使金属表面具备玻璃质层的方法

文档序号:1857664阅读:338来源:国知局
专利名称:使金属表面具备玻璃质层的方法
技术领域
本发明涉及向金属表面提供玻璃质层的方法。
在诸如钢的表面上的玻璃质层通常是通过施釉法而制备的。为此,首先在其上涂覆一层粘附层,接着涂覆一层含颗粒组分的悬浮液(釉底料),该组分在加热时熔融成玻璃。通常,所述组分含有铅的玻璃体系(目的是降低熔融点),其特征是具有较高的碱含量,其作用是使玻璃的膨胀系数与钢的膨胀系数相适应。但是,它们也存在缺点,所形成的搪瓷层的耐化学性在大部分情况下不能完全令人满意。为了获得密封的致密层,其层厚一般必须达到50微米以上。由此使得所述层缺乏韧性并易碎,从而对弯曲、敲打和撞击时敏感(剥落)。另一种方法是氧化铬干涉层的电沉积法。但是,这种层不能抗刮痕并且因其上色干涉作用而极易受到污染和留下指纹。
有关在钢表面上涂覆薄层的许多研究是通过溶胶-凝胶法进行的。例如研究了向特种钢表面上提供氧化锆层以改善耐腐蚀性。同样还研究了硼硅酸盐玻璃质层。但是,结果表明用该技术耐火体系(高熔融点的氧化物例如ZrO2)不能形成致密层,所施加的硼硅酸盐玻璃层的厚度明显低于1微米,这不能确保提供足够的机械和化学保护。
根据本发明通过使用SiO2基的特定、有机改性体系可在金属表面上形成玻璃质层,其厚度可达10微米,而在干燥和密实化时不会产生裂纹。产生这种效果的原因是有机改性的硅凝胶或硅酸骨架的改进松弛特性。令人惊奇地是,还发现所制备的层也可在较低的温度(通常在400℃)下能转变成密实的SiO2膜(例如在特种钢或钢表面上)。这种膜的厚度一般为3-5微米,并且形成一层气密性的密封层,该层可阻止或急剧降低氧渗入到金属表面,并保证优良的防腐蚀作用甚至在高温。此外,这种层耐磨,致使例如可用钢丝棉在其表面上摩擦,而不会留下痕迹。即使在进行了1000次Taber-Abrader试验(CS-10F,500克)后,也表明很难有可见的痕迹。此外,它们具有柔韧性,即表面的弯曲或折弯根本不会产生裂纹或层的其它损坏。
另外,所述层通常是光亮如玻璃且是透明的并且在涂覆时不会改变金属表面的外观。例如可在特种钢构件上涂覆这种层不会改变其外观。
最后,在这种玻璃层上可提供其它的、已知的着色玻璃质层,例如薄的胶体着色玻璃质层。因为这种着色玻璃质层优选是借助于含有金属胶体前体的涂覆组合物所制备的,因此,所述层能够阻止金属表面(或由此释放的金属离子)对金属胶体前体的反应等的损害或影响,原因是金属表面和着色玻璃质层之间没有直接的接触。
此外,为了制备本发明的层,可使用具有含氟支链的硅烷,这导致了低能的表面。
本发明具体提供了一种使金属表面具备玻璃质层的方法,其特征是在金属表面上施加一种涂层组合物,热密实化以形成玻璃质层,必要时(并且是优选的),在预干燥后进行,所述组合物是在有a)毫微级SiO2颗粒和/或b)至少一种选自碱金属和碱土金属的氧化物和氢氧化物的存在下,通过包括水解和缩聚一种或多种通式(I)的硅烷的方法而获得的,RnSiX4-n(I)其中基团X彼此相同或不同,是可水解的基团或羟基,基团R彼此相同或不同,是氢、至多有12个碳原子的烷基、链烯基和炔基和具有6-10个碳原子的芳基、芳烷基和烷芳基,n是0、1或2,条件是至少使用一种n=1或2的硅烷,或者由此衍生的低聚物。
上述术语“毫微级SiO2颗粒”在本文中是指平均颗粒大小(或者平均粒径)不超过200纳米,优选不超过100纳米,更优选不超过50纳米的SiO2颗粒,其中特别优选的上限是30纳米。
下面更详细地说明本发明的方法。
在上述通式(I)的硅烷中,至少有一种硅烷,其式中的n值为1或2。通常至少两种通式(I)的硅烷组合使用。在这种情况下,所使用硅烷的比例R∶Si,即n的平均值(按摩尔计)为0.2-1.5,优选0.5-1.0。特别优选的平均n值为0.6-0.8。
在通式(I)中,基团X彼此可相同或不同,是可水解的基团或羟基。可水解基团X的具体实例是卤素原子(尤其是氯和溴)、具有至多6个碳原子的烷氧基和酸基。特别优选地是烷氧基,尤其是C1-4烷氧基,例如甲氧基、乙氧基和正-和异丙氧基。在具体的硅烷中,基团X最好相同,其中优选使用的是甲氧基或乙氧基。
在通式(I)中,在n=2的情况下,基团R可以相同或不同,是氢、具有至多12个碳原子的(通常至多8个碳原子,优选至多4个碳原子)的烷基、链烯基和炔基和具有6-10个碳原子的芳基、芳烷基和烷芳基。这类基团的具体实例是甲基、乙基、丙基和丁基、乙烯基、烯丙基和炔丙基、苯基、甲苯基、苄基和萘基。通常基团R没有取代基。但是,正如上文所述的,有利的是使用至少部分具有氟原子的R基团,尤其是具有氟原子的烷基和芳基(但是,优选不是位于Si的α-或β-位置上的C原子上)。相应的烷基优选具有3个以上的碳原子,但除了α-或β-位置的C原子,它们优选的是被全氟化。
优选的R基团是(未取代的)具有1-4个碳原子的烷基,尤其是甲基和乙基,以及苯基;以及另外具有4-12个碳原子的全氟化的烷基。
按照本发明,优选的是使用通式(I)的至少两种硅烷,其中在至少一种情况下n=0,而在另一种情况下n=1。这种硅烷混合物的实例包括至少一种烷基三烷氧基硅烷(例如(甲基)乙基三(甲基)乙氧基硅烷)和至少一种四烷氧基硅烷(例如四(甲)乙氧基硅烷),优选使用的硅烷的比例应使得n的平均值落在上述优选范围内。
除了通式(I)可水解硅烷外,本发明方法的方案(a)所用的毫微级SiO2颗粒的优选用量应使得通式(I)硅烷中的所有Si原子与毫微级SiO2颗粒中的所有Si原子的比例为5∶1-1∶2,更优选4∶1-2∶1。这种毫微级SiO2颗粒例如可以使用商购的硅溶胶(例如由Bayer公司获得的)。
作为毫微级SiO2颗粒存在的替代物或附加物(优选是替代物)是可在至少一种选自碱金属和碱土金属氧化物和氢氧化物的化合物的存在下水解和缩聚通式(I)的一种或多种硅烷。所述氧化物和氢氧化物优选地是Li、Na、K、Mg、Ca和/或Ba的氧化物和氢氧化物。特别优选使用碱金属氢氧化物,尤其是NaOH和KOH。在使用碱金属氧化物或氢氧化物时,其优选用量应使得Si∶碱金属的原子比为20∶1-5∶1,更优选15∶1-10∶1。在各种情况下,所选择的硅与碱(碱土)金属的原子比应大到所形成的涂层基本上是不溶于水的。
在本发明方法的另一方案(b)的情况下也有毫微级的SiO2颗粒存在,(如方案(a)的情况下进行使用),即就地形成,使得方案(a)和(b)之间没有基本区别。更确切地认为,在涂层中有毫微级SiO2颗粒的存在其重要性是获得足够的层厚。同样认为起始硅烷等中存在的基团R所起的作用是阻止有机SiO2骨架的过强的交联(并因而使所述层过强硬化或变脆)。
上述方案(a)和(b)之间的主要区别是在方案(a)的情况下通式(I)硅烷的水解和缩聚通常被酸催化(优选无机催化剂),其中所用的酸例如盐酸、硝酸和(优选)磷酸。与此相反,在方案(b)中,其硅烷的水解和缩聚显然是在碱性介质中发生的,尤其当不能耐酸侵蚀或仅有弱的耐酸侵蚀的金属表面(例如钢)要按照本发明方法提供玻璃质层时,该方法就具有优点。方案(b)的另一个优点是由于该(碱土)碱金属改进了密实化,使得涂覆,例如,可在大气中进行,而不对置于其下的金属(例如特种钢)表面造成损害。此外,采用方案(b)也成功地使建筑用钢材(例如ST37,ST50)上涂覆玻璃质层,如果在排除大气下(N2气氛)实施时,则在层的密实化过程中不会使钢变色。
接着对金属表面上涂覆的涂覆组合物进行热处理,以便密实化而形成玻璃质层。在进行该热密实化前,通常要在室温和/或略高的温度下(例如最高100℃,优选最高80℃)对涂覆组合物进行干燥。
尽管在热密实化的(最终)温度必须考虑金属表面的热稳定性,但是其温度通常至少为300℃,优选至少为400℃,更优选至少为500℃。如果金属表面特别是在这样高温下,对氧化敏感,那么建议在无氧气氛中例如在氮或氩中进行热密实化。
按照本发明,热密实化后获得的玻璃质层的厚度优选为1-10微米,更优选2-7微米,特别优选3-5微米。
如上所述,在按本发明方法制备的玻璃质层(一般是透明和无色的)上可涂覆(至少)另一(玻璃质)层,例如功能性的玻璃质层,如国际专利申请PCT/EP94/03423(对应于EP-A-729442)或DE-A-19645043中所公开的。
这种另一涂覆层例如是通过如下方式涂覆的,将通过水解和缩聚某些(官能化的)硅烷所获得的组合物与至少一种选自耐热着色剂和颜料、金属或非金属氧化物、着色金属离子、金属或金属化合物胶体和在还原条件下形成金属胶体的金属离子的官能载体混合,在要涂覆的表面上涂覆已与所述官能载体混合的组合物,并热密实化该层以形成(着色)玻璃质层。或者,涂覆(着色)层,可通过将涂覆组合物涂覆在要涂覆的表面上并且热固化所形成的涂层,所述涂覆组合物含有至少一种可形成玻璃质的、晶体或部分结晶氧化物,并以在热处理期间可提供所述氧化物的化合物形式存在的元素并且在至少一种主要是含水介质如溶液或溶胶中存在,作为构成基质的组分,以及含有至少一种选自金属、金属化合物和金属合金胶体和在还原条件下可形成金属胶体的金属化合物的组分作为着色组分并热固化所得涂层。可作为形成玻璃质、晶体或部分结晶氧化物的元素例如是Ti和Zr。
这种着色玻璃质层例如可按如下方式涂覆在按本发明方法制备的玻璃质层上,在进行热密实前(和优选在室温和/或较高温度下进行干燥后),向按本发明产生的金属表面的涂层上涂覆用于形成着色玻璃质层的涂覆组合物,将所述两个涂层一起进行热密实。很显然也可将着色组分(例如上述所述的)直接加入到用于本发明的涂覆组合物中,但这不是优选的。
由金属或金属合金组成(或者包括它们)的表面均适合作为本发明要涂覆的金属表面。
金属合金的实例优选地是(特种)钢、黄铜或青铜,其中按本发明,特种钢的涂层是特别优选的。
金属表面的实例可以是铝、锡、锌、铬或镍(包括镀锌和镀铬表面)。
优选的是在施加涂覆组合物前,先彻底清洁金属表面(尤其是不应有油和灰尘)。在涂覆前,也可对表面进行处理(例如使表面粗糙化或电晕放电),但是,按照本发明这既不是必需的也不是优选的。
通式(I)硅烷的水解和缩聚可在有或没有有机溶剂中进行,优选是在没有机溶剂中进行。在使用有机溶剂时,起始组分优选可溶解在反应介质中(一般是水)。适用的有机溶剂优选是与水可混溶的溶剂,例如一元或多元的脂肪醇(例如甲醇、乙醇)、醚(例如二乙醚)、酯(例如乙酸乙酯)、酮、酰胺、亚砜和砜。必要时也可将这种溶剂加入到制成的涂覆组合物中,以调节适合于涂覆的粘度。
水解和缩聚通常是按本领域专业人员熟知的方式进行。
本发明所使用的涂覆组合物可按常规的涂覆方法施加到在金属表面上。可采用的方法实例有浸渍、浇铸、旋涂、喷涂或刷涂。特别优选地是浸渍法。
还应说明的是,所述的热密实化必要时也可通过红外辐射或激光辐射进行。也可在其上通过选择性的热作用来制备结构化的涂层。
本发明的方法特别适合于(但是非排它性的)涂覆日常的物品,所述物品具有金属表面或由金属组成。可涂覆金属表面(例如钢表面),例如操作板、餐具、碗具、洗涤盆、门把手和窗把手等。
本发明可有利地在金属表面上(例如由(特种)钢组成)进行涂层的装饰用体系,所述涂层耐大气腐蚀并对刮擦不敏感,并有助于避免污染例如由于指纹造成的污染。
下面的实施例详细说明本发明。
实施例1制备SiO2涂覆溶胶制备一种20毫升甲基三乙氧基硅烷和6毫升四乙氧基硅烷的混合物,在剧烈搅拌下加入15克硅胶(Bayer硅胶型300,30%重量(浓缩至45%重量))。然后形成一种乳液(约20秒后),加入0.3毫升浓H3PO4以开始水解。混合物保持20-60秒的浑浊,接着首先变粘,然后变稀液和透明。在该反应过程中,加热溶胶至约40℃。在冷却到室温后(必要时在冰浴中),用孔径为0.8微米的过滤器(用孔径为5微米的预过滤器)过滤所形成的溶胶。例如用乙醇、丙醇或醇混合物将如此制备的溶胶调节到所要求的粘度值,至少6小时后可用于涂层。
实施例2制备硅酸钠涂覆溶胶将25毫升(124.8毫摩尔)甲基三乙氧基硅烷(MTEOS)与7毫升(31.4毫摩尔)四乙氧基硅烷(TEOS)和0.8克(20毫摩尔)氢氧化钠在室温下搅拌过夜(至少12小时),直到所有的氢氧化钠溶解并形成透明的黄色溶液。
接着在室温下缓慢滴加3.2毫升(177.8毫摩尔)水,因而使溶液温热。在加完水后,在室温下搅拌透明黄色的溶液直到再次冷却,接着用孔径为0.8微米的过滤器过滤。
实施例3制备硅酸钾涂覆溶胶重复实施例2,但是用0.8克(12.1毫摩尔)氢氧化钾替代0.8克氢氧化钠。
实施例4用实施例1-3中所述的涂覆组合物以4-6毫米/秒的拉伸速度浸涂已干净的基体(特种钢1.4301,黄铜和铝),在室温下短暂(10分钟)预干燥后,在80℃下干燥1小时。为了进行密实化,将经干燥的基体在空气中(或者在实施例1的涂覆组合物涂覆特种钢的情况下,则在氮气中)以1K/分钟的加热速度加热到500℃(或者在铝的情况下加热到400℃)并在该温度下保温1小时。
密实后的层厚为2-4微米。HREM检验钢和铝上的涂层后表明层上无缺陷。
通过涂覆几可完全地防止密实化过程中的特种钢的变色。此外,所述层在经受1000小时盐的喷雾试验后仍然未受到损坏。
经涂覆的黄铜和铝在盐喷雾室(DIN 50021)中在经受3000小时的腐蚀试验后表明未受到腐蚀损坏,而未经涂覆的部分则完全被腐蚀。
实施例5标准抗粘附材料MTKF1摩尔%FTS在一个合适的容器(例如250毫升的肖特(schott)瓶)中搅拌0.2摩尔(35.7克)甲基三乙氧基硅烷(MTEOS)和0.054摩尔(11.3克)TEOS并加入0.1摩尔SiO2(在20.0克硅溶胶300/30%中)。5分钟后,在剧烈搅拌下加入0.4克浓盐酸。2分钟后开始呈两相的反应混合物转变为白色,加热,又呈透明和单相。在反应15分钟后,加入3.0克DOWEX50W2并使所形成的混合物搅拌10分钟。接着借助于压滤通过玻璃纤维预过滤器过滤。然后立即加入1.78克(按Si计1摩尔%)的1H,1H,2H,2H-全氟辛基三乙氧基硅烷(FTS),重新搅拌溶胶15分钟。加入4.0克AmberlystA-21,继续搅拌30分钟。在通过膜过滤器(孔径1微米)压滤后,加入140克异丙醇进行稀释。接着经膜过滤器(孔径0.2微米)压滤后的溶胶是可作涂覆备用。
通过喷涂将溶胶涂覆在特种钢表面上并在350℃在空气气氛下固化。涂覆材料是透明的抗粘附层,表明对水的接触角为110°,对十六烷的接触角为60°。
实施例6具有11摩尔%FTS的碱性水解体系向合适的肖特(schott)瓶中加入0.1摩尔(17.9克)MTEOS,0.027摩尔(5.6克)TEOS和0.016摩尔(8.16克;11%摩尔,按Si计)FTS。接着,在搅拌下加入0.018摩尔氢氧化钠(0.72克),继续搅拌约16小时。然后,向在此期间呈黄色着色的溶液中滴加0.15摩尔(2.7克)H2O。在加入完成后,再搅拌约30分钟。接着用35克乙醇稀释,用1微米过滤器压滤过滤。
通过喷涂,将制成的溶胶涂覆在特种钢板上,在350℃下在空气中固化。在该体系中,在该温度下,未观察到特种钢的基体在其它情况下所发生的变色。所述层完全是透明的,并且表明对水的接触角为95°,而对十六烷的接触角为40°。
权利要求
1.一种向金属表面涂覆玻璃质层的方法,其特征在于,向金属表面上施加一种涂覆组合物,将所形成的涂层热密实化以形成玻璃质层,所述组合物是在有a)毫微级SiO2颗粒和/或b)至少一种选自碱金属和碱土金属的氧化物和氢氧化物的存在下,通过包括水解和缩聚一种或多种通式(I)的硅烷的方法而获得的,RnSiX4-n(I)其中基团X彼此相同或不同,是可水解的基团或羟基,基团R彼此相同或不同,是氢、至多有12个碳原子的烷基、链烯基和炔基和具有6-10个碳原子的芳基、芳烷基和烷芳基,n是0、1或2,条件是至少使用一种n=1或2的硅烷,或者由此衍生的低聚物。
2.根据权利要求1的方法,其特征在于,通式(I)的起始硅烷中的n的平均值为0.2-1.5,优选为0.5-1.0。
3.根据权利要求1和2中任一项的方法,其特征在于,通式(I)的起始硅烷中的X是烷氧基,优选C1-4烷氧基。
4.根据权利要求3的方法,其特征在于,X是甲氧基或乙氧基。
5.根据权利要求1至4中任一项的方法,其特征在于,R是C1-4烷基,优选甲基或乙基或苯基。
6.根据权利要求1至5中任一项的方法,其特征在于,作为通式(I)的起始硅烷可使用(甲基)乙基三(甲氧基)乙氧基硅烷和四(甲氧基)乙氧基硅烷的混合物。
7.根据权利要求1至6中任一项的方法,其特征在于,至少一种所使用的通式(I)的起始硅烷具有氟化基团R。
8.根据权利要求1至7中任一项的方法,其特征在于,在方案(a)中毫微级SiO2颗粒的用量应使得通式(I)起始硅烷中的所有Si原子与SiO2颗粒中所有Si原子的比例为5∶1-1∶2,优选4∶1-2∶1。
9.根据权利要求1至8中任一项的方法,其特征在于,在方案(b)中至少一种选自碱金属和碱土金属的氧化物和氢氧化物的化合物包括Li、Na、K、Mg、Ca或Ba的氧化物或氢氧化物。
10.根据权利要求9的方法,其特征在于,所择化合物选自氢氧化钠和氢氧化钾。
11.根据权利要求1至10中任一项的方法,其特征在于,碱金属氧化物或氢氧化物的用量分别应使得Si∶碱金属的原子比为20∶1-5∶1,优选15∶1-10∶1。
12.根据权利要求1至11中任一项的方法,其特征在于,在进行热密实化前干燥在金属表面上所涂覆的涂覆组合物。
13.根据权利要求1至12中任一项的方法,其特征在于,在至少400℃,优选至少500℃的温度下进行热密实化。
14.根据权利要求1至13中任一项的方法,其特征在于,热密实化后的层的厚度为1-10微米,优选2-7微米。
15.根据权利要求1至14中任一项的方法,其特征在于,在涂层干燥或热密实化后,至少再涂覆一层在热密实化时形成着色的玻璃质层的另外的涂覆组合物并进行热密实化。
16.根据权利要求1至15中任一项的方法,其特征在于,所述金属表面是指一种金属合金,尤其是(特种)钢、黄铜或青铜的金属表面。
17.根据权利要求1至16中任一项的方法,其特征在于,所述金属表面是铝、锡、锌、铬或镍中之一的金属表面。
18.根据权利要求1至17中任一项的方法,其特征在于,向操作板、餐具、碗具、洗涤盆、门把手和窗把手上提供玻璃质层。
19.具有按权利要求1-18中任一方法制备的具有玻璃质层金属表面的物品。
全文摘要
本发明公开了一种向金属表面提供玻璃质层的方法,具有美观;抗刮痕和抗腐蚀。该方法的特征在于向金属表面上施加一种涂覆组合物,将所形成的涂层热密实化而形成玻璃质层,所述组合物是在有a)毫微级SiO
文档编号C03C1/00GK1252107SQ98804041
公开日2000年5月3日 申请日期1998年4月9日 优先权日1997年4月10日
发明者马丁·门宁, 格哈特·乔施克, 赫尔穆特·施米特 申请人:新材料公共服务公司研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1