张已经变窄的动脉,并且其也被称作PTCA(经皮腔内冠状动脉血管成形术(Percutaneous Transluminal Coronary Angioplasty))。在球囊血管成形术后,由于血栓形成(在血管中血块的发展,所述血块可以堵塞血管并阻止血液流动)或异常的组织生长,通常在3至6个月内,大约40至50%的冠状动脉通常患上再狭窄(在血管已经被打开,通常是通过球囊血管成形术打开后,所述血管的再狭窄)。因此,再狭窄是PTCA有效性的主要限制之一。

在20世纪80年代末,用于保持冠状动脉扩张的裸金属支架(BMS)的引入部分缓解了该问题,以及在PTCA程序中球囊充气后的动脉切割(dissection)的问题。

支架是安装在球囊导管上的网状管(例如,可以插入体内的细长的柔性管)。在这个示例中,支架穿过心脏。然而,BMS最初仍然与支架植入6个月后患者的约25%的总体再狭窄率相关。通常,支架撑杆(stent strut)最终被生长中的动脉组织包埋。这种组织通常由平滑肌细胞(SMC)组成,其增殖可以由支架置入时动脉的原始损伤引起。

如图1所描述,血管100的整个内表面被“活性的”功能性EC 101覆盖,即自发地产生一氧化氮(NO)的内皮细胞,所述一氧化氮为一种小分子,其作为信号以停止下面的SMC 103的增殖。通常,EC 101的这种NO自然释放在EC 101彼此直接接触时发生,例如通过连续且紧密堆积的膜铺设动脉的内表面时。

当支架(或球囊)在血管150内膨胀时,与血管壁接触的支架撑杆将部分破坏EC层并损伤动脉,例如,在接触点105a和105b处。因此,NO的自然释放至少局部地在接触点105a和105b处是高度紊乱的。这种损伤可以触发作为修复机制的SMC增殖,例如SMC 107a和107b。SMC的不受控制的增殖可以导致血管重新闭合或“再狭窄”。如果在SMC 107a和107b增殖时,EC 101也可以增殖,并最终通过连续膜再次覆盖支架撑杆和SMC 107a和107b,然后可以恢复NO释放并且可以停止SMC的增殖。因此,再狭窄的风险可以降低(如果未被消除),情况可以稳定下来。

自20世纪90年代以来,介入性心脏病领域的最大挑战之一是首先了解,然后确保这种用于完全EC覆盖并恢复EC层功能的“竞争(race)”。内皮是排列在所有血液和淋巴脉管系统内的单层细胞。内皮的一个重要功能是调节脉管系统与间质组织之间的液体、大分子和白细胞的运动。通过内皮细胞使用许多跨膜连接蛋白(包括VE-钙粘着蛋白和p120-连环蛋白)形成强的细胞-细胞接触的能力,部分地介导该功能。两种蛋白质的共定位是功能良好的内皮细胞层的象征。

在历史上,已经考虑了两种策略以在支架植入后恢复动脉。大多数药物洗脱支架(DES)设计的一个目标是促进活性内皮细胞(EC)的增殖,以加速其迁移,并最终覆盖支架的表面。如果这些新的EC是有活性的,例如形成连续且紧密堆积的膜,则它们通常自发地释放NO,从而阻碍SMC的增殖。

大多数DES设计的另一个目标是抑制平滑肌细胞(SMC)的增殖。通常,已经通过从支架表面局部释放抗增殖剂(通常为抗血管生成药物,类似于抗癌剂)来实现该目标。

市场上的许多DES是以聚合物释放基质为基础制成的,药物从所述基质上洗脱。第一代和第二代支架通常涂布有生物稳定的聚合物。在这种支架中,聚合物永久保留在支架上,并且通常假定对炎症反应和EC的增殖都具有较小的作用。然而,在一些情况下,这些支架不能100%释放其涂层所承载的药物。特别地,有时大部分药物在聚合物涂层中保留很长一段时间。此外,迄今为止使用的大多数药物都不是选择性的,并且相比于抑制SMC的增殖,其更倾向于抑制EC的增殖。

这种缺点可能对患者有突然的且可能致命的后果,因此对DES行业也是如此。事实上,尽管第一年中的再狭窄可能由使用裸金属支架(BMS)的约20%降低到使用药物洗脱支架(DES)的约5%,但DES的大量引入带来了两个新的挑战:(1)迟发性血栓形成(late thrombosis)的现象,即在支架植入后一年或更长时间的动脉再堵塞,和(2)新生内膜层的渐进性生长再次导致再狭窄。因此,DES通常实现的是在DES植入后的几年中延迟再狭窄的发生,但是会引起其他并发症(如血栓形成)。

裸金属支架的植入被认为是除再狭窄以外的血栓形成的来源,但是通常通过联合了两种抗血栓剂(例如阿司匹林和氯吡格雷)的全身性双重抗血小板疗法(DAPT)处理所述血栓形成。例如,植入了支架的患者经常使用这种DAPT持续1到2个月。使用药物洗脱支架,已经报道了在中断DAPT后由于凝血(血栓形成)导致的动脉再堵塞的许多例子。因此,许多心脏科医生将DAPT维持3、6、9和现在的12个月或更长的时间。在2005-2006年,报道了多个例子,心肌梗塞伴全支架血栓形成可以在中断18个月的DAPT后仅仅几周就出现。

迟发性血栓形成是一种突然的并发症,如果患者不在医学随访中,或者即使患者在医学随访中,但患者远离导管室(cathlab)或装备良好的医疗中心,当所述迟发性血栓形成发生时,其可能是致命的。此外,DAPT可能存在一个难以管理的瓶颈,即,一些患者可能自行决定在使用一段时间后停止,或忘记将他们的药物再装满,或忘记服用他们的药物,或可能需要接受无法预料的临床干预,因此不得不停止抗血栓治疗。

迟发性血栓形成的确切原因仍不完全清楚。病理学家估计,迟发性血栓形成揭示了EC对支架的不完全覆盖,使金属或聚合物材料长时间与血液接触,血小板粘附可能发生在所述材料上,这可能导致血栓的灾难性沉淀。替代性的解释提出,EC的不完全覆盖可能是药物从释放层中不完全释放的结果,其可以抑制EC在试图迁移和覆盖所述聚合物+药物+SMC层的表面时的增殖。

支架撑杆的厚度可以进一步成为EC增殖的障碍的来源。当EC需要在表面上增殖时,其增殖的速率经常受到障碍物的高度的负面(且较大)影响,它们需要克服该表面以完全覆盖。因此,并非所有的支架设计和药物释放曲线都是相等的。例如,当DES置入动脉时,受损的EC层必须克服障碍物,所述障碍物的高度大致等于支架撑杆的厚度+药物释放聚合物层的厚度+已开始形成的SMC层的厚度。前两种厚度与DES的设计有关,而后者的厚度与药物的功效、其在释放层中的负载以及其释放速率有关。因此,仍然需要开发新的支架和制造支架的方法,其能够降低与支架植入相关的患者风险(例如,再狭窄、血栓形成、MACE)。



技术实现要素:

本公开涉及药物洗脱支架,以及制造和使用药物洗脱支架的方法,和一种预测支架功效和患者安全性的方法。在一个实施方案中,药物洗脱支架(1)组合了四个部分:支架框架(stent framework)(2)、含药层(drug-containing layer)(3)、药物(4)和支撑(supporting)含药层的生物相容性基层(5)。在一个实施方案中,设计支架和制造支架的方法,从而控制时间以实现支架表面/血管壁的充分再内皮化,并通过控制含药层的厚度和该厚度的分布来改善内皮功能恢复。在一个实施方案中,腔面(luminal side)中的含药层的厚度与远腔面(abluminal side)中的厚度不同。在一个实施方案中,支架最小化迟发性血栓形成,即,在支架植入后一年或更长时间的动脉再堵塞,和新生内膜层的渐进的厚度再次导致再狭窄。在一个实施方案中,支架和制造支架的方法使得它们减少主要不良心脏事件(MACE)的数量或频率。在一个实施方案中,在90天内,支架撑杆表面的新生内膜覆盖或再内皮化显著改善强度功效和患者安全性。

支架框架(2)可以由单片(或多片)金属或丝或管制成。例如,支架框架可以包含钴-铬(例如MP35N或MP20N合金)、不锈钢(例如316L)、镍钛诺、钽、铂、钛,合适的生物相容性合金、其他合适的生物相容性材料和/或其组合。

在一些实施方案中,支架框架(2)可以是可生物降解的。例如,支架框架(2)可以由镁合金、聚乳酸、聚碳酸酯聚合物、水杨酸聚合物和/或其组合制成。换言之,可以以这样的方式制造的任何生物相容的但也是可生物降解的材料,其径向力强到足以被植入并支撑以稳定损伤和血管回缩,但是支架的厚度小于120um。

在其他实施方案中,支架框架(2)可以由一种或多种塑料制成,例如聚氨酯、聚四氟乙烯、聚乙烯等。

含药层(3)可以由聚合物制成,并且其可以包含覆盖全部或部分支架表面的一层或多层。此外,含药层(3)能够承载药物(4),并以持续的方式释放药物(4)。

在一个实施方案中,含药层可以具有不均匀的涂层厚度。例如,支架腔面上的含药层厚度和支架侧面(lateral side)上的含药层厚度小于支架远腔面上的含药层厚度。

在一个实施方案中,例如由于不均匀的涂层厚度,含药层可以在植入血管30天内释放药物。例如,可以使用标准动物PK研究验证释放时间。因此,当将药物洗脱支架(1)植入人体血管时,药物(4)可以在30天或更少的时间内从涂层(3)中释放。在其他实施方案中,药物以不同的速率释放,例如45天或更少、60天或更少、90天或更少、120天或更少。

在一些实施方案中,药物可以仅包含在支架的远腔面。

在含药层(3)由可生物降解的或可生物吸收的聚合物制成的实施方案中,聚合物可以在支架植入后45天至60天被生物降解或生物吸收。在其他实施方案中,聚合物在如45天或更少、60天或更少、90天或更少、120天或更少的时间内被生物降解或生物吸收。

在一些实施方案中,支架腔面和/或侧面上的聚合物可以不同于远腔面上的聚合物。例如,形成支架腔面上的含药层和支架侧面上的含药层的一种或多种聚合物比形成支架远腔面上的含药层的一种或多种聚合物降解得更快。

生物相容性基层(5)可以形成于支架框架(2)上,并且其可以具有比支架框架(2)更加生物相容的表面。例如,生物相容性基层(5)可以由聚甲基丙烯酸正丁酯、PTFE、PVDF-HFP、聚(苯乙烯-b-异丁烯-b-苯乙烯)、派瑞林C、PVP、PEVA、SBS、PC、TiO2或具有良好生物相容性的任何材料(或其组合)制成。

以下提供本公开的另外的示例性实施方案,并且其仅为了参考目的而编号:

1.一种药物洗脱支架,其包含:

支架框架;

含药层;

包埋在含药层中的药物;和

设置于支架框架上并支撑含药层的生物相容性基层,

其中含药层具有不均匀的涂层厚度,任选地,其中含药层被配置为在药物洗脱支架植入后45天至60天完全溶解。

2.实施方案1的药物洗脱支架,其中含药层被配置为在植入血管30天内释放药物。

3.实施方案1的药物洗脱支架,其中支架腔面上的含药层厚度和支架侧面上的含药层厚度小于支架远腔面上的含药层厚度。

4.实施方案3的药物洗脱支架,其中腔面上的含药层厚度与远腔面上的含药层厚度之间的比例为2:3至1:7。

5.实施方案3或4的药物洗脱支架,其中侧面上的含药层厚度与远腔面上的含药层厚度之间的比例为2:3至1:7。

6.实施方案1至5中任一项的药物洗脱支架,其中药物仅被包埋在支架远腔面上的含药层中。

7.实施方案1至6中任一项的药物洗脱支架,其中支架框架由单片金属、丝或管制成。

8.实施方案7的药物洗脱支架,其中金属包含不锈钢、镍钛诺、钽、钴-铬MP35N或MP20N合金、铂和钛中的至少一种。

9.实施方案1至6中任一项的药物洗脱支架,其中支架框架由可生物降解的材料制成。

10.实施方案1至9中任一项的药物洗脱支架,其中药物包含抗血栓形成剂、抗凝血剂、抗血小板剂、抗肿瘤剂、抗增殖剂、抗生素、抗炎剂、基因治疗剂、重组DNA产物、重组RNA产物、胶原蛋白、胶原蛋白衍生物、蛋白质类似物、糖类、糖类衍生物、平滑肌细胞增殖抑制剂、内皮细胞迁移、增殖和/或存活的促进剂中的至少一种,及其组合。

11.实施方案10的药物洗脱支架,其中药物包含西罗莫司(sirolimus)和/或衍生物或类似物。

12.实施方案1的药物洗脱支架,其中含药层具有5至12μm的厚度。

13.实施方案1的药物洗脱支架,其中含药层选自聚(羟基链烷酸酯)(PHA)、聚(酯酰胺)(PEA)、聚(羟基链烷酸酯-共-酯酰胺)、聚丙烯酸酯、聚甲基丙烯酸酯、聚己内酯、聚(乙二醇)(PEG)、聚(丙二醇)(PPG)、聚(环氧丙烷)(PPO)、聚(富马酸丙烯酯)(PPF)、聚(D-丙交酯)、聚(L-丙交酯)、聚(D,L-丙交酯)、聚(内消旋-丙交酯)、聚(L-丙交酯-共-内消旋-丙交酯)、聚(D-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-PEG)、聚(D,L-丙交酯-共-三亚甲基碳酸酯)、聚(丙交酯-共-乙交酯)、聚(乙醇酸-共-三亚甲基碳酸酯)、聚(三亚甲基碳酸酯)、PHA-PEG、PBT-PEG(PolyActive(R))、PEG-PPO-PEG(Pluronic(R))和PPF-共-PEG、聚己内酯、聚甘油癸二酸酯、聚碳酸酯、生物聚酯、聚环氧乙烷、聚对苯二甲酸丁二醇酯(polybutylene terephalate)、聚对二氧环己酮、杂交体、复合物、具有生长调节剂的胶原基质、蛋白聚糖、粘多糖、真空形成的小肠粘膜下层、纤维、几丁质、葡聚糖及其混合物。

14.实施方案13的药物洗脱支架,其中含药层选自酪氨酸衍生的聚碳酸酯。

15.实施方案13的药物洗脱支架,其中含药层选自聚(β-羟基链烷酸酯)及其衍生物。

16.实施方案13的药物洗脱支架,其中含药层包含聚丙交酯-共-乙交酯50/50(PLGA)。

17.实施方案1的药物洗脱支架,其中生物相容性基层包含聚甲基丙烯酸正丁酯、PTFE、PVDF-HFP、聚(苯乙烯-b-异丁烯-b-苯乙烯)、派瑞林C、PVP、PEVA、SBS、PC或TiO2中的至少一种。

18.实施方案1的药物洗脱支架,其中生物相容性基层包含电接枝(electro-grafted)聚合物层,所述电接枝聚合物层与含药层具有交叉指型表面。

19.实施方案18的药物洗脱支架,其中电接枝聚合物层具有10nm至1000nm的厚度。

20.实施方案18的药物洗脱支架,其中电接枝聚合物层包含单体和芳基重氮盐,所述单体选自乙烯类(vinylics)、环氧化物和进行开环聚合的环状单体。

21.实施方案24的药物洗脱支架,其中单体进一步选自甲基丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸羟乙酯、ε己内酯和4-氨基苯基重氮四氟硼酸盐。

22.一种药物洗脱支架,其包含:

支架框架;

可生物降解的含药层;

包埋在含药层中的药物;和

设置于支架框架上并支撑含药层的生物相容性基层,

其中含药层被配置为在药物洗脱支架植入后45天至60天显著溶解。

23.实施方案22的药物洗脱支架,其中含药层由多种聚合物形成。

24.实施方案23的药物洗脱支架,其中形成支架腔面上的含药层和支架侧面上的含药层的一种或多种聚合物比形成支架远腔面上的含药层的一种或多种聚合物降解得更快。

25.实施方案22的药物洗脱支架,其中支架框架由单片金属、丝(wire)或管制成。

26.实施方案25的药物洗脱支架,其中金属包含不锈钢、镍钛诺、钽、钴-铬MP35N或MP20N合金、铂和钛中的至少一种。

27.实施方案23的药物洗脱支架,其中支架框架由可生物降解的材料制成。

28.实施方案22的药物洗脱支架,其中药物包含抗血栓形成剂、抗凝血剂、抗血小板剂、抗肿瘤剂、抗增殖剂、抗生素、抗炎剂、基因治疗剂、重组DNA产物、重组RNA产物、胶原蛋白、胶原蛋白衍生物、蛋白质类似物、糖类、糖类衍生物、平滑肌细胞增殖抑制剂、内皮细胞迁移、增殖和/或存活的促进剂中的至少一种,及其组合。

29.实施方案22的药物洗脱支架,其中药物包含西罗莫司和/或衍生物或类似物。

30.实施方案22的药物洗脱支架,其中含药层具有5至12μm的厚度。

31.实施方案22的药物洗脱支架,其中含药层选自聚(羟基链烷酸酯)(PHA)、聚(酯酰胺)(PEA)、聚(羟基链烷酸酯-共-酯酰胺)、聚丙烯酸酯、聚甲基丙烯酸酯、聚己内酯、聚(乙二醇)(PEG)、聚(丙二醇)(PPG)、聚(环氧丙烷)(PPO)、聚(富马酸丙烯酯)(PPF)、聚(D-丙交酯)、聚(L-丙交酯)、聚(D,L-丙交酯)、聚(内消旋-丙交酯)、聚(L-丙交酯-共-内消旋-丙交酯)、聚(D-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-PEG)、聚(D,L-丙交酯-共-三亚甲基碳酸酯)、聚(丙交酯-共-乙交酯)、聚(乙醇酸-共-三亚甲基碳酸酯)、聚(三亚甲基碳酸酯)、PHA-PEG、PBT-PEG(PolyActive(R))、PEG-PPO-PEG(Pluronic(R))和PPF-共-PEG、聚己内酯、聚甘油癸二酸酯、聚碳酸酯、生物聚酯、聚环氧乙烷、聚对苯二甲酸丁二醇酯、聚对二氧环己酮、杂交体(hybrid)、复合物(composite)、具有生长调节剂的胶原基质、蛋白聚糖、粘多糖、真空形成的小肠粘膜下层、纤维、几丁质、葡聚糖及其混合物。

32.实施方案31的药物洗脱支架,其中含药层选自酪氨酸衍生的聚碳酸酯。

33.实施方案31的药物洗脱支架,其中含药层选自聚(β-羟基链烷酸酯)及其衍生物。

34.实施方案31的药物洗脱支架,其中含药层包含聚交酯-共-乙交酯50/50(PLGA)。

35.实施方案22的药物洗脱支架,其中生物相容性基层包含聚甲基丙烯酸正丁酯、PTFE、PVDF-HFP、聚(苯乙烯-b-异丁烯-b-苯乙烯)、派瑞林C、PVP、PEVA、SBS、PC或TiO2中的至少一种。

36.实施方案22的药物洗脱支架,其中生物相容性基层包含电接枝聚合物层,所述电接枝聚合物层与含药层具有交叉指型表面。

37.实施方案36的药物洗脱支架,其中电接枝聚合物层具有10nm至1000nm的厚度。

38.实施方案36的药物洗脱支架,其中电接枝聚合物层包含单体和芳基重氮盐,所述单体选自乙烯类、环氧化物和进行开环聚合的环状单体。

39.实施方案38的药物洗脱支架,其中单体进一步选自甲基丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸羟乙酯、ε己内酯和4-氨基苯基重氮四氟硼酸盐。

40.一种使用根据实施方案1至39中任一项所述的支架的方法,所述方法包括将支架植入受试者以治疗血管狭窄,或者预防再狭窄、血栓形成、肿瘤生长、血管瘤,或者阻塞泪腺。

41.实施方案40的方法,其中将支架植入血管中。

42.实施方案41的方法,其中血管为左主冠状动脉、旋动脉、左前降支冠状动脉、髂血管、颈动脉或神经血管。

43.一种治疗方法,其包括:将根据实施方案1至39中任一项所述的支架递送到管腔中的步骤;在管腔内径向扩张支架的步骤;和将药物从支架表面的药物涂层中洗脱出来,允许药物作用于管腔和/或白蛋白(albumen)表面的步骤。

44.一种通过使用根据实施方案1至39中任一项所述的支架中的任一种来减少、最小化或消除与支架植入相关的患者风险的方法。

45.一种制造药物洗脱支架的方法,所述方法包括:

提供支架框架;和

用与至少一种药物混合的至少一种聚合物不均匀地涂布支架框架。

46.实施方案45的方法,其中不均匀涂布包括用比远腔面的涂层更薄的涂层涂布支架的腔面和/或侧面,优选地,其中更薄的涂层为含药层和/或含药层下面的生物相容性基层。

47.实施方案45的方法,其进一步包括将至少一种聚合物和至少一种药物溶解,以形成与至少一种药物混合的至少一种聚合物。

48.实施方案45的方法,其中不均匀地涂布支架框架包括用与至少一种药物混合的至少一种聚合物喷雾涂布支架框架。

49.实施方案46的方法,其中不均匀地涂布支架框架包括在喷雾涂布期间旋转支架框架以产生离心力。

50.实施方案49的方法,其中离心力使得支架框架远腔面上的混合物的厚度大于支架框架腔面上和支架框架侧面上的混合物的厚度。

51.实施方案45的方法,其进一步包括将涂布的支架框架在真空烘箱中干燥。

52.实施方案51的方法,其中将涂布的支架框架在40℃至50℃干燥。

53.实施方案48的方法,其中喷雾的流量为24μL/s或以下。

54.实施方案48的方法,其中喷雾的体积为192μL/s或以下。

55.实施方案48的方法,其中喷雾涂布在0.3巴或更低的压力进行。

56.实施方案49的方法,其中支架的旋转速度至少为2000rpm。

57.实施方案48的方法,其中进行喷雾涂布的喷嘴与支架框架之间的距离为6.5mm或以下。

58.实施方案45至57中任一项的方法,其进一步包括:

在喷雾涂布安装的框架之前,将至少一种聚合物电接枝到支架框架上。

59.实施方案58的方法,其进一步包括:

在喷雾涂布安装的框架之前,在室温或更高的温度烘烤电接枝的聚合物。

60.实施方案59的方法,其中烘烤在大气条件下进行。

61.实施方案59的方法,其中烘烤在氮气中进行。

62.实施方案59的方法,其中烘烤在真空中进行。

63.一种通过植入兔动物模型来验证支架在人中的长期功效和安全性的方法,所述方法包括:

在植入后90天至120天,采用扫描电子显微镜(SEM)或伊文思蓝吸收(Evans Blue uptake)中的至少一种对植入兔模型中的支架进行成像,以验证血管的内皮层覆盖至少90%的支架表面,并且覆盖支架的内皮的伊文思蓝吸收小于30%。

64.一种减少和/或消除与支架植入相关的血管的再狭窄、血栓形成或MACE的方法,其包括以下步骤:

a)在支架植入的前30天内,抑制支架植入后血管的平滑肌细胞增殖;和

b)在支架植入3个月内实现血管的充分再内皮化,从而可以在支架植入12个月内实现内皮功能恢复。

65.实施方案64的方法,其中血管为血液脉管系统血管。

66.实施方案64的方法,其中通过以适当的剂量和释放曲线从植入的支架中受控制地释放合适的药物,来实现抑制平滑肌增殖的步骤。

67.实施方案66的方法,其中药物在支架植入后30天完全释放。

68.实施方案64的方法,其中植入的支架具有生物相容的且可生物降解的载体材料的层,以促进植入30天内药物的完全释放。

69.实施方案64的方法,其中生物相容的且可生物降解的载体材料为PLGA或PLA。

70.实施方案68的方法,其中药物载体层在植入60天内完全消失。

71.实施方案67的方法,其中植入的支架的表面是光滑的,或没有内皮细胞生长、重建细胞间的适当相互作用并覆盖支架撑杆表面的显著障碍。

72.实施方案66的方法,其中使用电接枝或化学接枝涂布技术在支架表面涂布聚合物。

73.实施方案66的方法,其中支架具有约80um至110um的厚度。

74.实施方案73的方法,其中支架厚度为约100至110um。

75.实施方案68的方法,其中合适的药物选自西罗莫司、紫杉醇、依维莫司(everolimus)、百奥莫司(biolimus)、诺沃莫司(novolimus)、他克莫司(tacrolimus)、吡美莫司(pimecrolimus)和佐他莫司(zotarolimus)。

76.实施方案66的方法,其中合适的支架可以为金属支架或可生物降解的支架。

77.实施方案66的方法,其中合适的支架为聚合物支架,其是部分或完全可生物降解的。

78.一种在植入药物洗脱支架后预测长期支架功效和患者安全性的方法,所述方法包括评价在动物模型中植入支架后支架和/或血管的内皮覆盖的功能恢复的百分比,其中在支架植入后约90天的大致完全的再内皮化可预测支架植入后的长期支架功效和患者安全性。例如,评价可以包括使用动物模型来评价覆盖的百分比,内皮层的厚度和通透性和内皮层的结构。结构可以包括组织的类型,例如在平滑肌细胞、基质和内皮细胞方面的组织组成。

79.实施方案78的方法,其中长期支架功效包括在支架植入区域没有显著的血管再狭窄。

80.实施方案78的方法,其中患者安全性包括在支架植入后1年内没有血管的血栓形成。在一些实施方案中,在支架植入后5年血栓形成可以不存在。

81.实施方案78的方法,其中患者安全性包括在支架植入后1年内明显不存在MACE。在一些实施方案中,在支架植入后5年MACE可以不存在。

82.根据实施方案1至81中任一项所述的支架或方法,其中通过含药层的喷雾涂布来实现含药层的不均匀的厚度。

83.根据实施方案1至81中任一项所述的支架或方法,其中含药层的较薄部分比含药层的较厚部分更快地释放药物,优选在10至20天内,其中药物在支架植入30天内从含药层中大致完全释放。

84.根据实施方案1至39中任一项所述的支架在制造用于治疗或预防血管疾病,优选血管狭窄或预防再狭窄、血栓形成、肿瘤生长、血管瘤或阻塞泪腺的药物或装置中的用途。

85.根据实施方案1至83中任一项所述的支架或方法,其中支架框架包含8峰设计。

86.根据实施方案1至83中任一项所述的支架或方法,其中支架框架包含10峰设计。

87.根据实施方案1至83中任一项所述的支架或方法,其中支架框架包含11峰设计。

88.根据实施方案1至83中任一项所述的支架或方法,其中支架框架包含具有波浪设计的多个支架杆(stent pole)。

89.根据实施方案1至83中任一项所述的支架或方法,其中支架框架包含在轴向上在支架杆之间的两个连接杆和三个连接杆之间交替的多个单连接杆(single linking pole)。

90.根据实施方案1至83中任一项所述的支架或方法,其中支架框架在轴向的第一端上包含四个连接杆,并且在轴向的第二端上包含四个连接杆。

91.根据实施方案1至83中任一项所述的支架或方法,其中冠(crown)的宽度大于杆的宽度。

92.根据实施方案1-39和85-91中任一项所述的支架,其中支架为非不锈钢支架。

93.根据实施方案92所述的支架,其中支架包含钴-铬合金。

94.根据实施方案46所述的方法,其中涂层被设计成较薄的层,以比较厚的层更快地从含药层中释放至少一种药物,优选在10-20天内,更优选其中在支架植入30天内实现大致完全释放。

95.根据实施方案94所述的方法,其中含药层包含一种或多种药物,所述药物在支架植入后抑制平滑肌细胞增殖和/或促进内皮细胞迁移、增殖和/或存活,优选西罗莫司。

96.根据实施方案94所述的方法,其中涂层被设计成在支架植入的数月内促进支架的功能性再内皮化,从而可以在支架植入12个月内实现内皮功能恢复。

97.根据实施方案94所述的方法,其中涂层被设计成在植入45天至60天完全溶解。

98.根据实施方案46和94-98中任一项所述的方法,其中含药层包含PLGA,并且当存在生物相容性基层时,所述生物相容性基层包含PBMA。

99.根据实施方案78所述的方法,其中从动物模型,优选兔动物模型中的研究合理预测患者中支架和/或血管的内皮覆盖的功能恢复的百分比。

100.根据实施方案78或79所述的方法,其中通过SEM、伊文思蓝染色、OCT、VE-钙粘着蛋白/P120共聚焦染色共定位或其组合来评价支架的内皮覆盖的功能恢复的百分比。

101.根据实施方案78所述的方法,其中将支架植入心脏血管中。

102.根据实施方案78或79所述的方法,其中支架为不锈钢支架。

103.根据实施方案78或79所述的方法,其中支架为非不锈钢支架。

104.根据实施方案78或79所述的方法,其中支架包含钴-铬合金。

105.根据实施方案78-89和99-104中任一项所述的方法,其中支架为药物洗脱支架。

106.根据实施方案105所述的方法,其中药物洗脱支架包含一种或多种药物,所述药物在支架植入后抑制平滑肌细胞增殖和/或促进内皮细胞迁移、增殖和/或存活,优选西罗莫司。

107.根据实施方案105所述的方法,其中支架选自根据实施方案1-39和84-93中任一项所述的支架中的任一个。

附图说明

附图仅描述本公开的示例实施方案,因此不限制其范围。它们用以增加特殊性和细节。

图1A描述了在植入支架前的血管100。

图1B描述了在植入支架后的血管150。

图2描述了使用SEM成像的植入后60天的Xience Xpedition支架。SEM图像显示部分撑杆覆盖,其中未覆盖的区域只限于支架的中间和远端区域。支架撑杆上的内皮覆盖百分比为约50%。

图3描述了使用SEM成像的植入后60天的根据本公开的一些实施方案的药物洗脱支架。SEM图像显示支架覆盖良好,其中少许未覆盖的撑杆位于支架的中间。支架撑杆上的内皮覆盖百分比为约80%。

图4A描述了使用具有伊文思蓝吸收的总成像的植入后60天的Xience Xpedition支架,其中阳性染色面积为41.8%。

图4B描述了植入后60天的图4A的Xience Xpedition支架的共聚焦显微图像,其被铺在10x物镜下,并使用VE-钙粘着蛋白(红色通道)和P120(内皮p120-连环蛋白)(绿色通道)的双重免疫荧光染色。比例尺为1mm。

图4C描述了用20x物镜的植入后60天的图4B的Xience Xpedition支架的一个区域的共聚焦显微图像,其中该区域具有在内皮边界处不良表达的VE-钙粘着蛋白,通常说明不良的屏障功能。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。

图4D描述了用20x物镜的图4B的Xience Xpedition支架的另一个区域的共聚焦显微图像,其中该区域具有在内皮边界处不良表达的VE-钙粘着蛋白,通常说明不良的屏障功能。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。如图4A-图4D所描述,两个标记物的内皮覆盖为撑杆上21.2%;和撑杆间21.2%。

图5A描述了使用具有伊文思蓝吸收的总成像的植入后60天的根据本公开的一些实施方案的药物洗脱支架,其中阳性染色面积为35.7%。

图5B描述了植入后60天的图5A的药物洗脱支架的共聚焦显微图像,其被铺在10x物镜下,并使用VE-钙粘着蛋白(红色通道)和P120(绿色通道)的双重免疫荧光染色。比例尺为1mm。

图5C描述了用20x物镜的植入后60天的图5B的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有部分内皮屏障功能区。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。

图5D描述了用20x物镜的植入后60天的图5B的药物洗脱支架的另一个区域的共聚焦显微图像,其中该区域具有在内皮边界处不良表达的VE-钙粘着蛋白,通常说明不良的屏障功能。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。如图5A-图5D所描述,两个标记物的内皮覆盖为撑杆上36.8%;和撑杆间38.8%。

图6描述了使用SEM成像的植入后90天的Xience Xpedition支架。SEM图像显示支架部分覆盖,其中未覆盖区域大部分位于中间部分。支架撑杆上的内皮覆盖百分比为约70%。

图7描述了使用SEM成像的植入后90天的根据本公开的一些实施方案的药物洗脱支架。SEM图像显示支架完全覆盖。支架撑杆上的内皮覆盖百分比为约99%。

图8A描述使用具有伊文思蓝吸收的总图像的植入后90天的Xience Xpedition支架,其中阳性染色面积为31.8%。

图8B描述了植入后90天的图8A的Xience Xpedition支架的共聚焦显微图像,其被铺在10x物镜下,并使用VE-钙粘着蛋白(红色通道)和P120(绿色通道)的双重免疫荧光染色。比例尺为1mm。

图8C描述了用20x物镜的植入后90天的图8B的Xience Xpedition支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。

图8D描述了用20x物镜的植入后90天的图8B的Xience Xpedition支架的另一个区域的共聚焦显微图像,其中该区域具有在内皮边界处不良表达的VE-钙粘着蛋白,通常说明不良的屏障功能。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。如图8A-图8D所描述,两个标记物的内皮覆盖为撑杆上46.8%;和撑杆间46.1%。

图9A描述了使用具有伊文思蓝吸收的总成像的植入后90天的根据本公开的一些实施方案的药物洗脱支架,其中阳性染色面积为6.4%。

图9B描述了植入后90天的图9A的药物洗脱支架的共聚焦显微图像,其被铺在10x物镜下,并使用VE-钙黏着蛋白(红色通道)和P120(绿色通道)的双重免疫荧光染色。比例尺为1mm。

图9C描述了用20x物镜的植入后90天的图9B的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。

图9D描述了用20x物镜的植入后90天的图9B的药物洗脱支架的另一个区域的共聚焦显微图像。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。比例尺为50μm。如图9A-图9D所描述,两个标记物的内皮覆盖为撑杆上100%;和撑杆间100%。

图10显示XIENCE V支架和XIENCE PRIME的药物释放时间框为约120天。ENDEAVOR RESOLUTE(即,根据本公开的一些实施方案的支架)的药物释放时间为约180天。

图11显示根据本公开的一些实施方案的支架的各层的相对位置。腔面(6)面向血流,并且远腔面(8)面向或接触血管壁。

图12A描述了使用伊文思蓝吸收成像的植入后45天的根据本公开的一些实施方案的药物洗脱支架,其中阳性染色面积为28.57%。

图12B描述了使用伊文思蓝吸收的植入后45天的药物洗脱支架,其中阳性染色面积为55.0%。

图12C描述了使用伊文思蓝吸收成像的植入后45天的药物洗脱支架,其中阳性染色面积为56.79%。

图12D为一个表格,其总结了用根据本公开的实施方案的支架(BuMA Supreme)和未根据本公开的支架(Xience和Synergy)进行的实验在第45天时的伊文思蓝吸收数据的结果。

图13A描述了在植入后45天的根据本公开的一些实施方案的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图13A描述了植入后45天的根据本公开的一些实施方案的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图13B描述了植入后45天的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图13C描述了植入后45天的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图13D为一个表格,其总结了用根据本公开的实施方案的支架(BuMA Supreme)和未根据本公开的支架(Xience和Synergy)进行的实验在45天时的VE-钙粘着蛋白/P120共定位数据的结果。

图14A描述了使用伊文思蓝吸收成像的植入后90天的根据本公开的一些实施方案的药物洗脱支架,其中阳性染色面积为23.21%。

图14B描述了使用伊文思蓝吸收的植入后90天的药物洗脱支架,其中阳性染色面积为42.95%。

图14C描述了使用伊文思蓝吸收成像的植入后90天的药物洗脱支架,其中阳性染色面积为41.79%。

图14D为一个表格,其总结了用根据本公开的实施方案的支架(BuMA Supreme)和未根据本公开的支架(Xience和Synergy)进行的实验在90天时的伊文思蓝吸收数据的结果。

图15A描述了在植入后90天的根据本公开的一些实施方案的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图15A描述了在植入后90天的根据本公开的一些实施方案的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图15B描述了植入后90天的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图15C描述了植入后90天的药物洗脱支架,其显示用20x物镜的药物洗脱支架的一个区域的共聚焦显微图像,其中该区域具有足够的内皮屏障功能的证据(即,共定位的p120/VE-钙粘着蛋白)。VE-钙粘着蛋白为红色通道(555nm),P120为绿色通道(488nm),蓝色通道(405nm)为DAPI复染色。

图15D为一个表格,其总结了用根据本公开的实施方案的支架(BuMA Supreme)和未根据本公开的支架(Xience和Synergy)进行的实验在90天时的VE-钙粘着蛋白/P120共定位数据的结果。

具体实施方式

本公开涉及药物洗脱支架,制造和使用药物洗脱支架的方法,以及用于在植入药物洗脱支架后预测长期支架功效和患者安全性的方法。根据本公开的一些实施方案,药物洗脱支架(1)包含四个部分:支架框架(2)、含药层(3)、药物(4)和生物相容性基层(5)。在一个实施方案中,支架可以由不锈钢制成。在另一个实施方案中,支架可以由CoCr合金制成。在一个实施方案中,支架具有80-120um的。含药层可以由PLGA形成,并且生物相容性基层可以由PBMA形成。可以使用电接枝方法形成生物相容性基层。

支架框架:

支架典型地由骨架(scaffold)或骨架(scaffolding)构成,其包括互相连接的结构元件或撑杆的图形或网络,其由卷成圆柱形的材料的丝、管或片形成。该骨架得名是因为其在体形上保持开放,并且如果需要,其在患者中扩张通道的壁。典型地,支架能够被压缩或卷曲到导管上,以便可以将其递送到并部署在治疗部位。递送包括使用导管将支架插入小管腔,并将其运送至治疗部位。部署包括当支架位于期望的位置时,将支架扩张到更大的直径。

支架框架(2)可以由单片(或多片)金属或丝或管制成,包括3D打印和激光切割(例如,从丝开始)。例如,支架框架可以为非不锈钢或包含不锈钢、镍钛诺、钽、钴-铬(例如MP35N或MP20N合金)、铂、钛、合适的生物相容性合金、其他合适的生物相容性材料,和/或其组合。在一些实施方案中,支架为非不锈钢支架。在其他实施方案中,支架框架可以由金属材料或合金制成,例如但不限于钴铬合金(ELGILOY)、不锈钢(316L)、高氮不锈钢(例如BIODUR 108)、钴铬合金L-605、ELASTINITE(镍钛诺)、钽、镍-钛合金、铂-铱合金、金、镁或其组合。“MP35N”和“MP20N”为钴、镍、铬和钼的合金的商品名,其可以从宾夕法尼亚州珍金镇(Jenkintown)的Standard Press Steel Co.获得。“MP35N”由35%钴,35%镍,20%铬和10%钼组成。“MP20N”由50%钴,20%镍,20%铬和10%钼组成。

在其他实施方案中,支架框架(2)可以由一种或多种塑料制成,例如聚氨酯、聚四氟乙烯、聚乙烯等。在这样的实施方案中,可以例如使用3D打印来制造支架框架(2)。

支架框架(2)可以形成网。因此,或者通过例如来自气囊导管的外部力,和/或通过内部力例如由血管内温度升高引起的网的扩张,支架框架(2)可以在植入时扩张。扩张后,支架框架(2)可以保持血管打开。

在一些实施方案中,支架框架(2)可以是可生物降解的。为了实现患病血管的愈合,支架的存在仅在有限的一段时间内是必需的,因为在部署后动脉随着时间经历生理性重塑。可生物吸收的支架或骨架的开发可以避免血管中的永久性金属植入物,允许后续扩张的腔和血管的重塑,并且在骨架完全再吸收后仅留下愈合的原生血管组织。可以设计由可生物再吸收的、可生物降解的、可生物吸收的和/或可生物腐蚀的材料(如可生物吸收的聚合物)制造的支架,使其仅在其临床需要结束后或结束后一段时间才完全被吸收。因此,完全可生物吸收的支架可以减少或消除潜在的长期并发症和迟发性血栓形成的风险,帮助非侵入性诊断性MRI/CT成像,允许恢复正常的血管舒缩,并提供斑块消退的可能性。例如,支架框架(2)可以由壳聚糖、镁合金、聚乳酸、聚碳酸酯聚合物、水杨酸聚合物和/或其组合制成。有利地,可生物降解的支架框架(2)可以允许在已清除阻塞并通过支架(1)恢复流动后使血管恢复常态。如本文所使用,术语“可生物降解的”与术语“可生物吸收的”或“可生物腐蚀的”是可互换的,并且通常指聚合物或某些特定的合金(如镁合金),当暴露于体液如血液时,所述聚合物或合金能够被完全降解和/或腐蚀,并且可以被身体逐渐再吸收、吸收和/或消除。例如,可以通过水解和代谢过程引起支架中的聚合物分解并吸收的过程。

“可生物降解的支架”在本文中用于表示由可生物降解的聚合物制成的支架。可以用于制造可生物降解支架的聚合物的其他代表性示例包括但不限于聚(N-乙酰葡糖胺)(几丁质)、壳聚糖、聚(羟基戊酸酯)、聚(丙交酯-共乙交酯)、聚(羟基丁酸酯)、聚(羟基丁酸酯共-戊酸酯)、聚原酸酯、聚酸酐(polyanhydride)、聚(乙醇酸)、聚(乙交酯)、聚(L-乳酸)、聚(L-丙交酯)、聚(D,L-乳酸)、聚(D,L-丙交酯)、聚(己内酯)、聚(三亚甲基碳酸酯)、聚酯酰胺、聚(乙醇酸-共-三亚甲基碳酸酯)、共聚(醚-酯)(例如PEO/PLA)、聚磷腈、生物分子(如纤维蛋白、纤维蛋白原、纤维素、淀粉、胶原和透明质酸)、聚氨酯、硅酮、聚酯、聚烯烃、聚异丁烯和乙烯-α烯烃共聚物、除聚丙烯酸酯以外的丙烯酸聚合物和共聚物、乙烯基卤化物聚合物和共聚物(如聚氯乙烯)、聚乙烯醚(如聚乙烯甲醚)、聚偏二卤乙烯(如聚偏二氯乙烯)、聚丙烯腈、聚乙烯酮、聚乙烯基芳香化合物(如聚苯乙烯)、聚乙烯酯(如聚乙酸乙烯酯)、丙烯腈苯乙烯共聚物、ABS树脂、聚酰胺(如尼龙66和聚己内酰胺)、聚碳酸酯、聚甲醛、聚酰亚胺、聚醚、聚氨酯、人造丝、三乙酸人造丝、纤维素、乙酸纤维素、丁酸纤维素、乙酸丁酸纤维素、赛璐玢(cellophane)、硝酸纤维素、丙酸纤维素、纤维素醚和羧甲基纤维素。可以使用的基于聚(乳酸)的另一种类型的聚合物包括接枝共聚物和嵌段共聚物,如AB嵌段共聚物(“二嵌段共聚物”)或ABA嵌段共聚物(“三嵌段共聚物”),或其混合物。

可以适用于制造可生物降解支架的聚合物的其他代表性示例包括乙烯乙烯醇共聚物(通常以通用名EVOI-I或商品名EVAL被知晓)、聚(甲基丙烯酸丁酯)、聚(偏二氟乙烯-共-六氟丙烯)(例如SOLEF 21508,可以从Solvay Solexis PVDF,Thorofare,N.J.获得)、聚偏二氟乙烯(也被称为KYNAR,可以从ATOFINA Chemicals,费城,宾夕法尼亚州获得)、乙烯-乙酸乙烯酯共聚物和聚乙二醇。这些可生物降解聚合物的性质和用法在本领域中是已知的,例如,如美国专利号8,017,144和美国申请公开号2011/0,098,803所公开。

在一些方面,如本文所描述的可生物降解支架可以由聚乳酸(PLA)、聚乙醇酸(PGA)、聚(D,L-丙交酯-共-乙交酯)、聚己内酯或其共聚物制成。

在一些方面,如本文所描述的可生物降解支架可以由聚羟基酸、聚链烷酸酯、聚酸酐、聚磷腈、聚醚酯、聚酯酰胺、聚酯和聚原酸酯制成。

在一些优选的方面,如本文所描述的可生物降解支架可以由壳聚糖、胶原蛋白、弹性蛋白、明胶、纤维蛋白胶或其组合制成。

如本文所描述的“壳聚糖基支架”、“壳聚糖支架”是指支架的主要组分来自于壳聚糖。例如,如本文所描述的壳聚糖基支架可以含有至少占总支架重量的50%以上,或60%以上,或70%以上,或80%以上重量百分比的壳聚糖。甚至更特别地,如本文所描述的壳聚糖基支架可以具有总壳聚糖支架的约70%至约85%重量百分比的壳聚糖含量。

如本文所描述的壳聚糖基支架也可以涂布聚合物层,以调节降解时间。例如,如本文所描述的壳聚糖基支架可以用聚(D,L-丙交酯-共-乙交酯)的丙酮溶液浸涂(dip-coated)。

也可以通过将支架浸入硫酸钡的含水混悬液中,使壳聚糖基支架涂布硫酸钡层。在一些方面,涂布的硫酸钡的重量可以为支架总重量的约15至约30重量百分比的量。另外,壳聚糖支架可以被打孔。

根据本公开的标准设计的支架可以为冠状动脉支架、血管支架或用于血管系统的任何其他含有药物的可植入装置,以及任何医疗装置,所述医疗装置以可持续的方式有效降低再狭窄和血栓形成率,以长期确保患者安全。

在一个实施方案中,使用更薄的支架。然而,支架撑杆应该具有足够的厚度,其将确保支架结构的稳定性,而没有随着时间流逝而破裂的风险。作为示例,316L不锈钢支架的支架厚度为约100-110um,CoCr支架的支架厚度为约80um。

含药层:

本公开提供了在患者安全性和支架功效方面,在将支架植入心脏血管后存在血管内皮恢复的机会窗口。在一个实施方案中,支架的再内皮化有必要充分完成,并且在本文公开的窗口期间内建立适当的内皮结构基础或内皮细胞排列,从而可以获得支架内皮覆盖的功能恢复,并且显著防止或减少再狭窄和/或血栓形成。在一个实施方案中,在前2-3个月内获得支架/血管壁的充分的再内皮化,从而可以在12个月内实现血管内皮功能恢复。可以通过本领域已知的任何手段来确定内皮恢复的充分性。在动物模型中,其可以通过方法测量,所述方法包括伊文思蓝染色(染色的存在是期望的内皮细胞层功能的阴性标记物)、VE-钙粘着蛋白/p120染色(在染色中良好重叠的存在是期望的内皮细胞层功能的阳性标记物)等。在体内,其可以例如通过支架撑杆表面的新生内膜覆盖和新生内膜厚度(通过本领域已知的OCT方法在不同的时间点测量)来测量。例如,在第一阈(threshold)以下的厚度可以指示没有形成足够的基础结构,其将导致内皮层功能的恢复不够充分,而在较高的第二阈以上的厚度可以指示平滑肌细胞与内皮细胞的比例,所述比例过高,有时其为平滑肌细胞过度增殖的良好指征。

在一个实施方案中,内皮修复是指重新建立内皮细胞间的正确连接,并且恢复支架表面或沿着血管壁/新生内膜的内皮的生物功能。内皮是指功能性内皮层。可以通过本领域已知的任何手段测量血管功能恢复。例如,其可以通过支架撑杆表面的新生内膜覆盖和新生内膜厚度(通过OCT(例如一至三个月)或本领域已知的其他方法在不同的时间点(例如支架涂层的SEM检查)测量)来测量。还可以使用测量内皮功能的其他手段(伊文思蓝(例如,在第30、60和90天;不应当使内皮层染色)、VE钙粘蛋白/P120共焦显微术染色重叠是可取的)。

在一个实施方案中,设计药物洗脱支架,使其可以在30天内实现完全的药物释放,并且在3个月时实现大量新生内膜覆盖。

为了本公开的目的,支架(含药层)的“完全的药物释放”是指约95%至约100%的药物释放,优选约95%至约96%,约96%至约97%,约97%至约98%,约98%至约99%和约99%至约100%的药物释放。在动物模型(例如兔模型)或体外模型中评价药物释放,本领域普通技术人员理解所述动物模型或体外模型可以预测在植入了本公开的支架的受试者中的药物释放。在一个实施方案中,“完全释放”是指残余药物的水平低于可检测水平和/或低于治疗水平。

为了本公开的目的,当约95%至约100%的含药层已经从支架上溶解(也被称为生物降解),优选约95%至约96%,约96%至约97%,约97%至约98%,约98%至约99%和约99%至约100%的含药层已经从支架上溶解时,则称含药层已经“完全溶解”(也被称为生物降解)。在动物模型(例如兔模型)或体外模型中评价支架的含药层溶解(也被称为生物降解),本领域普通技术人员理解所述动物模型或体外模型可以预测在植入了本公开的支架的受试者中的支架的含药层溶解(也被称为生物降解)。在一个实施方案中,“完全溶解”是指残余材料的水平低于可检测水平。

含药层(3)可以由聚合物制造,并且其可以包含覆盖全部或部分支架表面的一层或多层。此外,含药层(3)能够承载药物(4),并且以持续的方式释放药物(4)。在含药层(3)中使用的聚合物的示例可以包括但不限于,聚(羟基链烷酸酯)(PHA)、聚(酯酰胺)(PEA)、聚(羟基链烷酸酯-共-酯酰胺)、聚丙烯酸酯、聚甲基丙烯酸酯、聚己内酯、聚(乙二醇)(PEG)、聚(丙二醇)(PPG)、聚(环氧丙烷)(PPO)、聚(富马酸丙烯酯)(PPF)、聚(D-丙交酯)、聚(L-丙交酯)、聚(D,L-丙交酯)、聚(内消旋-丙交酯)、聚(L-丙交酯-共-内消旋-丙交酯)、聚(D-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-PEG)、聚(D,L-丙交酯-共-三亚甲基碳酸酯)、聚(丙交酯-共-乙交酯)、聚(乙醇酸-共-三亚甲基碳酸酯)、聚(三亚甲基碳酸酯)、PHA-PEG、PBT-PEGPEG-PPO-PEG和PPF-共-PEG、聚己内酯、聚甘油癸二酸酯、聚碳酸酯、生物聚酯、聚环氧乙烷、聚对苯二甲酸丁二醇酯、聚对二氧环己酮、杂交体、复合物、具有生长调节剂的胶原基质、蛋白聚糖、粘多糖、真空形成的小肠粘膜下层、纤维、几丁质、葡聚糖和/或其混合物。

含药聚合物层的降解速率通常由其组成决定。本领域普通技术人员可以使用标准PK动物测试来选择一种或多种聚合物,以确认聚合物在植入后45至60天降解。此外,聚合物或聚合物基质的制造商可能提供含药聚合物的降解性能,例如降解曲线。本领域普通技术人员可以根据降解性能推导出含药聚合物的降解速率,并基于降解速率选择聚合物。

在一个实施方案中,含药层(3)可以具有1至200μm的厚度,例如5至12μm的厚度。在一个实施方案中,含药层具有3.5-10μm的厚度。在一个实施方案中,远腔面的厚度为1.5-200μm,并且腔面的厚度为1-66μm。

在某些方面,含药层(3)可以具有不均匀的涂层厚度。例如,支架腔面(6)和侧面(7)的涂层厚度可以比远腔面(8)更薄。在一个实施方案中,腔面(6)与远腔面(8)的涂层厚度比例可以为2:3至1:7。类似地,侧面(7)与远腔面(8)的涂层厚度比例可以为2:3至1:7。因此,腔面(6)和侧面(7)的药物释放可以比远腔面(8)更快。与远腔面(8)相比,药物在腔面(6)和侧面(7)上的更快释放可以使腔面(6)和侧面(7)上的内皮层更快地恢复。在另一个实施方案中,腔面(6)与远腔面(8)的涂层厚度比例可以为1:1。本文所提供的范围被理解为范围内的所有值的简称。例如,1至10的范围被理解为包括任何数字、数字的组合或子范围,如1、1.5、2.0、2.8、3.90、4、5、6、7、8、9和10。

在一些实施方案中,含药层(3)可以仅被涂布在支架的远腔面(8)上。在这样的实施方案中,腔面(6)和侧面(7)没有药物释放可以使得腔面(6)和侧面(7)上的内皮层能够提早恢复。在其他实施方案中,从腔面(6)和侧面(7)的药物释放可以少于15天或10-20天,这可以使得腔面(6)和侧面(7)上的内皮层能够提早恢复。

此外,在这样的实施方案中,腔面(6)和侧面(7)上的聚合物的降解可以比远腔面(8)上的聚合物的降解更快。例如,腔面(6)和侧面(7)的聚合物可以包含PLGA,并且远腔面(8)的聚合物可以包含PLA。通常,PLGA的降解比PLA更快,并且可以容易地从聚合物制造商获得该信息。

在一些实施方案中,有时有利地,30天的药物(4)释放时间框和45至60天的含药涂层(drug-containing coating)(3)可生物降解/溶解时间框可以使得内皮层能够功能恢复。在上面提及的时间框内,如在兔动物模型中所测量,功能性EC层的恢复可以在90天内充分完成。然后,其可以使得药物洗脱支架在人体内长期安全。在一个实施方案中,支架被含药层不均匀地涂布,在支架的腔或腔面上产生更薄的药物涂层,这使得药物能够在10至20天内从支架上消失。

含药涂层可以软化、溶解或从支架上被腐蚀掉,以洗脱至少一种生物活性剂。这种洗脱机制可以被称为表面腐蚀,其中药物聚合物涂层的外表面溶解、降解或被身体吸收;或者被称为主体腐蚀(bulk erosion),其中药物-聚合物涂层的主体被生物降解以释放生物活性剂。药物聚合物涂层的被腐蚀的部分可以被身体吸收、代谢或以其他方式排出。

含药涂层还可以包含聚合物基质。例如,聚合物基质可以包括己内酯基聚合物或共聚物,或不同的环状聚合物。聚合物基质可以包括不同的合成和非合成或天然存在的大分子及其衍生物。聚合物有利地选自不同组合的一种或多种可生物降解聚合物,如聚合物、共聚物和嵌段聚合物。这种可生物降解的(也称为可生物再吸收的或可生物吸收的)聚合物的一些示例包括聚乙交酯、聚丙交酯、聚己内酯、聚甘油癸二酸酯、聚碳酸酯(例如酪氨酸衍生的聚碳酸酯)、生物聚酯(如聚(β-羟基链烷酸酯)(PHA))和衍生的化合物、聚环氧乙烷、聚对苯二甲酸丁二醇酯、聚对二氧环己酮、杂交体、复合物、具有生长调节剂的胶原基质、蛋白聚糖、粘多糖、真空形成的SIS(小肠粘膜下层)、纤维、几丁质和葡聚糖。任何这些可生物降解的聚合物可以单独使用,或者以不同组分与这些或其他可生物降解的聚合物组合使用。聚合物基质优选包括可生物降解的聚合物,如聚丙交酯(PLA)、聚乙醇酸(PGA)聚合物、聚(e-己内酯)(PCL)、聚丙烯酸酯、聚甲基丙烯酸酯或其他共聚物。药物可以被分散在整个聚合物基质中。药物或生物活性剂可以从聚合物基质中扩散出来,以洗脱生物活性剂。药物可以从聚合物基质中扩散出来,并进入支架周围的生物材料中。生物活性剂可以从药物聚合物内分离,并从聚合物基质中扩散出来进入周围的生物材料中。在另一个实施方案中,可以使用药物42-表-(四唑基)-西罗莫司(42-Epi-(tetrazolyl)-Sirolimus)(在转让给Abbott Laboratories,Abbott Park,Ill.的美国专利号6,329,386中描述)制备药物涂布组合物,并将其分散在涂层中,所述涂层由在美国专利号5,648,442中描述的Biocompatibles International P.L.C的磷酸胆碱涂层制备。

可以选择含药层的聚合物基质以提供期望的药物/生物活性剂洗脱速率。可以合成药物,使得特定的生物活性剂可以具有两种不同的洗脱速率。例如,具有两种不同洗脱速率的生物活性剂将允许在手术二十四小时内快速递送药理活性药物,并且例如在接下来的两到六个月内较缓慢、稳定地递送药物。可以选择电接枝涂底剂(primer coating)以将聚合物基质牢固地固定到支架框架上,聚合物基质含有快速部署的生物活性剂和缓慢洗脱的药物。

在一些实施方案中,可以在应用于已涂底的支架之前,使用微珠、微粒或纳米囊化技术,将药物(4)与白蛋白、脂质体、铁蛋白或其他可生物降解的蛋白质和磷脂包封在含药层(3)中。

药物或生物活性剂

举例来说,药物(4)可以包括例如抗血栓形成剂、抗凝血剂、抗血小板剂、抗肿瘤剂、抗增殖剂、抗生素、抗炎剂、基因治疗剂、重组DNA产物、重组RNA产物、胶原蛋白、胶原蛋白衍生物、蛋白质类似物、糖类、糖类衍生物、平滑肌细胞增殖抑制剂、内皮细胞迁移、增殖和/或存活的促进剂,及其组合。在一个实施方案中,药物为抗血管生成药物。在另一个实施方案中,药物为血管生成药物。在一些实施方案中,药物/生物活性剂可以控制细胞增殖。细胞增殖的控制可以包括增强或抑制靶细胞或靶细胞类型的生长。在一些实施方案中,细胞为血管平滑肌细胞、内皮细胞或这两者。在一些实施方案中,药物抑制平滑肌细胞的增殖,和/或促进内皮细胞增殖。

更广泛地,药物(4)可以为任何治疗物质,其提供用于预防和治疗疾病或病症的治疗特性。例如,抗肿瘤剂可以预防、杀死或阻断癌症细胞在支架附近的生长和扩散。在另一个实施例中,抗增殖剂可以预防或阻止细胞生长。在另一个实施例中,反义剂(antisense agent)可以在遗传水平上发挥作用,以中断产生致病蛋白质的过程。在第四个实施例中,抗血小板剂可以作用于血小板,抑制其在凝血中的功能。在第五个实施例中,抗血栓形成剂可以主动延缓血块形成。根据第六个实施例,在使用化合物如肝素和香豆素的抗凝治疗中,抗凝剂可以延迟或预防凝血。在第七个实施例中,抗生素可以杀死或抑制微生物的生长,并且可以用来对抗疾病和感染。在第八个实施例中,抗炎剂可以用于抵消或减少支架附近的炎症。根据第九个实施例,基因治疗剂能够改变人基因的表达,以治疗、治愈或最终预防疾病。此外,有机药物可以为任何小分子治疗材料,并且类似地,药物化合物可以为提供治疗作用的任何化合物。重组DNA产物或重组RNA产物可以包含改变的DNA或RNA遗传材料。在另一个实施例中,具有药物价值的生物活性剂还可以包括胶原蛋白和其他蛋白质、糖类、及其衍生物。例如,可以选择生物活性剂以抑制血管再狭窄(一种与放置了支架的体腔的直径变窄或收缩相对应的病症)。

可替代地或同时地,生物活性剂可以为针对一种或多种病症的试剂,所述病症包括但不限于冠状动脉再狭窄、心血管再狭窄、血管造影再狭窄、动脉硬化、增生和其他疾病和病症。例如,可以选择生物活性剂以抑制或预防血管再狭窄(一种与放置了支架的体腔的直径变窄或收缩相对应的病症)。生物活性剂可以可替代地或同时地控制细胞增殖。细胞增殖的控制可以包括增强或抑制靶细胞或靶细胞类型的生长。

抗血小板剂、抗凝剂、抗纤维蛋白剂和抗凝血酶的示例包括肝素钠、低分子量肝素、类肝素、水蛭素、阿加曲班、佛司可林、伐哌前列素(vapiprost)、前列环素和前列环素类似物、右旋糖酐、D-phe-pro-arg-氯甲基酮(合成的抗凝血酶)、双嘧达莫、糖蛋白IIb/IIIa血小板膜受体拮抗剂抗体、重组水蛭素、凝血酶抑制剂例如AngiomaxTM(比伐卢定,Biogen,Inc.,Cambridge,Mass.)、钙通道阻滞剂(如硝苯地平)、秋水仙碱、成纤维细胞生长因子(FGF)拮抗剂、鱼油(ω3-脂肪酸)、组胺拮抗剂、洛伐他汀(HMG-CoA还原酶的抑制剂,一种降胆固醇药物,商品名为来自于Merck&Co.,Inc.,Whitehouse Station,N.J.)、单克隆抗体(如特异于血小板衍生的生长因子(PDGF)受体的那些)、硝普钠、磷酸二酯酶抑制剂、前列腺素抑制剂、苏拉明、血清素阻断剂、类固醇、硫代蛋白酶抑制剂、三唑并嘧啶(一种PDGF拮抗剂)、一氧化氮、一氧化氮供体、超氧化物歧化酶、超氧化物歧化酶模拟物、4-氨基-2,2,6,6-四甲基哌啶-1-氧基(4-氨基-TEMPO)、雌二醇、膳食补充剂(如各种维生素),及其组合。

在一些实施方案中,生物活性剂可以包括鬼臼毒素、依托泊苷、喜树碱、喜树碱类似物、米托蒽醌、西罗莫司(雷帕霉素)、依维莫司、佐他莫司、百奥莫司A9、迈奥莫司(myolimus)、迪佛莫司(deforolimus)、AP23572、他克莫司、替西罗莫司(temsirolimus)、匹美莫司、诺沃莫司、佐他莫司(ABT-578)、40-O-(2-羟基)乙基-雷帕霉素(依维莫司)、40-O-(3-羟丙基)雷帕霉素、40-O-[2-(2-羟基)乙氧基]乙基-雷帕霉素、40-O-四唑基雷帕霉素、40-表-(N1-四唑基)-雷帕霉素(40-epi-(N1-tetrazolyl)-rapamycin),及它们的衍生物或类似物。鬼臼毒素通常为一种有机高毒性药物,其具有抗肿瘤性质并且可以抑制DNA合成。依托泊苷通常为一种抗肿瘤药,其可以衍生自鬼臼毒素的半合成形式,用于治疗单核细胞性白血病、淋巴瘤、小细胞肺癌和睾丸癌。喜树碱通常为一种抗癌药物,其可以作为拓扑异构酶抑制剂。与喜树碱结构相关的喜树碱类似物(如氨基喜树碱)也可以用作抗癌药物。米托蒽醌为一种抗癌药物,其通常用于治疗白血病、淋巴瘤和乳腺癌。西罗莫司为一种药物,其通常干扰正常细胞的生长周期,并且可以用于减少再狭窄。生物活性剂可以可替代地或同时地包括这些试剂的类似物和衍生物。由于抗氧化剂的抗惊厥性质和治疗作用,所述抗氧化剂可以与上面的实施例组合使用或单独使用。

抗炎剂可以为甾体抗炎剂、非甾体抗炎剂或其组合。在一些实施方案中,抗炎药包括但不限于阿氯芬酸、阿氯米松、二丙酸阿氯米松、丙缩阿尔孕酮、α-淀粉酶、安西法尔、安西非特、氨芬酸钠、盐酸氨普立糖、阿那白滞素、阿尼罗酸、阿尼扎芬、阿扎丙宗、巴柳氮二钠、苄达酸、苯恶洛芬、盐酸苄达明、菠萝蛋白酶、溴哌莫、布地奈德、卡洛芬、环洛芬、辛喷他宗、克利洛芬、丙酸氯倍他松、丁酸氯倍他松、氯吡酸、丙酸氯硫卡松、乙酸三氟米松、可托多松、地夫可特、地奈德、去羟米松、二丙酸地塞米松、双氯芬酸钾、双氯芬酸钠、二醋酸双氟拉松、二氟米酮钠、二氟尼柳、二氟泼尼酯、地弗他酮、二甲基亚砜、羟西缩松、恩甲羟松、恩莫单抗、依诺利康钠、依匹唑、依托度酸、依托芬那酯、联苯乙酸、非那莫、苯布芬、芬氯酸、苯克洛酸、芬度柳、苯吡恶二酮(fenpipalone)、芬替酸、夫拉扎酮、氟扎可特、氟芬那酸、氟咪唑、乙酸氟尼缩松、氟胺烟酸、氟胺烟酸甲葡胺、氟可丁丁酯、乙酸氟米龙、氟喹宗、氟比洛芬、氟瑞托芬、丙酸氟替卡松、呋喃洛芬、呋罗布芬、哈西缩松、丙酸卤贝他索、乙酸卤泼尼松、异丁芬酸、布洛芬、布洛芬铝、布洛芬吡啶甲醇、伊洛达普、吲哚美辛、吲哚美辛钠、吲哚布洛芬、吲哚克索、吲四唑、乙酸异氟泼尼龙、氧卓乙酸、异噁噻酰胺、酮洛芬、盐酸洛非咪唑、氯诺昔康、依碳氯替拨诺、甲氯芬那酸钠、甲氯芬那酸、甲氯松二丁酯、甲灭酸、美沙拉嗪、美西拉宗、磺庚甲泼尼龙、momiflumate、萘丁美酮、萘普生、萘普生钠、萘普索、尼马宗、奥沙拉嗪钠、奥古蛋白、奥帕诺辛、奥沙普嗪、羟基保泰松、盐酸瑞尼托林、戊聚硫钠、甘油保泰松钠、吡非尼酮、吡咯昔康、肉桂酸吡咯昔康、吡咯昔康乙醇胺、吡洛芬、泼那扎特、普利非酮、普罗度酸、普罗喹宗、普罗沙唑、柠檬酸普罗沙唑、双甲丙酰龙、氯马扎利、柳胆来司、沙那西定、双水杨酯、血根氯铵、司克拉宗、丝美辛、舒多昔康、舒林酸、舒洛芬、他美辛、他尼氟酯、他洛柳酯、替布费龙、替尼达普、替尼达普钠、替诺昔康、替昔康、苄叉异喹酮、四氢甲吲胺、硫平酸、巯氢可的松戊酸酯、托美汀、托美汀钠、三氯氟松、三氟氨酯、齐多美辛、佐美酸钠、阿司匹林(乙酰水杨酸)、水杨酸、皮质类固醇类、糖皮质激素、他克莫司、吡美莫司,其前药、其联合药物(co-drug)及其组合。

为了去除血液凝块和血栓,治疗剂的示例可以包括(i)组织纤溶酶原激活物、tPA、BB-10153、rTPA、尿激酶(urokinease)、链激酶,阿替普酶和去氨普酶,(ii)抗血小板剂如阿司匹林、氯吡格雷(clopidorgel)和噻氯匹啶(ticclopidine),和(iii)GIIb/IIIa抑制剂,如阿昔单抗、替罗非班和依替巴肽。

产生有利的治疗作用所需的药物的剂量或浓度应当小于药物产生毒性作用的水平,并且大于获得非治疗性结果的水平。这适用于包含在本发明的任何不同实施方案中的抗增殖剂、促愈合剂(prohealing agent)或任何其他活性剂。还可以由合适的临床研究(例如,但不限于II期或III期研究)确定治疗有效剂量。也可以通过在人或其他动物中应用合适的药代动力学-药效学模型来确定有效剂量。本领域普通技术人员理解用于确定剂量的标准药理学测试程序。在一些实施方案中,支架具有约5μg至约500μg的药物含量。在一些实施方案中,支架具有约100μg至约160μg的药物含量。在一个实施方案中,含药层中药物的含量为以重量计0.5-50%。在其他实施方案中,含药层包含0.5-10ug/mm2的药物(例如1.4ug/mm2)。

当将药物洗脱支架(1)植入人体血管时,药物(4)可以在30天内从含药涂层(3)中释放。可替代地,例如,药物可以在45天、60天或120天内释放。可以通过标准PK动物研究来测量药物释放速率,其中在选定的时间点从动物中提取流体样品和组织和支架,并测量药物浓度,以最好地设计支架的性质。如本领域普通技术人员所熟知,这些动物研究可以合理地预测在人中发生的情况。此外,在含药涂层(3)是由可生物降解或可生物吸收的聚合物制成的实施方案中,聚合物可以在45天至60天被生物降解或生物吸收。例如,50:50PLGA(如下面的实施例1所描述)可以表现出约60天的体内降解时间。

生物相容性基层(5)

在支架框架(2)上面和在含药层(3)下面,可以形成生物相容性基层(5),其可以具有比支架框架(2)更具生物相容性的表面。例如,与框架的裸露金属表面相比,生物相容性基底层(5)的生物相容性表面使得支架的腔面(6)和侧面(7)上的内皮层能够提早功能恢复,这可以导致与裸金属表面相比,EC的迁移和复制速率更快。

生物相容性基层(5)可以由聚甲基丙烯酸正丁酯、PTFE、PVDF-HFP、聚(苯乙烯-b-异丁烯-b-苯乙烯)、派瑞林C、PVP、PEVA、SBS、PC、TiO2或具有良好生物相容性的任何材料(或其组合)制成。在一个实施方案中,基层包含PBMA或基本上由PBMA组成。

其他材料

所有实施方案还可以包括另外的组分,如但不限于润滑剂、填充剂、增塑剂、表面活性剂、稀释剂、脱模剂、充当活性剂载体或粘合剂的试剂、抗粘剂、消泡剂、粘度调节剂、潜在的残留水平的溶剂,和潜在的任何其他试剂,所述其他试剂有助于材料的加工,或者在材料的加工中是可取的,和/或其作为最终产品的组分是有用的或可取的,或者如果其包含在最终产品中。

使用支架的方法:

在一个实施方案中,支架为一种医疗装置,其用于改善机体的腔的狭窄区域或闭塞区域,如血管、胆管(通常为塑料支架)、气管、食管、气道、尿道等。将支架插入这些和其他中空的器官中,以确保这些中空的器官保持足够的间隙。

医疗支架的一种用途为扩张体腔(如血管),所述体腔由于例如损伤(被称为动脉粥样硬化)的作用或癌性肿瘤的发生导致直径收缩。动脉粥样硬化是指动脉内的病变,其包括可以阻碍血液流过血管的斑块积聚。随着时间的推移,斑块的尺寸和厚度可以增加,并可以最终导致临床上显著的动脉狭窄,或甚至完全闭塞。当扩张直径已经收缩的体腔时,医疗支架在体腔内提供管状支撑结构。支架还可以用于动脉瘤的血管内修复、一部分体腔的异常扩大或气球状膨胀(可能与体腔壁的薄弱有关)。

支架不仅用于机械干预,而且还被用作提供生物治疗的载体。生物治疗使用药物支架以局部施用治疗物质。治疗物质还可以减轻不利于支架存在的生物反应。可以通过本文公开的方法制造药物支架(即,包含药物的支架)以包含聚合物载体,所述聚合物载体包含活性的或生物活性的试剂或药物。

在一个实施方案中,支架被用在治疗受试者的疾病或病症的方法中。可以使用支架的疾病或病症的示例包括脉管系统疾病(心脏病、血栓形成)、肿瘤、血管瘤、泪腺阻塞和管腔的其他疾病。支架可以用于经皮冠状动脉介入治疗(PCI)以及外周应用,如股浅动脉(SFA)。在一些实施方案中,通过利用细胞增殖抑制剂(如细胞抑制剂(例如紫杉醇))或免疫抑制剂作为药物,支架可以用于治疗血管狭窄或预防再狭窄。在一些实施方案中,将本公开的输尿管支架引入受试者的肾脏和/或膀胱中。

如本文所使用,术语“受试者”是指人和非人类动物,包括兽医受试者。术语“非人类动物”包括所有脊椎动物,例如哺乳动物和非哺乳动物,如非人灵长类动物、小鼠、兔、绵羊、狗、猫、马、牛、鸡、两栖动物和爬行动物。在一个优选的实施方案中,受试者为人,并且可以被称为患者。

如本文所用,术语“治疗(treat)”、“治疗(treating)”或“治疗(treatment)”优选地指获得有益的或期望的临床结果的行为,所述结果包括,但不限于减轻或改善疾病或病症的一种或多种体征或症状、减少疾病程度、使疾病的状态稳定(即不恶化)、改善或缓和疾病状态、降低进展的速度或时间、和缓解(无论是部分还是全部),无论是可检测的还是无法检测的。与没有治疗时的预期存活相比,“治疗”还可以指延长存活。治疗不需要是治愈的。

将支架引入受试者的方法

在一个实施方案中,经由导管或通过植入将支架引入到受试者体内。在其他实施方案中,通过球囊导管将支架引入。

术语“插入支架”、“递送支架”、“放置支架”、“应用支架”和如本文所描述的类似表述都是指通过装置(如导丝、气囊导管)或用于自扩张支架的其他递送系统,将支架引入并运输穿过体腔至需要治疗的区域。通常,通过将支架放置在导丝的一端上,将导丝的端部插入穿过受试者的体腔,将导丝在体腔中推进至治疗部位,并从管腔中移除导丝来完成。还可以通过其他附件如递送护套、推杆、导管、推进器、引导导管、内窥镜、膀胱镜或荧光镜来帮助插入。递送支架的其他方法在本领域中是熟知的。

制造方法

以金属支架框架为例:

1)支架制造

可以从金属管上激光切割支架框架。激光切割后,支架框架将经历电抛光处理,以使支架框架边缘光滑。

2)基层制造

将支架框架放入充满甲基丙烯酸丁酯(单体)的容器中。在电接枝过程期间,将由一些引发剂引发甲基丙烯酸丁酯的聚合,并且基层(聚甲基丙烯酸丁酯)将结合(共价结合)至支架框架上,以提供具有更好的生物相容性的表面。

3)含药层制造

将50/50PLGA(可生物降解的聚合物)和西罗莫司(药物)以一定的重量比例混合,并溶解在氯仿中以制备喷雾溶液。将带有基层的支架框架固定在旋转器上,并用喷雾溶液喷雾涂布。

制造支架框架(2)的实施例:

在一些实施方案中,支架框架可以包含预制的镁合金网。在植入后六至九个月,合金可以被完全生物降解。另外地或可替代地,支架框架可以保持机械径向强度至少三个月。类似地,支架框架可以包含预制的聚-L-乳酸(PLLA)或其他生物相容的完全可生物降解的聚合物。这种聚合物可以保持机械径向强度至少三个月。

在一些实施方案中,可以例如使用激光,从金属管上切割支架框架。电抛光过程可以在切割后使支架框架平滑。

制造生物相容性基层(5)的实施例:

电化学反应

在一个实施方案中,可以将甲基丙烯酸正丁酯单体溶解于N,N-二甲基甲酰胺(DMF)溶剂中。在某些方面,可以加入氯化钠作为电解质以增加溶液的电导率。可以将溶液旋转并混合120分钟。在一个实施例中,甲基丙烯酸酯的浓度可以为20%,氯化钠的浓度可以为5.0×10-2M,并且DMR的浓度可以为80%。

含有上面的底层涂布溶液的反应器可以使用电化学反应,用溶液涂布支架框架。例如,反应器可以使用20V的电压以2巴的压力涂布框架约120分钟。反应器可以包含氮气环境。

然后,可以在真空(例如,在10毫巴或更低)中烘烤生物相容性基层。在一个实施例中,可以在约40℃进行烘烤180分钟。用这种方法形成的生物相容性基层可以具有约200nm的厚度。

制备含药层(3)的实施例:

在一个实施方案中,经由喷雾涂布过程将含药层应用于支架上。在其他实施方案中,将含药层应用于支架(直接或在生物相容性基层的表面上)的过程包括例如浸渍、气相沉积和/或刷涂。

实施例1.喷雾涂布过程

A.过程

在一些实施方案中,可以使用喷雾涂布过程形成含药层(3),用于将聚合物涂层布置在支架框架上(或在涂布了聚合物的支架上,例如涂布了下面描述的电接枝涂层的支架)。在一个实施例中,用含有西罗莫司的可生物降解聚酯(聚丙交酯-共-乙交酯50/50,PLGA)喷雾涂布20毫米长的电接枝支架。将共聚物(0.25%w/v)溶解于氯仿中。然后,将西罗莫司溶解在氯仿/聚合物混合物中,以获得(1/5)的西罗莫司/聚合物的最终比例。在另一个实施例中,混合物可以包含溶解在氯仿(例如600 mL)中的50/50 PLGA(例如5 g)和雷帕霉素(例如0.5 g)。然后,采用下列参数,用细喷嘴通过喷雾将混合物应用到安装在旋转心轴上的支架上:

可替代地,本领域普通技术人员可以调整这些参数以满足本公开的条件,以在支架表面上产生不均匀分布的药物层(在腔面上较薄)。在一些实施方案中,可以根据在美国专利申请号13/850,679(公布为2014/0296967 A1)、美国专利申请号11/808,926(公布为2007/0288088 A1)和美国临时专利申请号60/812,990中使用的那些来调节参数,其全部通过引用整体地并入本文。

可以调节药物喷雾的条件,从而可以将含药涂层(3)应用于支架的腔面(6)、侧面(7)和远腔面(8)。参见图10。由于高速旋转喷雾和离心作用,与腔面(面向血液)(6)和侧面(7)相比,含药涂层(3)可以在远腔面(面向血管壁)(8)上具有更高(且可调节)的厚度。本公开的一个实施方案为具有这种不均匀涂层的支架。在一个实施方案中,发现当用含药溶液涂布支架时相对高速的旋转和低的加压过程产生了该结果。然后,在真空烘箱中在40℃干燥。使用上面的参数,该实施例支架上的涂层重量为800+/-80μg,并且其具有约5-7μm的厚度。该实施例支架中的载药量为164+/-16μg。

B.在兔子中的体内研究

在体内使用通过这种方法制备的支架。根据该实施例方法制备第一支架,其具有以下支架框架结构:在该实施例中,支架框架包含具有10峰设计的不锈钢。与具有较少峰的设计相比,这种设计可以导致支架扩张后径向强度的改善和均匀性的提高。支架(钴铬)具有以下附加特征:具有1.4ug/mm2的西罗莫司的可生物降解聚合物(PLGA,3.5-10um)的含药层的保形涂层(conformal coating);80um撑杆厚度;和由PBMA制成的厚度为100nm-200nm的电接枝耐用/生物相容性基层(支撑含药层)。

将多个具有这些性质的支架植入兔子中。所有手术均采用无菌技术进行。兔子被放置在仰卧位,并且后腿在膝盖伸展的情况下在臀部外展并外旋。在手术期间为了稳定动物的生理稳态,将动物用0.9%氯化钠维持,USP,以10-20ml/kg/hr的速度静脉滴注,并置于温水毯上。每隔15分钟监测并记录动物的心率、血压、体温、呼吸频率、O2饱和度、CO2水平和异氟醚浓度。通过球囊内皮剥脱损伤左右髂动脉。使用荧光镜引导,通过导丝将3.0mm×8mm标准血管成形术球囊导管放置在髂动脉远端上,并用50:50造影剂/盐水充至8ATM。然后,将导管以膨胀状态向近端撤回到大约髂分叉的水平。使球囊缩小,重新定位于髂远端,然后在最初剥脱的同一部分血管上重复10ATM的血管剥脱。在球囊剥脱后,根据预定的分配,立即将冠状动脉支架(BuMA BMS的BuMA Supreme,Xience[Xience Xpedition])(3.0mm×15.0mm)植入髂股动脉的剥脱段。使用荧光镜引导,通过导丝将预先安装的支架/导管递送到髂动脉远端上。在30秒内递送的建议的标称膨胀压力(10ATM),以~1.3至1.0的目标气囊与动脉的比例来布置支架。进行重复血管造影术,以评价支架放置和开放。在植入后血管造影术后,撤出所有的导管/鞘管,闭合手术伤口并回收动物。例如,如图3所示,当将根据本公开的支架(Buma Supreme)植入兔子中60天时,如通过扫描电子显微镜(SEM)所评价,与图2中所描述的Xience Xpedition(50%)相比,支架显示出更好的内皮覆盖(80%)。

此外,如图5A至图5D所示,在植入兔子中60天后,与图4A至图4D中描述的Xience Xpedition支架(21%)相比,根据本公开的支架显示出更好的功能性内皮覆盖(38%)。

进一步如图7所示,在植入兔子中90天后,与图6中描述的Xience Xpedition支架(70%)相比,根据本公开的支架显示出更好的内皮覆盖(99%)。

最后,如图9A至图9C所示,在植入兔子中90天后,与图8A至图8D中描述的Xience Xpedition支架(46%)相比,根据本公开的支架显示出更好的功能性内皮覆盖(100%)。

用以下支架框架结构,根据该实施例方法准备第二组实验:

通过上面所描述的相同的喷雾涂布过程,将支架(BuMA Supreme)涂布可生物降解聚合物(PLGA)的保形涂层。撑杆厚度为80um,支架由钴-铬合金制成。eG层由PBMA(100nm-200nm)和具有1.4ug/mm2西罗莫司的PLGA含药层(3.5至10um)制成。

与前面的实验类似,将支架植入兔子中,并使用伊文思蓝和VE-钙粘蛋白/P120共定位研究它们随时间的内皮化(例如第45和90天)。对于45天的伊文思蓝,结果示例于图12A至图12D;对于45天的VE-钙粘蛋白/P120共定位,结果示例于图13A至图13D;对于90天的伊文思蓝,结果示例于图14A至图14D;和对于90天的VE-钙粘蛋白/P120共定位,结果示例于图5A至图15D。如这些图所示,根据本公开的支架(BuMA Supreme支架)具有比所测试的未根据本公开的其他药物洗脱支架更大百分比的VE-钙粘蛋白/P120内皮细胞共定位(即,内皮更好且功能性更强)。此外,如通过伊文思蓝染色所评价,覆盖本公开的支架(BuMA Supreme支架)的内皮细胞层的容许性(permissibility)低于所测试的未根据本公开的其他药物洗脱支架的容许性,表明内皮在BuMA Supreme支架功能性更强。

还设想,支架框架可以包含波浪设计,其具有在轴向方向上螺旋布置的二-三-二-三连接杆的交替图案。该设计可以改善支架的弯曲性,并且可以导致在支架扩张后更好地适应血管。在一些实施方案中,支架的两端可以依照二-三-二-三图案具有两个连接杆或三个连接杆。在其他实施方案中,支架的两端可以具有四个连接杆,其可以增加支架的轴向强度。该实施例设计的尺寸可以包括例如90μm的杆宽(pole width)和100μm的冠宽(crown width)。当具有大于杆宽的冠宽时,支架可以具有更大的径向强度,并且在支架扩张后具有减小的与血管的截面(crossing profile)。另外,该实施例设计的尺寸可以包括80μm或90μm的壁厚度。

C.人临床试验

用由不锈钢(316L)制成的支架(BUMA支架)进行人临床试验。设计支架,使其具有OD:1.6和6峰(第一设计),或1.8的OD和9峰(第二设计)。第一设计的杆宽为110μm,第二设计的杆宽为90μm。第一设计的壁厚度为100μm,第二设计的壁厚度为110μm。通过上面描述的喷雾涂布方法涂布这些支架。

进行标题为“前瞻性随机对照3至12个月的OCT研究,所述研究评价新的西罗莫司洗脱支架BUMA与依维莫司洗脱支架XIENCE V之间的内皮愈合”的临床试验。BUMA支架被设计为具有30天的药物释放时间框和60天的涂层/含药层可生物降解时间框,并且其根据上面的实施例1制造。另一方面,Xience V支架被设计为具有120天的药物释放时间框,并且涂层是生物稳定的。二十名患者被纳入研究。BUMA支架和XIENCE V支架被重叠植入至相同患者的相同血管的相同损伤处。研究显示,在3个月和12个月的OCT随访时,两个支架的撑杆均被良好覆盖。然而,在12个月时,与XIENCE V支架的撑杆相比,BUMA支架的撑杆具有显著覆盖(BUMA为99.2%对比于XIENCE V为98.2%,P<0.001)。此外,BUMA支架的撑杆比XIENCE V支架的撑杆具有更厚的新生内膜增生厚度和更大的新生内膜面积(BUMA为0.15±0.10mm对比于XIENCE V为0.12±0.56mm,P<0.001)。如上面所解释,低于第一阈的厚度(例如,0.1mm)可以指示内皮细胞数量不足,而高于较高的第二阈的厚度(例如,0.50mm)可以指示平滑肌细胞与内皮细胞的比例,所述比例过高。此外,与XIENCE V支架相比,BUMA支架具有更均匀的撑杆覆盖。研究表明,与XIENCE V支架相比,BUMA支架具有更好的长期安全性。

进行另一个名为“具有不同的洗脱和吸收动力学的可生物降解聚合物基西罗莫司洗脱支架”的临床试验。BUMA支架被设计为具有30天的药物释放时间框和60天的涂层可生物降解(含药层的消失/溶解/消散)时间框,并且其根据上面的实施例1制造。EXCEL支架被设计为具有180天的药物释放时间框,和180至270天的涂层可生物降解时间框。2348名患者被纳入研究。与EXCEL支架相比,BUMA支架显示出更低的支架血栓形成发生率。特别地,BUMA支架的1年支架血栓形成率低于EXCEL支架,在植入后的第一个月内就证明了这种差异。

另一个名为“PIONEER-II研究”的临床试验比较了BUMA支架与Xience V支架之间的1个月光学相干断层扫描(OCT)结果。BUMA支架被设计为具有30天的药物释放时间框,和含药层的60天的可生物降解时间框,并且其根据上面的实施例1制造。Xience V支架被设计为具有120天的药物释放时间框,并且涂层是生物稳定的。十五名患者被纳入研究。研究显示,与Xience V支架相比,BUMA支架的通过OCT随访的1个月撑杆新生内膜覆盖显示出更好的覆盖(BUMA为83.8%对比于Xience V为73.0%,P<0.001)。

实施例2.布撒涂布过程(dispense coating process)

A.过程

在一些实施方案中,可以使用布撒涂布过程形成含药层(3),以将聚合物涂层布置在支架框架上(或在涂布了聚合物的支架上,例如涂布了下面描述的电接枝涂层的支架)。在一个实施例中,在干燥后,用含有西罗莫司的可生物降解聚酯(聚丙交酯,p-PLA)布撒涂布20毫米的支架。将共聚物(5%w/v)溶解于氯仿中。然后,将西罗莫司溶解在氯仿/聚合物混合物中,以获得(1/5)的西罗莫司/聚合物的最终比例1:5。微型布撒器与支架撑杆和连接一起运行,并通过使用以下参数的微型布撒器将混合物布撒到支架的远腔面(8)上:

仅将涂层应用于支架的远腔面(8)。在40℃在真空烘箱中进行干燥。在这个实施例中,支架上的涂层重量为500±50μg,涂层厚度为约9-12μm。此外,在这个实施例中,载药量为125±12μg。

电接枝涂层(eG涂层)

在一些实施方案中,生物相容性基层(5)可以进一步包含电接枝涂层/由电接枝涂层制成。关于支架的电接枝涂布过程的更多细节可以在本领域中获得,包括例如美国专利申请号13/850,679(公开为2014/0296967A1)、美国专利申请号11/808,926(公开为2007/0288088A1)和美国临时专利申请号60/812,990,所有这些通过引用并入本文。

电接枝层可以用作含药层(3)的粘附底层(adhesion primer)(例如,在制造、卷曲和/或形成支架(stenting)期间)。电接枝的底层涂层可以为均匀的。该层可以具有10nm至1.0微米的厚度,例如10nm至0.5微米或100nm至300nm的厚度。这样的厚度可以确保涂层不会开裂。电接枝层通常能够防止可生物降解聚合物层的开裂和分层,与不锈钢BMS相比,电接枝层通常表现出相等的(如果不是更好的)再定殖(recolonization)。此外,由于两个聚合物层之间的相互交叉,使用具有至少约几十纳米或几百纳米厚度的电接枝层可以确保含药层(3)的粘附的良好增强。因此,电接枝聚合物的性质的选择可以基于释放基质聚合物的性质,其本身可以基于所期望的药物释放的负载和动力学来选择。在一些实施方案中,电接枝聚合物和释放基质聚合物可以至少部分可混溶,以构成良好的界面。例如,当两种聚合物具有接近的溶解度或希尔德布兰德(Hildebrand)参数时,或者当其中一种聚合物的溶剂是另一种聚合物的至少良好的溶胀剂(swellant)时,则为这种情况。

通常,电接枝聚合物可以选自已知是生物相容性的聚合物。例如,聚合物可以选自经由增殖链反应获得的那些,如乙烯基类、环氧化物、进行开环聚合的环状单体等。因此,可以使用聚甲基丙烯酸丁酯(p-BuMA)、聚甲基丙烯酸甲酯(PMMA)或聚ε-己内酯(p-ECL)。可替代地或同时地,还可以使用聚甲基丙烯酸羟乙酯(p-HEMA)。

电接枝层(例如,p-BuMA层)可以进一步具有钝化行为,并且可以阻止重金属离子从支架框架(例如,向血流中或向动脉壁中)的释放。所述重金属离子可能有助于由于在血液中引入金属支架而导致的初期炎症,其可以引起任何金属的部分氧化,直至达到能斯特(Nernst)平衡。特别地,电接枝层和可生物降解(无药物)分支的动脉壁的厚度通常小于裸金属支架分支的厚度,证明肉芽肿较少,即炎症较少。

在一个实施方案中,电接枝层可以是可生物降解的,因此在含药层也已消失后,所述电接枝层可以从支架的表面消失。

电接枝层可以具有非血栓形成(或抗血栓形成)作用和促愈合作用(例如,促进活性EC的增殖和粘附)。如果EC在含药层的顶部开始增殖(例如,在其完全消失前),可生物降解聚合物的水解仍然可以在下面继续,最终EC可以接触电接枝层。如果电接枝层自身是可生物降解的,那么这种促愈合作用可以与支架框架的促愈合作用相似。生物稳定的电接枝层的促愈合作用可能更好,所述电接枝层在更长的时间内确保EC的适当的再定殖。

在一些实施方案中,电接枝层可以另外地由抗污材料制成。

可以用作电接枝涂层的聚合物包括但不限于乙烯基聚合物,如丙烯腈聚合物、甲基丙烯腈聚合物、甲基丙烯酸甲酯聚合物、甲基丙烯酸乙酯聚合物、甲基丙烯酸丙酯聚合物、甲基丙烯酸丁酯聚合物、甲基丙烯酸羟乙酯聚合物、甲基丙烯酸羟丙酯聚合物、氰基丙烯酸酯聚合物、丙烯酸聚合物、甲基丙烯酸聚合物、苯乙烯及其衍生物的聚合物、N-乙烯基吡咯烷酮聚合物、乙烯基卤化物聚合物和聚丙烯酰胺、异戊二烯聚合物、乙烯聚合物、丙烯聚合物、环氧乙烷聚合物、含有可裂解环的分子(如内酯,特别是ε-己内酯)的聚合物、丙交酯聚合物、乙醇酸聚合物、乙二醇聚合物,以及聚酰胺、聚氨酯、聚(原酸酯)、聚天冬氨酸酯等。

在一些实施方案中,电接枝涂层可以为乙烯基聚合物或共聚物,如聚甲基丙烯酸丁酯(聚-BUMA)、聚甲基丙烯酸羟乙酯(聚-HEMA)、聚2-甲基丙烯酰氧乙基磷酸胆碱/甲基丙烯酸丁酯(聚-MPC/BUMA)、聚甲基丙烯酰氧乙基磷酸胆碱/甲基丙烯酸十二烷基酯/甲基丙烯酸三甲基甲硅烷基丙酯(聚-MPC/DMA/TMSPMA)等。在某些方面,电接枝涂层可以为可生物降解的聚合物,如聚己内酯、聚丙交酯(PLA)或聚乙二醇丙交酯(PLGA)。

电接枝涂层与可生物降解层(含药层或顶涂层(topcoat layer))之间的粘附

可以通过以下过程将含药层粘附到电接枝层上:与电接枝聚合物形成化学键;将含药层的化学前体插入电接枝聚合物中,以引起其在电接枝聚合物膜内的形成;迫使电接枝层内的预先形成的可生物降解聚合物通过相互交叉而相互渗透(interpenetration)等。相互交叉通常涉及以下事实:可生物降解聚合物的聚合物链可以在电接枝层内“蠕变(creep)”或“回缩(reptate)”,并且可以在电接枝层内形成至少一个“环(loop)”。对于聚合物,一个“环”可以指当随机配置时的链的典型尺寸,并且其可以使用聚合物的回转半径来评价。通常,聚合物的回转半径小于100nm,这提示,为了能够改善粘附,电接枝层可以比该阈值更厚,以能够承载至少一个含药层的聚合物的环。

在使用相互交叉的实施方案中,电接枝层可以厚于约100nm,可以具有与含药层的聚合物相同的润湿性(例如,疏水性/亲水性),可以具有比含药层的聚合物的玻璃化转变温度小的玻璃化转变温度,和/或可以通过含药层的聚合物的溶剂或通过含有含药层的聚合物的分散体的溶剂而至少部分地溶胀。

在一些实施方案中,可以通过将含有含药层(和任选的药物)的溶液铺展(spread)在涂布有电接枝层的支架框架来引起相互交叉。例如,含药层可以包含PLGA,可以任选地与疏水性药物(如西罗莫司、紫杉醇、ABT-578等)溶解于二氯乙烷、二氯甲烷、氯仿等中。在这样的实施例中,电接枝层可以包含p-BuMA。

在一些实施方案中,可以通过浸渍或通过喷雾来进行这种铺展。在使用喷雾的实施方案中,喷雾上面的溶液的喷嘴可以面向支架框架,所述支架框架可以旋转以将所有外表面呈现于喷雾。在某些方面,待喷雾的溶液可以具有低的粘度(例如,<1cP,纯氯仿的粘度为约0.58cP),喷嘴可以与旋转的支架相距很近的距离,并且喷嘴中的惰性载体气体(例如,氮气、氩气、压缩空气等)的压力可以小于1巴。这些条件可以导致液体雾化成液体的小液滴,所述液滴可以在喷雾腔室气氛中行进,以撞击支架的电接枝层的表面。在电接枝聚合物层和喷雾溶液具有相同的润湿性的实施方式中,液滴可以表现出非常低的接触角,因此表面上的液滴收集可以是致膜的(filmogenic)。这样的喷雾系统能够制造在撑杆间具有非常小的网状结构的涂布的支架。

喷嘴相对于支架的相对运动可以使得在单次喷射中沉积均匀的和/或相对薄的(例如<1μm)层。旋转和/或换气可以使得溶剂蒸发,在表面上留下聚合物层(任选地包括药物)。然后,可以在第一层上喷雾第二层,以此类推以达到所期望的厚度。在使用多次喷雾以达到所期望的厚度的实施方案中,“低压”喷雾系统可以分批实施,其中多个支架与一个喷嘴并行旋转,所述喷嘴依次喷雾在每个和所有支架上,因此使得其他支架在另一个支架被喷雾时蒸发。

除了这些实施方案以外,制造过程可以包括在US20070288088A1中公开的任何制造方法,其通过引用并入本文。

所描述的实施方案在所有方面仅被认为是说明性的而不是限制性的。因此,本公开的范围由所附的权利要求而不是由前面的说明书来表示。在权利要求的等同的含义和范围内的所有改变都被包括在其范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1