带气泡皂的制造方法

文档序号:1502465阅读:212来源:国知局
专利名称:带气泡皂的制造方法
技术领域
本发明涉及一种由含有无数气泡的熔融皂构成的带气泡皂的制造方法,更详细地说,涉及一种防止该熔融皂中气泡与液体分离的带气泡皂的制造方法。
背景技术
作为带气泡皂的制造方法,本发明人以前在日本特开平10-195494公报中提出了一种将含有无数气泡的熔融皂在成型模的空腔内固化时,固化工序在气密状密闭的空腔内进行的方案。
按照前述制造方法,由于能够阻止来自外部的空气进入空腔内,在固化后的皂中不会发生空洞或凹部,但如果在带气泡皂的制造中发生任何故障而导致作业停止时,熔融皂停滞于其供给管或贮藏罐内,气泡相互合一,其直径变大,气泡与液体成分离状态。在这种状态下再度开始作业时,在气泡与液体分离状态下直接将熔融皂注入空腔内。其结果是,得到的皂中气泡为不均匀地分散的状态,在使用时发泡降低。在使用作为最一般的搅拌方法的搅拌叶片的场合,在剪断力低的情况下难以改善气泡的合一或气液分离,剪断力过强的情况下空气被卷入,使皂的比重变化。此外,伴随着气泡的状态(特别是气泡量)的变动,还存在着会改变固化后的皂的重量的情况。

发明内容
的公开从而,本发明的目的是提供一种防止分散含有无数的气泡的熔融皂中气泡与液体分离的带气泡皂的制造方法。
本发明的另一个目的是提供一种固化的皂中气泡的分散均匀且重量变化少的皂的带气泡皂的制造方法。
为了实现前述目的本发明提供了一种带气泡皂的制造方法,其中,将分散含有无数气泡的熔融皂在成形装置中固化的带气泡皂的制造方法,在所述熔融皂的贮存罐上,设有经该贮存罐以形成环状的循环管路,该循环管路或该贮存罐与所述熔融皂的供给部连接,所述熔融皂在所述循环管路内循环的同时通过所述供给部供给所述成形装置。
本发明还提供了一种带气泡皂的制造装置,为一种使用前述的带气泡皂的制造方法的制造装置,具有熔融皂的贮存罐,与该贮存罐连接并且经该贮存罐形成环状的循环管路,与该循环管路或该贮存罐相连接的熔融皂的供给部,和将由该供给部供给的熔融皂成形和固化成规定形状的成形装置。
附图的简单说明

图1为本发明的制造方法的第1实施例中使用的装置中熔融皂的循环部的示意图。
图2为本发明的制造方法的一实施例中使用的装置中熔融皂的供给部的示意图。
图3(a)、图3(b)及图3(c)为使用本发明的制造方法的一实施例中使用的装置中熔融皂的成形部的示意图。
图4为本发明的制造方法的第2实施例中使用的装置中熔融皂的循环部的示意图(相当于图1)。
图5为本发明的制造方法的第2实施例中使用的装置中的熔融皂的循环部的示意图(相当于图1)。
实施发明的较佳实施例下面,参照根据较佳实施例的附图对本发明进行说明。本实施例中使用的制造装置具有熔融皂的循环部、连接于该循环部上的熔融皂的供给部以及具有由该供给部供给的熔融皂的成形模的成形部。在图1中,示出了本发明的制造方法的第1实施例使用的装置中的熔融皂的循环部,图2中示出了熔融皂的供给部。此外,图3示出了熔融皂的成形部。
图1所示的熔融皂的循环部6具有贮藏罐61、连接于贮藏罐61上并形成经过贮藏罐61内的环路的循环管路62、连接于循环管路62的途中的循环泵63。此外,在贮藏罐61中连接有在发泡部(图中未示出)中发泡的熔融皂的供给管路64。再者,在贮藏罐61内设置有搅拌叶片65。搅拌叶片通过电机66向预定的方向回转,在贮藏罐61的上部设置有液面高度计67。作为液面高度计67,可以使用例如光学式、超声波式或差压式的高度计。在循环管路62中,在其途中连接设置有比重计68。作为比重计68,可以使用例如樱エンドレス(株)的“哥式质量流量计”,也可通过密度测定模式来测定。再者,在循环管路62中,熔融皂的供给部3与循环管路62以可开闭地连通地状态连接。供给部3为多个直列连接。在包含贮藏罐61及循环管路62的循环部6和供给部3中,均安装有温水及加热器等的保温装置,以保持预定的温度。
由液面高度计67测量出的熔融皂的液面高度以及由比重计68测量的熔融皂的密度分别变换成电信号送至演算部69。在演算部69中,根据熔融皂的液面高度及熔融皂的密度值进行对后述的伺服电机38的动作加以控制的演算,将演算的结果变换为电气信号向伺服电机38传送。
以下对具有以上结构的循环部的熔融皂的循环进行说明,在图中未示出的发泡部中发泡,分散含有无数气泡的熔融皂通过供给管路64贮存于贮藏罐61内。在贮藏罐61内的熔融皂由搅拌叶片65搅拌,气泡的分散状态被均匀地保持。熔融皂的一部分通过循环泵63送入循环管路62内。其结果,贮存于贮藏罐61内的熔融皂经过贮藏罐61在循环管路62内循环。通过这种循环,即使如果发生什么问题而停止了制造带气泡皂的作业,熔融皂不会在供给配管内停滞,维持在熔融皂中施加通常剪断力的状态,防止了气泡与液体相分离的状态。特别是在本实施例中,由于熔融皂的循环施加了剪断力,具有例如可以控制熔融皂的流速来控制向熔融皂施加剪断力的时间的优点。即通过向含有气泡的熔融皂那样的保存稳定性低的压缩性流体长时间连续地施加剪断力,可使气泡的状态变化。另一方面,如果不施加剪断力,难以避免气泡的合一或气液的分离。这样,在熔融皂循环的场合,通过控制施加剪断力的时间,能够向熔融皂施加有效的剪断力,其结果,可以使贮藏罐61内的带气泡皂的气泡分散状态良好,并且能够长时间保持这种良好的状态。通过贮藏罐61中搅拌叶片65的搅拌,也能够在一定程度上防止气泡与液体的分离,但不充分。为了由搅拌叶片65搅拌熔融皂以不产生气液分离或气泡合一时,熔融皂被卷入气泡,其比重变动。从而,最好进行在贮藏罐61内不混入气泡的缓慢的搅拌,防止气泡与液体的分离通过循环管路62内的循环来进行。
在熔融皂循环期间,通过比重计68对其密度进行测量。与此同时用液面高度计67对贮藏罐61中熔融皂的液面高度进行测量。
作为分散含有无数的气泡的熔融皂的调制方法,可以使用例如本发明人以往申请的特开平11-43699号公报的第2栏第15行~第5栏第1行记载的方法。在熔融皂的发泡中可以使用各种气体,但通过使用惰性气体,特别是氮气等非氧化性的惰性气体可有效地防止由于熔融皂的加热所引起的,由于其配方氧化分解而发生的异臭等。在发泡中使用惰性气体作为带气泡皂的配方,在配合易于氧化分解的香料成分的场合特别有效。
在熔融皂的循环中,其温度保持为55~80℃,特别是60~70℃,对于后述的防止供给喷咀前端的熔融皂的固化以及防止皂的氧化或香料的劣化有好处。
与此相关联地,在熔融皂的循环中,最好使熔融皂在比其融点高1~20℃,特别是高2~5℃的温度下加热并保温的条件下循环,可具有与上述同样的理由。
在熔融皂的循环中,对于其循环流量V(m3/h),在贮藏罐61的容量S(m3)的比S/V(h)为0.01~5状态下循环熔融皂,在防止气泡的合一及气泡与液体的分离上有好处。
与前述循环流量相关联地,熔融皂在其循环管路62内的流速Vd以为0.02~5m/s,特别是0.05~0.8m/s状态下循环为好。如未满下限值,在向熔融皂的供给部3分注时容易产生压力不足。如果超过上限值,设备规模加大,提高了在循环中卷入气泡的可能性。此外,与此相关地,循环管路62的截面积最好为10~200cm2,特别是20~180cm2,可具有与上述同样的理由。
在熔融皂的循环中,以其剪断速度为0.2~500s-1,特别是为0.3~100s-1,最好是0.3~20s-1的状态使熔融皂循环,对于防止气泡的合一及防止气泡与液体的分离上有好处。剪断速度D由D=2Vd/d算出。在此Vd为熔融皂的循环流速(m/s),d为循环管路62的直径(m)。在循环管路内,最好适当地设置能够进行前述剪断速度的范围的剪断的静态混合器(静止混合器)。
在循环管路62循环的熔融皂,其一部分向连接于循环管路62的供给部3送入。如图2所示,供给部3具有其一端连接于循环管路62上的连接管路35,与连接管路35另一端连接的切换阀32、连接于切换阀32的一端上的供给喷咀31,连接于切换阀32的另一端上的缸体33及设置于缸体33内的活塞34。通过该切换阀32,循环管路62与供给喷咀31可开闭地连通。在活塞34的活塞杆的前端上安装有直线导向件36。直线导向件36通过连杆机构37与伺服电机38连接。在伺服电机38的带动下,直线导向件36可直线往复运动。通过这种运动,活塞34在缸体33内自由滑动。并且,由活塞34的缩进距离或伸出距离决定熔融皂的注出体积。具体为,具有(1)将抽吸前的活塞位置作为原点,由活塞缩进的距离决定供给体积的方法,或者(2)将抽吸后的活塞的位置作为原点,由活塞伸出的距离决定供给体积的方法。由于计量的熔融皂为压缩性流体,在前述的(1)方法中,是在活塞的原点位置,在缸体内尽可能不残存熔融皂的方式决定原点的,从提高测定重量的精度方面有好处。正如前述,伺服电机38被根据演算部69中的演算结果加以控制。对于控制的细节在后面详述。
对供给部3中的熔融皂的流动加以说明,在循环管路62内循环的熔融皂,其一部分通过切换阀32对管道的切换,经连接管路35和循环管路62送入缸体33内。此时,活塞34通过直线导向件36可预先缩回到规定的位置。或者,可在熔融皂送入缸体33内的同时,逐渐地缩回活塞34。
规定量的熔融皂送入缸体33内后,由切换阀32切换管道,以与缸体33和供给喷嘴31连接。接着,通过直线导向件36,将活塞34推出规定距离,以推出缸体33内的熔融皂。由此,熔融皂通过供给喷嘴31注入作为成形装置的成形部7。成形部7的个数与供给喷嘴31的个数相同。以上一连串的操作应在供给部3中进行。
活塞34的移动距离根据由比重计68测量的熔融皂的密度和液面高度计67测量的贮存罐61中熔融皂的液面高度为基础而在演算部69中演算的结果,控制伺服电机38而定的。具体为,进行如下的操作。
首先,与熔融皂的密度相关地,预先求出熔融皂朝成形部7注入的重量A与熔融皂的密度ρ的相关联的关系。通过本发明人的研究判断为两者呈右上的直线关系。由该直线关系求出的系数为Cρ。对于熔融皂的液面高度,同样,预先求出熔融皂注入成形部7的重量A与熔融皂的液面高度L的相关联关系。通过本发明人的研究判断为两者呈右上的直线关系。由该直线关系求出的系数为CL。另外,设定要注入成形部7的熔融皂的重量为A0。从前述的直线关系预先求出与该设定重量A0相对应的熔融皂的密度ρ0和液面高度L0。将这些Cρ、CL、A0、ρ0和L0的数值作为初期值输入演算部69中。
接着,根据预先求出的ρ0和L0的数值以及通过测量求出的熔融皂的密度ρM和LM的数值,在演算部69中算出ρM与ρ0的差Δρ(=ρM-ρ0)和LM与L0的差ΔL(=LM-L0)。算出的Δρ和ΔL的数值与分别作为初期值输入的Cρ和CL的数值相乘,求出根据设定重量A0的修正重量,即求出(CρΔρ+CLΔL)的数值。用测量的密度ρM除去该数值而求出修正体积。预先判定缸体33的断面积,用该断面积除去修正体积,算出活塞34的移动的修正距离。将算出的修正距离换算成伺服电机38的回转步位,将换算的数值输入伺服电机38中,以调整活塞34的移动距离。
通过这一连串的操作,即使熔融皂的密度因什么原因变动,也可向成形部7注入一定重量的熔融皂。此外,循环熔融皂时,即使例如停止作业,在由熔融皂的发泡至注入期间,熔融皂也不会停滞,防止了气泡与液体成分离状态。结果,在获得的带气泡皂中,气泡呈均匀分散的状态,使用时的发泡良好。
下面,参照图3(a)~(c)说明注入成形部7的熔融皂的成形。如图3(a)所示,成形部7具有作为成形模的下模1和上模2。下模1由金属等刚体构成,具有上部开口的空腔11。空腔11成为与作为制品的带气泡皂的底部和各侧部的形状相配合的凹状。在空腔11的底部贯穿有多个使空腔11与下模1的外部相互连通的连通孔12。在下模1的侧面装有固定下模1和上模2的锁定机构13。
另一方面,上模2也可由金属等刚体构成。上模2具有盖体21、装到盖体21的下表面上且其下表面与带气泡皂的上部形状相配合的压缩部22、安装到盖体21上表面上的加压部23以及与加压部23松配合而与下模1的锁定机构13接合的接合部24。
如图3(a)所示,从供给喷嘴31注出的熔融皂4注入下模1的空腔11内。此时,由前述演算部69控制下注入的熔融皂4的体积最好是作为制品的带气泡皂的目标设定体积的1.05倍以上,更好地是1.1倍以上,但与后述的熔融皂的压缩相结合,可有效地防止熔融皂的冷却引起的收缩或气孔的发生。注入的熔融皂符合这样的关系时,可适当地调整熔融皂的密度。熔融皂的注入体积的上限值根据熔融皂所包含的气泡的体积的比例适当地确定。例如,熔融皂体积中气泡占整个体积的比例较大时,冷却引起的收缩的程度较大,从而注入体积的上限值可较大。另外,熔融皂的体积中气泡所占整个体积的比例较小时,冷却引起的收缩程度不会比其大,从而注入体积的上限值较小。考虑到本实施例中熔融皂的体积中气泡所占整个体积的比例为5~70%左右时,注入体积的上限值最好为带气泡皂的体积的3倍特别是2倍。熔融皂的体积随压力和温度变化,但在本说明书中,熔融皂的体积为1大气压下、25℃时的体积。
熔融皂朝空腔11内注入的温度几乎与在循环管路62内循环的熔融皂的温度相同。
熔融皂4的注入结束后,用上模2封闭下模1,安装到下模1上的锁定机构13与安装到上模2上的接合部24接合。由此,固定两个模,空腔11内成为气密状态。接着,如图3(b)所示,用加压缸体等规定的加压装置(图中未示出)推压安装到上模2上的加压部,将注入空腔11内的熔融皂4压缩到成为制品的带气泡皂的目标设定体积。并且,在该压缩状态下,熔融皂固化。通过这种操作,可有效地防止因熔融皂的冷却引起的收缩或气孔的发生,获得呈良好外观的带气泡皂。
尽管熔融皂的注入体积根据带气泡皂的目标设定体积的倍数而不同,但熔融皂的压缩的压力(表压)一般为0.005~0.3Mpa,特别是为0.05~0.2Mpa。
另外,熔融皂的压缩比也就是熔融皂所包含的气体成分的压缩比(压缩前的气体成分的体积/压缩后的气体成分的体积)为1.08~2.5,特别是为1.1~2,从防止冷却引起的收缩或气孔的发生以及冷却时间的缩短和生产效率的提高上是有好处的。熔融皂中所含有的气体成分包含有熔融皂发泡用的气体和熔融皂所含有的水蒸气等。
熔融皂固化之际,下模1由规定的冷却机构例如水等制冷剂冷却,可缩短熔融皂的固化时间。不用说,也可以自然冷却。水冷却时,水温为5~25℃左右,从防止冷却时气泡不均匀分散方面有好处。
熔融皂的固化是在获得的带气泡皂的表观密度在0.4~0.85g/cm3、特别是0.6~0.8g/cm3下进行的,从确保熔融皂的流动性和提高冷却效率以及提高带气泡皂离开空腔的脱模性和改进外观方面有好处。固化如此状态下的熔融皂时,例如,将由大气压下55ml的氮气和90ml的皂组合物构成的带气泡皂在64℃下注入空腔11内后,可在压缩到120ml的状态下固化。带气泡皂的表观密度的测定方法在后述的熔融皂的固化是在获得的带气泡皂中直径为1~300μm的气泡的体积占所有气泡的体积的比例(下面称作气泡体积分率)为80%以上下进行的,从提高皂的发泡和防止泡涨方面有好处。为了成为如此状态,固化熔融皂时,使用例如(株)荏原制作所制ヱ-ロミツクスMDFO型通气装置,在1000kPa(500rpm)的条件下回转叶轮的同时通气,可以在空腔内在保持压缩的状态下冷却固化。带气泡皂的气泡体积分率的测定方法在后述实施例中说明。
熔融皂固化结束后,解除装在下模1上的锁定机构13与装在上模2上的接合部24的接合,接着,如图3(c)所示,卸下上模2。此外,使用规定的把持装置例如真空吸盘,从下模1的空腔11内取出带气泡皂5。取出之际,通过贯穿于空腔11底部的连通孔12,向空腔11内吹入空气等气体,可促进带气泡皂5的脱模。
如此获得的带气泡皂为全体中气泡是均匀分散的皂。因此,该带气泡皂的发泡良好。另外,对该带气泡皂观察,无熔融皂的冷却引起的收缩或气孔,呈良好的外观。此外,带气泡皂的重量与设定的重量基本一致。
作为构成带气泡皂的配方,例如有脂肪酸皂碱、非离子系界面活性剂、无机盐、多元醇类、非皂碱系的阴离子界面活性剂、游离脂肪酸、香料、水等。此外,根据需要可适当添加抗菌剂、颜料、染料、油剂、植物精华等添加剂。
下面,参照图4和图5说明本发明的第2和第3实施例。在这些实施例中,只说明与第1实施例不同之处,对于没有特别说明的方面适用于与第1实施例相关的详述。另外,在图4和图5中,与图1~图3相同的部件标以相同的序号。另外,在图4和图5中,省略了图1所示的液面高度计67、比重计68和演算部69。
在图4所示的第2实施例中,在带气泡皂的制造装置中的贮存罐61与供给部3之间装有冷却在循环管路62中循环的熔融皂用的冷却装置81。具体为,在供给部3与循环管路62相连的连接位置与贮存罐61之间,在循环管路62上装有冷却装置81。冷却装置81安装到供给部3与循环管路62相连接处的正上游侧(正前)。另外,循环管路62上也装有对该循环管路62中循环的熔融皂加热用的加热装置80。加热装置80的安装位置处于供给部3与循环管路62相连接的连接位置的下游侧。也就是说,在循环管路62上,与熔融皂的循环方向相关地,在上游侧装有冷却装置81,而在其下游侧装有加热装置80。并且,装到循环管路62上的冷却装置81与加热装置80之间连接着熔融皂的供给部3。为使从循环管路62返回贮存罐61中的熔融皂的温度与贮存罐61内的熔融皂的温度(保温温度)相同,将加热装置80中的加热温度设定成比循环管路62的温度高。另外,冷却装置81中的冷却温度设定成比对循环管路62保温的保温装置的保温温度低。由此,熔融皂被冷却到比其保温温度例如低0.5~10℃左右。不用说,冷却温度在皂的熔融温度以上。作为加热装置80,可使用热交换器等。作为冷却装置81,可使用水冷管。
在本实施例的制造方法中,熔融皂注入成形部7的空腔11内之前,由于冷却到比循环中的温度(保温温度)低的温度,具有在空腔11内的冷却固化时间比第1实施例时缩短的优点。特别是,在将熔融皂供给到空腔11内之前,通过冷却到比保温温度低0.5~10℃的温度,可缩短在空腔11内无搅拌或无剪断的精置时间,从而具有直到固化可降低气泡的合一或分离的发生的优点。但是,由冷却装置81冷却熔融皂时,由于在循环管路62内熔融皂的流动性会降低,会不能进行顺畅的循环,因此,在循环管路62中,在该循环管路62与供给部3的连接位置的下游处,安装与该循环管路62的保温装置不同的、熔融皂加热用的加热装置80,由该加热装置80的加热,确保熔融皂的顺畅的循环。
在图5所示的第3实施例中,安装到带气泡皂的制造装置中的循环部6上的循环管路6不与供给部3连接。另外,也不装有加热装置和冷却装置。替代这些构件的是,通过与循环管路62不同的、与贮存罐62相连接的连接管路35,使供给部3与贮存罐61相连。并且,连接贮存罐61与供给部3的连接管路35上装有冷却装置81。也就是说,贮存罐61与供给部3之间装有冷却装置81。另外,在图5中,供给部3只示出了一个,但可有多个供给部与贮存罐61相连接。此时,将各供给部与贮存罐61连接的管路上分别装有冷却装置。无论是哪一种情况,均将冷却装置81的冷却温度设定成比对贮存罐61保温的保温装置的保温温度低。由此,熔融皂被冷却到比其保温温度低例如0.5~10℃。
在本实施例的制造方法中,也与第2实施例同样,熔融皂注入成形部7的空腔11内之前,由于冷却到比循环中的温度低的温度,具有在空腔11内的冷却固化时间比第1实施例时缩短的优点。此外,与第2实施例不同,由于不用冷却循环管路62,具有无需第2实施例所用的加热装置的优点。由此,可简化制造装置的结构。
本发明并不限于前述实施例。例如,在第1和第2实施例中,在一根环状的循环管路62上直列连接有多个供给部3,但可用下述方式替代之,即,在贮存罐61上设有多个环状的循环管路,并且在各循环管路上分别连接一个或一个以上的供给部3。也就是,可以在各循环管路上分别设有一个或一个以上的供给喷嘴,使用与各供给喷嘴相对应个数的下模。采用如此方式的话(特别是,供给喷嘴只设有一个时),与直列连接时相比,可分别独立地调整泵的转数,具有可提高注入重量的优点。
另外,在前述实施例中,是用下模1和上模2来制造带气泡皂的,但根据带气泡皂的形状,下模1可由多个拼合模构成。
另外,在前述实施例中,是根据熔融皂的密度的变动和贮存罐61内的熔融皂的液面高度的变动,增减熔融皂的注入体积的,但可替换为,只根据熔融皂的密度的变动,就足以制造一定重量的带气泡皂。理由是,作为影响到熔融皂的体积变动的主要因素,熔融皂的密度的变动要比贮存罐61内的熔融皂的液面高度变动大。不过,不用说,根据这两者,增减熔融皂的注入体积,从精密控制重量方面有好处。
另外,在前述实施例中,熔融皂的密度是在处于贮存罐61与供给部3之间的循环管路62上测量的,但测量位置并没有限制,可处于贮存罐61与供给喷嘴31间的其他位置。不过,在前述位置上测定最好是熔融皂的流量要稳定,注入量无偏差。
在前述实施例中,带气泡皂的成形装置具有包括下模1和上模2的成形模,但可用具有其他形状和/或构造的成形装置加以代替。例如,可以用由聚乙烯、聚丙烯、聚碳酸酯、聚酯等合成树脂,可挠性的薄板状金属,可挠性的橡胶材料等构成的中空体作为成形模来代替前述实施例所用的成形模。此时,如熔融皂供给到该中空体内并固化的话,具有该中空体照样成为所获得的带气泡皂的包装容器的优点。
在前述实施例中,成形模是由具有凹部的下模1和封闭该凹部的上模2构成的,但可替代之,由多个拼合模构成并通过组装各拼合模,形成与最终的带气泡皂的形状一致的形状的空腔的成形模。使用这样的成形模时,可采用与塑料的注射成形同样的方法,将熔融皂注入该成形模中。
实施例1~6和比较例1用以下表1所示的配方,调制根据前述的特开平11-43699号公报所记载方法的、分散含有无数气泡的熔融皂。用氮气发泡。
表1

使用调制的熔融皂,在实施例1~6中,根据图1~图3所示的工序,制造带气泡皂。带气泡皂的重量设定为90g。熔融皂的贮存罐61的容积为0.2m3,循环管路62的断面积为78.5cm2。熔融皂的循环温度、循环流量V、循环流速Vd、罐容积S与循环流量V之比S/V以及剪断速度D由表2示出。在比较例1中,贮存罐61的出口直接与成形部3连接,熔融皂不进行循环。无论是实施例还是比较例,在皂的制造过程中,均在2小时后停止生产线,之后,再次按如下顺序作业。
熔融皂通过供给喷嘴31注入下模2的空腔11中。接着,用上模2封闭下模1的上表面,使空腔11内成气密状态后,由上模2的压缩部22,将熔融皂压缩到带气泡皂的目标设定体积(120cm3)。熔融皂的压缩比由表2示出。在该压缩状态下,用5~15℃的冷却水冷却下模3~15分钟后,熔融皂被固化。
熔融皂固化结束后,取下上模2,再通过贯穿于空腔11底部上的连通孔12,向空腔11内吹入压缩空气,同时,用真空吸盘把持带气泡皂以从空腔内取出,获得成为最终制品的带气泡皂。
对于如此获得的带气泡皂,由以下的方法测定表观密度和气泡体积分率的同时,测定其重量。并且,用下面的基准评价气泡的分散性和外观的好坏。这些结果由表2示出。
表观密度的测定从获取的带气泡皂切出三边的长度为已知(例如为10~50mm的长度)长方体状的测定片,测定其重量,用体积值除去重量值而得到。体积值使用由长方体的三边的值计算得出。重量测定由电子秤进行。另外,本测定是在温度为25℃±3℃、相对湿度为40~70%环境下进行。
气泡体积分率的测定在-150℃温度下对在-196℃温度下急冷的带气泡皂进行切断,在-150℃真空下,用电子显微镜观察切断面。作为电子显微镜,使用JEOL HIGHTECH CO.LTD.社制、クライオSEM JSM-5410/CRU。加速电压为2kV,作为检测信号使用二次电子图像。根据获得的500倍的显微镜照片测定气泡的直径,根据测定的直径算出气泡体积分率。
气泡的分散性的评价将得到的皂切成两半,由以下的基准目视评价切断面。
○···没有观察到切断面的各部中的浓淡差。
△···通过切断面的各部中浓淡的不同观察到条理(筋)。
×···通过切断面的各部中浓淡的不同观察到多个条理或面。
外观好坏的评价通过目视以如下基准评价外观的好坏。
◎···获得与空腔形状相同的外观形状。
···获得与空腔形状大致相同的外观形状。
×···与空腔形状比较,可见气孔。
表2

由表2结果可知,在由各实施例获得的带气泡皂中,气泡是均匀分散的。另外,没有观察到冷却引起的收缩或气孔,呈良好的外观。此外,由各实施例获得的带气泡皂中,其重量与设定重量基本一致。尽管在表中没有示出,但在各实施例获得的带气泡皂中,没有观察到因熔融皂的加热引起的异臭等。对此,在由比较例获得的带气泡皂中,气泡的分散不均匀。
产业上的可利用性采用本发明的带气泡皂的制造方法的话,可防止分散含有无数气泡的熔融皂中气泡与液体的分离。
另外,采用本发明的带气泡皂的制造方法的话,气泡均匀分散,可获得发泡良好的带气泡皂。
特别是,熔融皂的注入量比带气泡皂的目标设定体积大,在该熔融皂固化之际,可有效地防止冷却引起的收缩或气孔的发生。此外,熔融皂的发泡中使用惰性气体时,可有效地防止因熔融皂的加热引起的异臭等的发生。
根据供给成形装置的熔融皂的比重的变动,以增减该熔融皂供给该成形装置的体积,可制造重量无偏差的带气泡皂。
权利要求
1.一种将分散含有无数气泡的熔融皂在成形装置中固化的带气泡皂的制造方法,在所述熔融皂的贮存罐上,设有经该贮存罐内以形成环状的循环管路,该循环管路或该贮存罐与所述熔融皂的供给部连接,所述熔融皂在所述循环管路内循环的同时通过所述供给部供给所述成形装置。
2.按照权利要求1所述的带气泡皂的制造方法,其特征在于,根据供给到所述成形装置中的所述熔融皂的比重的变动,增减该熔融皂供给该成形装置的体积,以使该熔融皂的供给量成为一定重量。
3.按照权利要求2所述的带气泡皂的制造方法,其特征在于,在将所述贮存罐中贮存的所述熔融皂供给所述成形装置之际,根据该贮存罐内所述熔融皂的液面高度的变动,增减供给所述成形装置的该熔融皂体积。
4.按照权利要求2所述的带气泡皂的制造方法,其特征在于,在所述贮存罐与所述成形装置之间的位置上,测定所述熔融皂的比重。
5.按照权利要求1所述的带气泡皂的制造方法,其特征在于,所述熔融皂在保温于55~80℃下循环。
6.按照权利要求5所述的带气泡皂的制造方法,其特征在于,所述熔融皂冷却到比保温温度低的温度下供给到所述成形装置中。
7.按照权利要求1所述的带气泡皂的制造方法,其特征在于,所述贮存罐的容量S(m3)相对所述熔融皂的循环流量V(m3/h)的比S/V(h)为0.01~5的情况下循环所述熔融皂。
8.按照权利要求1所述的带气泡皂的制造方法,其特征在于,所述熔融皂在其剪断速度为0.2~500s-1下循环。
9.按照权利要求1所述的带气泡皂的制造方法,其特征在于,所述循环管路或所述贮存罐连接多个所述供给部,使用与各供给部相对应个数的所述成形装置。
10.按照权利要求1所述的带气泡皂的制造方法,其特征在于,所述贮存罐上设有多个所述循环管路,各循环管路上设有所述供给部,使用与各供给部相对应个数的所述成形装置。
11.一种使用权利要求1所述的带气泡皂的制造方法的带气泡皂的制造装置,具有熔融皂的贮存罐,与该贮存罐连接并且经该贮存罐内形成环状的循环管路,与该循环管路或该贮存罐相连接的熔融皂的供给部,和将由该供给部供给的熔融皂成形和固化成规定形状的成形装置。
12.按照权利要求11所述的带气泡皂的制造装置,其特征在于,在所述循环管路内循环的所述熔融皂保持在规定的温度下的保温装置装到该循环管路和所述贮存罐上,并且,在所述贮存罐与所述供给部之间装有冷却装置,以将所述熔融皂冷却到比其保温温度要低的温度。
全文摘要
一种将分散含有气泡的熔融皂4在成形装置中固化的带气泡皂5的制造方法,在熔融皂4的贮存罐61上,设有经该贮存罐以形成环状的循环管路62,该循环管路62或该贮存罐61与熔融皂4的供给喷嘴31连接,使熔融皂4在循环管路62内循环的同时通过供给喷嘴供给成形装置。
文档编号C11D13/16GK1392898SQ01802856
公开日2003年1月22日 申请日期2001年9月20日 优先权日2000年9月22日
发明者长谷川武, 宫本恭典, 阿部忠夫, 秦野耕一 申请人:花王株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1