基于光线检测的自动化控制机器人的制作方法

文档序号:12626833阅读:296来源:国知局

本发明涉及自控领域,尤其涉及一种基于光线检测的自动化控制机器人。



背景技术:

从窗体的结构来划分,可以将窗体分为以下几种主要类型:平开窗、推拉窗、平开内倒窗、天窗和百叶窗。

平开窗是最为常见的一种窗,窗扇通过铰链与窗框结合,窗扇可以旋转开启。这种窗的优点是构造简单,整扇窗可以100%打开,关闭时气密性好,建筑热工性能高,在建筑节能要求越来越高的今天,平开窗将成为市场的主流。平开窗的缺点是窗扇开启后要占据一定的空间,在某些特别狭窄的位置没有足够的空间容纳开启的窗时不宜采用。

平开窗根据铰链的位置可以分为侧开窗和悬窗两种。侧开窗水平方向开启,窗扇在开启过程中始终保持平衡,不必担心在重力影响下自行运动造成危险,一般用于面积较大的主窗;悬窗由于是垂直方向开启,开启角度受到限制,一般用于厨房、卫房间等的通风换气。较新型的平开窗可以兼具侧开窗和悬窗两者于一身,允许双向开启。

推拉窗采用装有滑轮的窗扇在窗框上的轨道滑行,这种窗的优点是窗无论在开关状态下均不占用额外的空间,构造也较为简单。但由此带来的缺点是最多只有50%的窗扇可以打开,关闭时气密性差。采用新技术的改进型推拉窗,可以将多个窗扇推至一侧折叠。同时也有提高气密性的推拉窗,但总体来说仍然无法达到平开窗的热工性能,能耗较高,所以在先进国家很少采用这种窗。

平开内倒窗就是通过旋转窗子的把手,带动窗子内部的连动五金机构,而使窗处于锁紧(把手垂直向下)平开(把手水平)内倒(把手垂直向上)的不同位置的窗。升级的方式是在原有的窗户扇的基础上加一套内倒五金件,不用破坏原有窗体,升级方便快捷。

平开内倒窗的优势照比普通的平开窗主要有以下几点:1、多锁点密封,可以使窗子的密封性大大增强。密封性增强以后,它的保温性和隔音性也将随之得到提升。2、多锁点配合蘑菇头锁头的设计大大增强了窗子的防盗性能。使盗贼通过撬压窗扇进入室内的可能几乎降为零。

天窗采光天窗由于其特殊的位置,一般为不可开启的玻璃窗,如采光罩,但也有一些建筑由于设计需要,采用特殊的机械开窗器控制其开关。

百叶窗(louvre),安装有百叶的窗户。百叶窗是采用数片条形材料平行排列,通过转动百叶的角度来控制光线的窗体。

传统的百叶窗是采用垂直排列的固定角度的木条,作为普通窗夏季的遮阳手段。现代的百叶窗则多采用可旋转的细条形材质,通过绳索联系起来,并进行控制,而且也不限于垂直排列,也有水平排列采用类似窗帘的开启方法。

窗体的设计关系到其封闭的空间内的人体舒适程度,例如在恶劣天气下关闭窗体、外界气温高时关闭窗体、外界湿度高时关闭窗体、风速过高时关闭窗体以及外界环境过亮时关闭窗体等,这些需要根据窗体内外环境参数的检测进行窗体运行模式的判断,而现有技术中通常是人工方式进行判断,自动化程度低。

同时,现有技术中的窗体都是独立的设备,无法根据具体情况与附近的空调、外窗、灯光等设备进行联动,从而对其封闭的空间环境改善效果有限,无法满足人们的细化需求。

另外,现有技术中的窗体缺乏针对人体出汗情况进行检测的电子检测设备,例如缺乏对人体汗滴数量的电子检测设备以及缺乏对人体汗水分布情况的电子检测设备,这样,将无法根据人体的具体出汗情况进行窗体控制模式的设计,相应地,无法满足人们的去汗要求。

因此,需要一种新的窗体开启控制的设计方案,能够对窗体的结构进行优化,对窗体的控制模式进行改良,增加更多的参数检测设备以准确提供窗体开启控制的参考参数,从而制定出适宜人们需求的控制方式,提高人体的舒适程度。



技术实现要素:

为了解决上述问题,本发明提供了一种基于光线检测的自动化控制机器人,在窗体内部增加部件以便于窗体受控,增加多个室外环境检测设备以检测出更多的室外环境参数,增加多个室内环境检测设备以检测出更多的室内环境参数,更关键的是,还对窗体的控制策略进行全方位优化。

根据本发明的一方面,提供了一种基于光线检测的自动化控制机器人,所述机器人包括闪存、PM2.5浓度检测设备、光线检测仪和飞思卡尔MC9S12芯片,飞思卡尔MC9S12芯片分别与闪存、PM2.5浓度检测设备和光线检测仪连接,用于基于PM2.5浓度检测设备的输出和光线检测仪的输出发出不同的控制信号。

更具体地,在所述基于光线检测的自动化控制机器人中,包括:PM2.5浓度检测设备,用于检测并输出空气中的实时PM2.5浓度;光线检测仪,包括光敏二极管、信号放大器和信号测量电路,光敏二极管在无光照时,无反向电流,当有光照时,载流子被激发并参与导电,形成反向电流,反向电流与光照强度成正比,信号放大器与光敏二极管连接,用于对反向电流进行放大,信号测量电路与信号放大器连接,用于接收放大后的反向电流,并基于放大后的反向电流确定并输出相应的实时光照强度;飞思卡尔MC9S12芯片,分别与汗滴检测设备、PM2.5浓度检测设备、直流电机和光线检测仪连接,用于接收实时光照强度、汗滴百分比和实时PM2.5浓度,当实时PM2.5浓度小于等于预设PM2.5浓度阈值时,进入开窗模式,根据实时PM2.5浓度调整外窗控制信号中的外窗开启角度,实时PM2.5浓度越小,外窗开启角度越大,当实时PM2.5浓度大于预设PM2.5浓度阈值时,进入关窗模式,设置外窗控制信号中的外窗开启角度为零;飞思卡尔MC9S12芯片在开窗模式内执行以下操作:当实时光照强度大于光照强度阈值且汗滴百分比大于百分比阈值时,发送包括向上倾斜角度的向上倾斜控制信号,汗滴百分比越大,向上倾斜角度越小;当汗滴百分比小于等于百分比阈值且实时光照强度大于光照强度阈值时,发送包括向下倾斜角度的向下倾斜控制信号,汗滴百分比越大,向下倾斜角度越小;当实时光照强度小于等于光照强度阈值且汗滴百分比小于等于百分比阈值时,发送水平放置控制信号;一体化窗体结构,包括窗体、窗框、凹槽、蜗轮带动连杆、直流电机、电机驱动器和多个叶片,窗体设置在多个叶片的外部并与直流电机连接,凹槽设置在窗框四周,凹槽内嵌有密封条,蜗轮带动连杆用于带动多个叶片按照倾斜角度同步倾斜,直流电机与蜗轮带动连杆连接,用于控制蜗轮带动连杆,电机驱动器与直流电机连接,用于向直流电机发送向上倾斜控制信号、向下倾斜控制信号或水平放置控制信号,向上倾斜控制信号包括向上倾斜角度,向下倾斜控制信号包括向下倾斜角度,直流电机在接收到水平放置控制信号时,控制蜗轮带动连杆带动多个叶片水平放置,窗体根据发往直流电机的窗体控制信号调整窗体的开启模式,窗体控制信号中包括窗体开启角度;球形高清摄像机,包括闪光灯控制器、镜头、环境亮度传感器、CMOS图像传感器、RS485通信接口和金属外壳,环境亮度传感器用于检测周围环境的实时亮度,闪光灯控制器与环境亮度传感器连接,用于基于实时亮度确定在CMOS图像传感器工作时是否开启闪光灯,RS485通信接口用于将CMOS图像传感器对人体拍摄的高清图像传输给外部设备,金属外壳用于对球形高清摄像机中的各个电子设备进行散热,CMOS图像传感器用于采集并输出高清图像,高清图像分辨率为3840×2160;图像特征检测设备,用于与球形高清摄像机连接以接收高清图像,对高清图像进行图像特征检测以获取其中对象的形状并作为对象形状输出,对象形状包括边缘角点、对角线、水平细线、垂直细线和剧烈变化形状;滤波选择设备,与图像特征检测设备连接,用于在接收到的对象形状为边缘角点时,启动方形中值滤波设备,关闭十字形中值滤波设备、斜十字形中值滤波设备和距离模板中值滤波设备,在接收到的对象形状为对角线时,启动十字形中值滤波设备,关闭斜十字形中值滤波设备、方形中值滤波设备和距离模板中值滤波设备,在接收到的对象形状为水平细线或垂直细线时,启动斜十字形中值滤波设备,关闭十字形中值滤波设备、方形中值滤波设备和距离模板中值滤波设备,在接收到的对象形状为剧烈变化形状时,启动距离模板中值滤波设备,关闭十字形中值滤波设备、方形中值滤波设备和斜十字形中值滤波设备;方形中值滤波设备,与滤波选择设备连接,用于使用方形滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将方形滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值;十字形中值滤波设备,与滤波选择设备连接,用于使用十字形滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将十字形滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值;斜十字形中值滤波设备,与滤波选择设备连接,用于使用斜十字形滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将斜十字形滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值;距离模板中值滤波设备,与滤波选择设备连接,用于使用距离模板滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将距离模板滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值;其中,距离模板滤波窗口的确定方式如下:将高清图像中距离被滤波像素等同距离的像素作为滤波参考像素,所有的滤波参考像素组成距离模板滤波窗口,等同距离的选择值为2,4或6,基于高清图像的信噪比大小确定等同距离的大小;人脸检测设备,用于接收去噪图像,基于预设基准人脸图案从去噪图像中匹配出人脸区域,并将人脸区域从去噪图像处分割出来以作为人脸子图像输出;汗滴检测设备,与人脸检测设备连接,用于接收人脸子图像,将人脸子图像中灰度值落在预设汗滴灰度上限阈值和预设汗滴灰度下限阈值之间的像素确定为汗滴像素,将人脸子图像中的所有汗滴像素组成一个或多个汗滴子图像,基于人脸子图像尺寸、汗滴子图像的数量和每一个汗滴子图像尺寸确定汗滴占据人脸的面积百分比并作为汗滴百分比输出;闪存,分别与人脸检测设备和汗滴检测设备连接,用于存储预设基准人脸图案、预设汗滴灰度上限阈值和预设汗滴灰度下限阈值;其中,基于高清图像的信噪比大小确定等同距离的大小包括:高清图像的信噪比越大,确定的等同距离越小,高清图像的信噪比越小,确定的等同距离越大。

更具体地,在所述基于光线检测的自动化控制机器人中:球形高清摄像机位于一体化窗体结构的正上方。

更具体地,在所述基于光线检测的自动化控制机器人中:球形高清摄像机还包括内置存储单元,用于存储高清图像。

更具体地,在所述基于光线检测的自动化控制机器人中,还包括:语音播放设备,设置在球形高清摄像机附近。

更具体地,在所述基于光线检测的自动化控制机器人中:语音播放设备包括语音播放芯片和存储芯片,语音播放芯片与存储芯片连接,用于播放存储芯片预先存储的语音警报文件。

更具体地,在所述基于光线检测的自动化控制机器人中:语音播放设备为多声道扬声器。

具体实施方式

下面将对本发明的基于光线检测的自动化控制机器人的实施方案进行详细说明。

窗子棂,不外乎几种式样,不是横条的就是竖条的。横条的即是百叶窗雏形。严格来说,卧棂窗与百叶窗有一点不同,那就是卧棂窗平列而空隙透明。百叶窗窗棂做斜棂,水平方向内外看不见,只有斜面看才可看到。古时候人们做的木制窗子棂,主要是用它来达到通风和空气流通的目的,而近代百叶窗经过种种改良,已经集众多功能于一身,适用于各种建筑。

但是近代的百叶窗是由美国人发明的,叫约翰·汉普逊并于1841年8月21日取得了该发明专利。

百叶窗一般相对较宽,一般用于室内室外遮阳、通风。越来越多人认同的百叶幕墙也是从百叶窗进化而来。百叶幕墙功能优点多,而且非常美观,一般用于高楼建筑。

百叶窗有以下功效:

1、美观节能,简洁利落,百叶窗可完全收起,窗外景色一览无余,窗户简约大方.窗帘则占用了窗户的部分空间,使得房屋的视觉窗户的宽度受到影响,显得繁琐。

2、保护隐私,以叶片的凹凸方向来阻挡外界视线,采光的同时,阻挡了由上至下的外界视线夜间,叶片的凸面向室内的话,影子不会映显到室外,干净放心,清洁方便,平时只需以抹布擦拭即可,清洗时用中性洗剂,不必担心退色,变色防水型百叶窗还可以完全水洗。

3、冬暖夏凉,采用了隔热性好的材料,有效保持室内温度,达到了节省能源的目的,简单自由角度调整,控制射入光线,以调整叶片角度来控制射入光线,可以任意调节叶片至最适合的位置。

4、阻挡紫外线,百叶窗能够有效阻挡紫外线的射入,保护家具不受紫外线的影响而退色,百叶窗与窗帘相比,百叶窗那可以灵活调节的叶片具有窗帘所欠缺的功能。在遮阳方面,百叶窗除了可以抵挡紫外线辐射之外,还能调节室内光线;在通风方面,百叶窗固定式的安装以及厚实的质地,可以舒心地享受习习凉风而没有其它顾虑;窗帘的飘摆会室内生活时隐时现,百叶窗层层叠覆式的设计则保证了家居的私密性;此外,百叶窗完全封闭时就如多了一扇窗,能起到隔音隔热的作用。

当前,对包括百叶窗的窗体的控制方案仍偏于人工方式,即人们根据自身的体感去自己动身对窗体的开启模式进行控制,例如,当人们感觉到闷时就开窗通风,当人们感觉到室内环境亮度远远低于室外环境亮度时就手动开窗,当人们感觉到室外温度高时就手动关窗,这种手控方式效率太低且精度不高。

同时,现有的窗体开启控制方案缺乏与其他电子设备的有效联动机制,无法最大程度地满足人们对环境的要求,另外,现有的窗体开启控制方案缺乏一些必要的参数检测设备,导致人们的一些需求难以通过窗体的控制而得到满足。

当前并没有上述问题的解决方案,为了克服上述不足,本发明搭建了一种基于光线检测的自动化控制机器人,对现有的窗体结构进行优化,增加必要的参数检测设备,丰富并改善现有的窗体控制机制,从而提高窗体控制的精度和效率。

根据本发明实施方案示出的基于光线检测的自动化控制机器人包括闪存、PM2.5浓度检测设备、光线检测仪和飞思卡尔MC9S12芯片,飞思卡尔MC9S12芯片分别与闪存、PM2.5浓度检测设备和光线检测仪连接,用于基于PM2.5浓度检测设备的输出和光线检测仪的输出发出不同的控制信号。

接着,继续对本发明的基于光线检测的自动化控制机器人的具体结构进行进一步的说明。

所述机器人包括:PM2.5浓度检测设备,用于检测并输出空气中的实时PM2.5浓度。

所述机器人包括:光线检测仪,包括光敏二极管、信号放大器和信号测量电路,光敏二极管在无光照时,无反向电流,当有光照时,载流子被激发并参与导电,形成反向电流,反向电流与光照强度成正比,信号放大器与光敏二极管连接,用于对反向电流进行放大,信号测量电路与信号放大器连接,用于接收放大后的反向电流,并基于放大后的反向电流确定并输出相应的实时光照强度。

所述机器人包括:飞思卡尔MC9S12芯片,分别与汗滴检测设备、PM2.5浓度检测设备、直流电机和光线检测仪连接,用于接收实时光照强度、汗滴百分比和实时PM2.5浓度,当实时PM2.5浓度小于等于预设PM2.5浓度阈值时,进入开窗模式,根据实时PM2.5浓度调整外窗控制信号中的外窗开启角度,实时PM2.5浓度越小,外窗开启角度越大,当实时PM2.5浓度大于预设PM2.5浓度阈值时,进入关窗模式,设置外窗控制信号中的外窗开启角度为零;飞思卡尔MC9S12芯片在开窗模式内执行以下操作:当实时光照强度大于光照强度阈值且汗滴百分比大于百分比阈值时,发送包括向上倾斜角度的向上倾斜控制信号,汗滴百分比越大,向上倾斜角度越小;当汗滴百分比小于等于百分比阈值且实时光照强度大于光照强度阈值时,发送包括向下倾斜角度的向下倾斜控制信号,汗滴百分比越大,向下倾斜角度越小;当实时光照强度小于等于光照强度阈值且汗滴百分比小于等于百分比阈值时,发送水平放置控制信号。

所述机器人包括:一体化窗体结构,包括窗体、窗框、凹槽、蜗轮带动连杆、直流电机、电机驱动器和多个叶片,窗体设置在多个叶片的外部并与直流电机连接,凹槽设置在窗框四周,凹槽内嵌有密封条,蜗轮带动连杆用于带动多个叶片按照倾斜角度同步倾斜,直流电机与蜗轮带动连杆连接,用于控制蜗轮带动连杆,电机驱动器与直流电机连接,用于向直流电机发送向上倾斜控制信号、向下倾斜控制信号或水平放置控制信号,向上倾斜控制信号包括向上倾斜角度,向下倾斜控制信号包括向下倾斜角度,直流电机在接收到水平放置控制信号时,控制蜗轮带动连杆带动多个叶片水平放置,窗体根据发往直流电机的窗体控制信号调整窗体的开启模式,窗体控制信号中包括窗体开启角度。

所述机器人包括:球形高清摄像机,包括闪光灯控制器、镜头、环境亮度传感器、CMOS图像传感器、RS485通信接口和金属外壳,环境亮度传感器用于检测周围环境的实时亮度,闪光灯控制器与环境亮度传感器连接,用于基于实时亮度确定在CMOS图像传感器工作时是否开启闪光灯,RS485通信接口用于将CMOS图像传感器对人体拍摄的高清图像传输给外部设备,金属外壳用于对球形高清摄像机中的各个电子设备进行散热,CMOS图像传感器用于采集并输出高清图像,高清图像分辨率为3840×2160。

所述机器人包括:图像特征检测设备,用于与球形高清摄像机连接以接收高清图像,对高清图像进行图像特征检测以获取其中对象的形状并作为对象形状输出,对象形状包括边缘角点、对角线、水平细线、垂直细线和剧烈变化形状。

所述机器人包括:滤波选择设备,与图像特征检测设备连接,用于在接收到的对象形状为边缘角点时,启动方形中值滤波设备,关闭十字形中值滤波设备、斜十字形中值滤波设备和距离模板中值滤波设备,在接收到的对象形状为对角线时,启动十字形中值滤波设备,关闭斜十字形中值滤波设备、方形中值滤波设备和距离模板中值滤波设备,在接收到的对象形状为水平细线或垂直细线时,启动斜十字形中值滤波设备,关闭十字形中值滤波设备、方形中值滤波设备和距离模板中值滤波设备,在接收到的对象形状为剧烈变化形状时,启动距离模板中值滤波设备,关闭十字形中值滤波设备、方形中值滤波设备和斜十字形中值滤波设备。

所述机器人包括:方形中值滤波设备,与滤波选择设备连接,用于使用方形滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将方形滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值。

所述机器人包括:十字形中值滤波设备,与滤波选择设备连接,用于使用十字形滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将十字形滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值。

所述机器人包括:斜十字形中值滤波设备,与滤波选择设备连接,用于使用斜十字形滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将斜十字形滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值。

所述机器人包括:距离模板中值滤波设备,与滤波选择设备连接,用于使用距离模板滤波窗口对高清图像进行中值滤波以获得去噪图像,中值滤波具体操作包括:将距离模板滤波窗口所有滤波参考像素的像素值按照大小顺序进行排列以获得一维信号序列,取一维信号序列中位于中间位置的像素值作为被滤波像素的像素值;其中,距离模板滤波窗口的确定方式如下:将高清图像中距离被滤波像素等同距离的像素作为滤波参考像素,所有的滤波参考像素组成距离模板滤波窗口,等同距离的选择值为2,4或6,基于高清图像的信噪比大小确定等同距离的大小。

所述机器人包括:人脸检测设备,用于接收去噪图像,基于预设基准人脸图案从去噪图像中匹配出人脸区域,并将人脸区域从去噪图像处分割出来以作为人脸子图像输出。

所述机器人包括:汗滴检测设备,与人脸检测设备连接,用于接收人脸子图像,将人脸子图像中灰度值落在预设汗滴灰度上限阈值和预设汗滴灰度下限阈值之间的像素确定为汗滴像素,将人脸子图像中的所有汗滴像素组成一个或多个汗滴子图像,基于人脸子图像尺寸、汗滴子图像的数量和每一个汗滴子图像尺寸确定汗滴占据人脸的面积百分比并作为汗滴百分比输出。

所述机器人包括:闪存,分别与人脸检测设备和汗滴检测设备连接,用于存储预设基准人脸图案、预设汗滴灰度上限阈值和预设汗滴灰度下限阈值。

其中,基于高清图像的信噪比大小确定等同距离的大小包括:高清图像的信噪比越大,确定的等同距离越小,高清图像的信噪比越小,确定的等同距离越大。

可选地,在所述控制平台中:球形高清摄像机位于一体化窗体结构的正上方;球形高清摄像机还包括内置存储单元,用于存储高清图像;语音播放设备,设置在球形高清摄像机附近;语音播放设备包括语音播放芯片和存储芯片,语音播放芯片与存储芯片连接,用于播放存储芯片预先存储的语音警报文件;以及语音播放设备为多声道扬声器。

另外,人脸识别主要用于身份识别。由于视频监控正在快速普及,众多的视频监控应用迫切需要一种远距离、用户非配合状态下的快速身份识别技术,以求远距离快速确认人员身份,实现智能预警。人脸识别技术无疑是最佳的选择,采用快速人脸检测技术可以从监控视频图象中实时查找人脸,并与人脸数据库进行实时比对,从而实现快速身份识别。

生物识别技术已广泛用于政府、军队、银行、社会福利保障、电子商务、安全防务等领域。例如,一位储户走进了银行,他既没带银行卡,也没有回忆密码就径直提款,当他在提款机上提款时,一台摄像机对该用户的眼睛扫描,然后迅速而准确地完成了用户身份鉴定,办理完业务。这是美国德克萨斯州联合银行的一个营业部中发生的一个真实的镜头。而该营业部所使用的正是现代生物识别技术中的“虹膜识别系统”。此外,美国“9.11”事件后,反恐怖活动已成为各国政府的共识,加强机场的安全防务十分重要。美国维萨格公司的脸像识别技术在美国的两家机场大显神通,它能在拥挤的人群中挑出某一张面孔,判断他是不是通缉犯。

当前社会上频繁出现的入室偷盗、抢劫、伤人等案件的不断发生,鉴于此种原因,防盗门开始走进千家万户,给家庭带来安宁;然而,随着社会的发展,技术的进步,生活节奏的加速,消费水平的提高,人们对于家居的期望也越来越高,对便捷的要求也越来越迫切,基于传统的纯粹机械设计的防盗门,除了坚固耐用外,很难快速满足这些新兴的需求:便捷,开门记录等功能。人脸识别技术已经得到广泛的认同,但其应用门槛仍然很高:技术门槛高(开发周期长),经济门槛高(价格高)。

人脸识别产品已广泛应用于金融、司法、军队、公安、边检、政府、航天、电力、工厂、教育、医疗及众多企事业单位等领域。随着技术的进一步成熟和社会认同度的提高,人脸识别技术将应用在更多的领域。

采用本发明的基于光线检测的自动化控制机器人,针对现有技术无法满足人们对环境参数细化要求的技术问题,通过对现有的窗体进行内部结构改造,增加一些受控部件以便于窗体受控,通过对现有的参数检测设备进行丰富,相应地,对现有的窗体控制模式进行改良以提高窗体控制的自动化程度和多功能性,还增加了一些联动机制以与其他电子设备进行联动,从而,完善了窗体自动控制方案,在减少了人工操作的同时改善了窗体封闭的空间的舒适程度。

可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1