磁光效应光子晶体光纤及其制造方法

文档序号:1809712阅读:582来源:国知局
专利名称:磁光效应光子晶体光纤及其制造方法
技术领域
本发明述及一种光纤及其制造方法,特别是一种磁光效应光子晶体光纤及其制造方法。
背景技术
光电信息功能材料是现代信息社会的支柱和信息技术革命的先导,磁光材料就是光电信息功能材料之一,他在外磁场的作用下,能使通过它的平面偏振光方向发生旋转从而产生法拉第磁光效应,在磁光隔离器、磁光调制器、磁光开关和光纤电流传感器等领域中有着广泛的应用前景,并随着光纤通信和光纤传感的迅速发展,越来越受到人们的重视。磁光材料是指在可见光和红外波段具有磁光效应的光信息功能材料,它在结构上主要有两种形式磁光块状材料和磁光光纤。在这两种形式的材料中,人们倍加关注磁光光纤的发展,这是因为磁光光纤作为光纤通信系统中磁光器件和光纤电流互感器的传感头部件,具有易连接、柔性好、损耗小、全光纤化等优点。
费德尔常数是衡量磁光材料的法拉第磁光效应的重要指标之一,费德尔常数大,说明磁光效应强。一般常规石英光纤的Verdet常数为4.6×10-6rad/A,很显然它的Verdet常数低。为了提高光纤的Verdet常数,国内外许多研究者采取在光纤中掺杂铽(Tb)的方法去实现。铽是一种顺磁性稀土元素,在基质(石英或玻璃)材料中加入Tb3+会较大的提高Verdet常数,在石英光纤中掺杂Tb3+会使Verdet常数是常规石英光纤的2.7倍。常规结构掺杂Tb3+的磁光效应光纤,尽管提高了Verdet常数,但是,仍然敏感于外界温度的干扰,抗弯能力较差,损耗偏高,且只易于制作多模光纤,从而有模式耦合效应,产生模间噪声,降低线偏光的偏振态等问题。另外,由于Tb3+掺杂的浓度限制,所以提高Verdet常数也是有限的。
以上诸多问题一直是困扰磁光光纤器件和全光纤电流传感完全实用化的难点问题。特别是在光纤电流互感器的应用方面,全光纤化是最理想的实现方式。因此,研制提高磁光效应、改进热稳定性、抗外界环境干扰的磁光效应光纤是解决问题的关键。
为了提高磁光材料的磁光效应,最近Kahl S.和Grishin A.M.提出了用光子晶体材料增强磁光效应的方法,为我们在原理和结构上解决以上存在的问题开启了一扇明亮之门,他们是用BIG和YIG材料交错排列地组成一维的光子晶体波导结构实现磁光效应功能。然而,这种结构和材料是不易做成光纤的。
由此看出,寻找一种新型的磁光效应光纤,使其具有Faraday磁光效应大、抗温度、振动环境影响强,适合于磁光器件和磁敏传感的需要,是很有必要的。

发明内容
本发明的目的是针对现有技术中存在的问题,提供一种磁光效应光子晶体光纤,解决困扰光纤在磁光效应领域应用中存在的灵敏度低、温度敏感性大的关键技术问题,为光纤通信领域的磁光器件和光纤传感领域的全光纤电流互感器发展服务。本发明的另一个目的是根据已有的光纤制备技术,在光纤的制作技术和工艺流程方面,提出一套实用可行的磁光效应光子晶体光纤的制造方法。
本发明的目的是通过以下手段来实现的;一种磁光效应光子晶体光纤,由掺杂稀土元素的纤芯、气孔包层和保护层组成,其特征在于纤芯的材料是由纯石英掺杂少量增大折射率的GeO2和增加法拉第磁光效应的稀土Tb3+、Al3+离子组成,其化学组成按重量百分率计为石英93-98%、二氧化锗1-4%、Tb3+0.7-2%、Al3+0.3-1%;气孔包层的材料是由对称六角形规则排列的光子晶体结构毛细石英管组成,而保护层的材料是由纯石英支撑管组成;纤芯位于气孔包层和保护层的中心位置,保护层位于最外层。
上述的磁光效应光子晶体光纤的制造方法,用掺杂稀土元素制成芯棒,然后用堆积、缩棒工艺制成光纤预制棒,最后再用拉丝机拉制出光纤,其特征在于芯棒是采用改进化学气相沉积工艺与溶液掺杂法掺杂Tb3+、Al3+离子制备芯棒;用芯棒和石英毛细管堆积法及缩棒工艺制成光纤预制棒;最后进行拉制光纤;其具体工艺过程及工艺步骤如下a.掺杂芯棒制作。采用改进化学气相沉积工艺与溶液掺杂法制备掺杂的光纤芯棒;(1)改进化学气相沉积工艺制作疏松芯层将石英反应管紧固在改进化学气相沉积车床上,以50转/分的速度旋转,用高纯O2把液态原料SiCl4、GeCl4带入反应管内,由氢氧焰主灯提供800-1000℃高温沿反应管的方向往复运动。进入反应管的原料在高温下氧化反应,沉积SiO2-GeO2芯层,因温度低于完全融化的温度,从而使芯层形成了未烧结的芯层,它具有不透明的疏松多孔状;(2)溶液掺杂法掺杂Tb3+、Al3+离子把带有疏松多孔状芯层的反应管,从改进化学气相沉积车床上取下,浸入含有0.05-0.1mol/L的TbCl3和0.02-0.05mol/L的AlCl3比例的酒精溶液中,浸泡1-2小时;(3)改进化学气相沉积工艺脱水成棒将反应管重新置于改进化学气相沉积车床上,在500℃氢氧焰温度下,通入高纯度Cl2和O2的混合气体脱水、干燥半小时。最后,在2000℃氢氧焰温度下烧结反应管,收缩成为透明的磁光效应光子晶体光纤的芯棒;b.磁光效应光子晶体光纤预制棒的制作利用堆积法制备磁光效应光子晶体光纤预制棒,它是把许多的石英毛细管围绕放置中心位置的芯棒堆积,然后放入一个大的石英支撑管内,经缩棒形成光纤预制棒(1)英管在拉丝机上拉制成毛细石英管,它们的外径尺寸为0.6-1.0mm;(2)把芯棒磨制或用氢氟酸(HF)溶液腐蚀成与毛细管相匹配的尺寸0.6-1.0mm;(3)选择石英支撑管,使其能包容所设计的毛细管和芯棒。
(4)按照设计好的光子晶体光纤结构进行堆积放置。按对称的六角形规则在支撑管内排列毛细石英管,其中芯棒放置在所有毛细石英管的中心位置;(5)在毛细石英管和毛细石英管之间空隙带、毛细石英管与芯棒的空隙带以及毛细石英管与支撑管之间的空隙带填充石英材料,使其因排列所致的缝隙空间减少。
(6)将已堆积好的结构,在改进化学气相沉积制棒机上进行缩棒工艺处理,缩棒的温度为2000℃。最后,使其缩成一个没有堆积气隙、仅有毛细管石英气孔,直径为9-16mm的磁光效应光子晶体光纤预制棒;c.磁光效应光子晶体光纤预制棒的拉丝采用低温、慢速工艺拉丝,以保证预制棒的气孔有良好的结构保持(1)为了减少预制棒在高温熔融状态下发生的形变,整个拉丝工艺应在低温、低速的条件下进行,拉制熔棒温度在1600-1900℃,拉丝速度低于200m/min;(2)在拉丝机上,在线涂覆紫外固化保护层。
该制作方法可根据具体技术参数的要求,对气孔包层的孔径和孔距进行相应的参数设计。
本发明方法的特色和优点如下所述(1)光子晶体光纤可以在很大的频率范围内支持光的单模传输,使磁光效应光子晶体光纤的纤芯在单模情况下有较大的芯径,这样就增强了单位长度光纤的磁光效应,从而改进了光通信磁光器件的性能、降低了长度;同时,也有利于提高光纤传感电流互感器的灵敏度。
(2)光子晶体光纤的气孔和晶格尺寸决定着光纤的传输性能,通过调节这些尺寸,可以灵活地改变磁光效应、双折射效应、单模特性等。同时,还可以通过掺杂铽进一步提高磁光效应。
(3)从已有的国外研究成果可知,温度对光子晶体光纤双折射的影响将比常规光纤低一到二个数量级。2004年的文献(Kim Do-Hyun,Kang Jin U.Sagnac Loop InterferometerBased on Polarization Maintaining Photonic Crystal Fiber with Reduced TemperatureSensitivity.Optics Express,2004,12(19)4490-4495)更是实测出了光子晶体光纤的双折射系数随温度的变化率为dn/dT=-2.0×10-9/K;而常规光纤为dn/dT=-7.0×10-8/K,比光子晶体光纤大了一个数量级多。这就意味着,如果以磁光效应光子晶体光纤作为传感头的话,它就对周围的环境敏感程度降低,有利于传感器的性能提高和产业化。
(4)光子晶体光纤的宏弯低损耗特性将大大增强光纤的抗形变能力,增强传感器在非正常因素之下的抗干扰能力。
本发明方法的原理如下所述本发明在于用光纤芯中掺杂Tb3+离子和光子晶体的结构共同提高反映磁光效应大小的费德尔(Verdet)常数以及光特性参数。
Faraday磁光效应是指线偏振光通过置于磁场中具有磁光特性的物质时,其偏振面发生旋转的效应,旋转面的大小用下式表示θF=V·L·B(1)式中θF为Faraday磁光效应旋转角,L为磁场与磁光材料样品介质相互作用的有效长度,B为磁感应强度,V为费德尔常数。式中V越大说明Faraday磁光效应越强。
当磁光材料中存在顺磁离子时,基于量子力学表示的顺磁材料的费德尔常数为V=A·N·g[J(J+1)]T·Ct1-(λ/λt)2---(2)]]>式中A是与波长无关的常数;T是绝对温度;N表示单位体积内顺磁离子数;λ是入射光的波长;g是Lande分裂系数;J是总角初量数;λt表示电子的有效跃迁波长;Ct表示有效迁移几率。上式表明随着磁光材料中顺磁离子数N和有效跃迁波长λt的增大,费德尔常数也将增大。
稀土Tb3+离子4f壳层的电子有未配对的自由电子,由于外层5s和5p电子壳层的屏蔽作用,配位场对内层4f电子的影响很小。在磁场的作用下,使电子极易从4f8→4f75d迁移,增大λt,从而使V增大,产生了较强的磁光效应。
在光子晶体方面,决定光子晶体光纤传输特性的一个重要参数就是气孔径d与孔距Λ之比,即d/Λ,d/Λ大、Λ小,则光纤芯中基模的传输功率加大,电子有效的迁移几率增大,磁光效应也会增大。所以,设计不同的d/Λ值,可以得到不同程度的磁光效应。除此之外,磁光效应光子晶体光纤要比常规光纤有更强的抗形变能力,特别是它的双折射温度敏感性要比常规光纤低1~2个数量级。因此,更有利于在光纤通信和光纤传感领域中的应用。


图1是本发明一个实施例的未缩棒的预制棒截面2为本发明实施例的磁光效应光子晶体光纤的横向结构图。
具体实施例方式
本发明的一个优选实施例是参见图1和图2,本磁光效应光子晶体光纤,由掺杂稀土元素的纤芯(11)、气孔包层(12)和保护层(13)组成,纤芯(11)的材料是由纯石英掺杂少量增大折射率的二氧化锗GeO2和增加法拉第磁光效应的稀土Tb3+、Al3+离子组成,其化学组成按重量百分率计为石英93-98%、二氧化锗1-4%、Tb3+0.7-2%、Al3+0.3-1%;气孔包层(12)的材料是由对称六角形规则排列的光子晶体结构毛细石英管(3)组成毛细管包层(2),而保护层(13)为支撑石英管(4)。
本实施例的磁光效应光子晶体光纤的制造方法各步骤a.参见图1。在MCVD上制作带有疏松多孔状芯层的反应管,并放入含有0.08mol/L的TbCl3和0.04mol/L的AlCl3比例的酒精溶液浸泡一小时,然后在MCVD制棒机上以500℃氢氧焰温度、用O2和Cl2气体脱水,最后在2000℃氢氧焰温度下缩棒成为掺杂Tb3+和Al3+离子的磁光效应石英芯棒(1),芯棒(1)的直径为800μm、长300μm。
b.参见图1。以芯棒(1)为中心,把90根外径为800μm、长300μm的毛细石英管(3)围绕其周围堆积成11层的正六角形结构,形成毛细石英管包层(2)。把芯棒(1)和六角形毛细石英管包层(2)放入外径25mm、内径12mm的支撑石英管(4)中,形成图1所示的用堆积法堆积的未缩棒的预制棒结构。用石英材料填充由于堆积而形成的空隙,然后在2000℃的氢氧焰温度下缩棒,成为直径12mm的磁光效应光子晶体光纤预制棒。
c.在光纤拉丝机上,用1800℃的熔棒温度和100m/min的速度拉丝,得到图2中的磁光效应光子晶体光纤(10),其中(11)为掺杂Tb3+和Al3+离子的纤芯,(12)为光子晶体结构的气孔包层,(13)为保护层。该结构的气孔直径d=3.2μm,孔距Λ=5.6μm,那么气孔与孔距之比d/Λ=0.57。
该方法的稀土元素掺杂浓度、芯径、气孔径、孔距、包层直径,可以根据具体的磁光效应光子晶体光纤的要求,做相应的设计和制作。
权利要求
1.一种磁光效应光子晶体光纤,由掺杂稀土元素的纤芯(11)、气孔包层(12)和保护层(13)组成,其特征在于纤芯(11)的材料是由纯石英掺杂少量增大折射率的GeO2和增加法拉第磁光效应的稀土Tb3+、Al3+离子组成,其化学组成按重量百分率计为石英93-98%、二氧化锗1-4%、Tb3+0.7-2%、Al3+0.3-1%;气孔包层(12)的材料是由对称六角形规则排列的光子晶体结构毛细石英管组成,而保护层(13)的材料是由纯石英支撑管组成;纤芯(11)位于气孔包层(12)和保护层(13)的中心位置,保护层(13)位于最外层。
2.一种根据权利要求1所述的磁光效应光子晶体光纤的制造方法,用掺杂稀土元素制成芯棒,然后用堆积、缩棒工艺制成光纤预制棒,最后再用拉丝机拉制出光纤,其特征在于芯棒是采用改进化学气相沉积工艺与溶液掺杂法掺杂Tb3+、Al3+离子制备芯棒;用芯棒和石英毛细管堆积法及缩棒工艺制成光纤预制棒;最后进行拉制光纤;其具体工艺过程及工艺步骤如下a.掺杂芯棒制作。采用改进化学气相沉积工艺与溶液掺杂法制备掺杂的光纤芯棒;(1)改进化学气相沉积工艺制作疏松芯层将石英反应管紧固在改进化学气相沉积车床上,以50转/分的速度旋转,用高纯O2把液态原料SiCl4、GeCl4带入反应管内,由氢氧焰主灯提供800-1000℃高温沿反应管的方向往复运动。进入反应管的原料在高温下氧化反应,沉积SiO2-GeO2芯层,因温度低于完全融化的温度,从而使芯层形成了未烧结的芯层,它具有不透明的疏松多孔状;(2)溶液掺杂法掺杂Tb3+、Al3+离子把带有疏松多孔状芯层的反应管,从改进化学气相沉积车床上取下,浸入含有0.05-0.1mol/L的TbCl3和0.02-0.05mol/L的AlCl3比例的酒精溶液中,浸泡1-2小时;(3)改进化学气相沉积工艺脱水成棒将反应管重新置于改进化学气相沉积车床上,在500℃氢氧焰温度下,通入高纯度Cl2和O2的混合气体脱水、干燥半小时。最后,在2000℃氢氧焰温度下烧结反应管,收缩成为透明的磁光效应光子晶体光纤的芯棒;b.磁光效应光子晶体光纤预制棒的制作利用堆积法制备磁光效应光子晶体光纤预制棒,它是把许多的石英毛细管围绕放置中心位置的芯棒堆积,然后放入一个大的石英支撑管内,经缩棒形成光纤预制棒(1)石英管在拉丝机上拉制成毛细石英管,它们的外径尺寸为0.6-1.0mm;(2)把芯棒磨制或用氢氟酸(HF)溶液腐蚀成与毛细管相匹配的尺寸0.6-1.0mm;(3)选择石英支撑管,使其能包容所设计的毛细管和芯棒。(4)按照设计好的光子晶体光纤结构进行堆积放置。按对称的六角形规则在支撑管内排列毛细石英管,其中芯棒放置在所有毛细石英管的中心位置;(5)在毛细石英管和毛细石英管之间空隙带、毛细石英管与芯棒的空隙带以及毛细石英管与支撑管之间的空隙带填充石英材料,使其因排列所致的缝隙空间减少。(6)将已堆积好的结构,在改进化学气相沉积制棒机上进行缩棒工艺处理,缩棒的温度为2000℃。最后,使其缩成一个没有堆积气隙、仅有毛细管石英气孔,直径为9-16mm的磁光效应光子晶体光纤预制棒;c.磁光效应光子晶体光纤预制棒的拉丝采用低温、慢速工艺拉丝,以保证预制棒的气孔有良好的结构保持(1)为了减少预制棒在高温熔融状态下发生的形变,整个拉丝工艺应在低温、低速的条件下进行,拉制熔棒温度在1600-1900℃,拉丝速度低于200m/min;(2)在拉丝机上,在线涂覆紫外固化保护层。
全文摘要
本发明述及一种磁光效应光子晶体光纤及其制造方法。本光纤,由纤芯、气孔包层和保护层组成,纤芯的材料由纯石英掺杂增大折射率的GeO
文档编号C03B37/012GK1605894SQ20041008428
公开日2005年4月13日 申请日期2004年11月18日 优先权日2004年11月18日
发明者王廷云, 范峥, 包华育, 卢军, 王克新 申请人:上海大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1