抗环境应力龟裂性高的有光泽塑料容器的制作方法

文档序号:2472116阅读:359来源:国知局
专利名称:抗环境应力龟裂性高的有光泽塑料容器的制作方法
专利说明抗环境应力龟裂性高的有光泽塑料容器 本发明涉及抗环境应力龟裂高、易于加工且光泽度高的聚乙烯塑料容器。
现有技术中已探索过几种方法来制备具有加工性能和机械性能良好的高光泽度塑料容器,但迄今为止所有的配料和方法均存在各种各样的缺点。
已使用过的高光泽度高密度聚乙烯(HDPE)的特征在于分子量分布非常窄,通常低于8。该分子量分布可以通过凝胶渗透色谱法得到的曲线准确定义。通常,分子量分布(MWD)更简单地由称为分散指数D的参数加以限定,该参数是重均分子量(Mw)和数均分子量(Mn)之间的比值。分散指数用于测量分子量分布的宽度。分子量分布窄的树脂可以制备高光泽的塑料容器,但该树脂很难加工,机械性能非常差,这是已知的。该树脂机械性能差特别还表现在耐环境应力龟裂性很低(Modern Plastic International,August1993,p.45)。
使用共挤出高密度聚乙烯(HDPE)与薄的聚酰胺外层可制备光泽度极高的瓶子,但该方法的主要缺点是HDPE和聚酰胺层之间需要粘合层。
共挤出高密度聚乙烯和低密度聚乙烯外层得到的瓶子其光泽度一般。但这些瓶子都有令人讨厌的油腻感,且抗刮伤性差。
金属茂催化的聚烯烃应用于适合包装的透明多层膜中,例如EP-A-756,931,WO-98-32601,WO-99-10430,WO-95-21743,WO-97-02294所公开的。但这些现有技术的文献没有提出本发明的主题制备外表面有光泽的塑料容器。
在另一公开于共同未决的专利申请的方法中,高光泽塑料容器包括以外层重量为基准的含聚烯烃的内层和含40-85wt%苯乙烯的苯乙烯组分的外层。
因此需要一种方法来有效地制备高光泽度的且加工性能和机械性能均好的塑料容器。
本发明的一个目的是制备兼有理想的光泽外观和良好抗刮伤性的塑料容器。
本发明的另一个目的是要得到加工性能和机械性能均良好的光泽塑料容器。
本发明的另一个目的是制备抗环境应力龟裂性非常高的塑料容器。
本发明的又一个目的是制备熔融破裂开始(onset)的剪切速率很高的塑料容器。
本发明的再一个目的是制备用于共挤出的树脂。
本发明提供一种多层塑料容器,其外层或内层主要由金属茂制备的密度为0.925-0.940g/cm3、熔融指数M12为0.5-2.5g/10min的中密度聚乙烯(mMDPE)构成,该塑料容器到破裂时测量的耐环境应力龟裂性(ESCR)大于30天,外层和内层光泽均大于40。
在本说明书中,聚乙烯的密度用ASTM D1505的方法在23℃时测量,按ASTM D2457-90标准测试的方法测量光泽。在填充了容量为98%的含5%浓缩的Antarox作为洗涤剂的容器上测量破裂时间。将它们置于10kg的载荷下,温度为40℃,记录破裂时间。
用ASTM D1238方法测量熔融指数M12,测量温度190℃,载荷2.16kg。使用ASTM D1238方法测量高载荷熔融指数HLMI,测量温度190℃,载荷21.6kg。
优选mMDPE的密度为0.930-0.940g/cm3。
其他层是用任何一种已知催化剂制备的高密度聚乙烯,例如铬催化剂或齐格勒-纳塔催化剂或金属茂催化剂,该金属茂催化剂与用来制备金属茂制外层或内层的金属茂催化剂可以相同,也可以不同。
根据本发明的优选的实施方案,塑料容器的制备是将金属茂聚乙烯树脂和用齐格勒-纳塔催化剂制备的双峰分子量分布的高密度聚乙烯树脂进行共挤出。这样容器包含10-30wt%的金属茂聚乙烯树脂和90-70wt%的双峰分子量分布齐格勒-纳塔高密度聚乙烯树脂。如果需要有光泽,可以将金属茂树脂用于外层。或者,也可将其用于内层。而且,可以将瓶子废料制造的在线回收料(on-line regrind)加入到HDPE层中。
根据本发明另一实施方案,塑料容器的制备是将金属茂聚乙烯树脂和铬催化剂制备的单峰分子量分布的高密度聚乙烯树脂进行共挤出。
已经公开了多个制备聚乙烯的不同催化剂体系,特别是适于吹塑成型的中密度聚乙烯(MDPE)和高密度聚乙烯(HDPE)。聚乙烯产品的物理性能(特别是机械性能)随着制备该聚乙烯所用催化剂体系的不同而变化是本领域已知的。这是由于在制备的聚乙烯中不同的催化剂体系会产生不同的分子量分布。
本领域公知用铬基催化剂来聚合HDPE,特别是高耐环境应力龟裂的高密度聚乙烯。例如EP-A-0,291,824,EP-A-0,591,968和US-A-5,310,834均公开了在乙烯聚合反应的混合催化剂组合物中加有铬基催化剂。
或者,可以使用含金属茂位点的传统齐格勒-纳塔催化剂或载体齐格勒-纳塔催化剂来制备HDPE,如EP-A-0.585,512或EP-A-0,580,930所述。该聚合反应是在两个串联的充满液体的回路反应器中在催化剂的存在下进行的,聚合的温度50-120℃,优选60-110℃,绝对压力为1-100巴,催化剂的组成为过渡金属组分(组分A,是有机铝化合物与钛化合物的反应产物),有机铝化合物(组分B),及任选含有的一种或多种电子给体。用氢来调节平均分子量,该方法包括进行聚合反应时,如果需要引入共聚单体的话,该聚合主要在第一反应器中进行,因此第一反应器中的氢浓度非常低,以形成HLMI为0.01-5g/10min的乙烯聚合物,在第二反应器中保持高压氢,从而形成HLMI高于5g/10min的乙烯聚合物。
还可以用能制备单或双峰型分布的金属茂催化剂来聚合HDPE,其或者是用在如EP-A-0,881,237所述的两步法中,或者是用在单反应器中作为双点(dual)或多点催化剂,如EP-A-0,619,325所述。本发明可以使用任何已知的金属茂催化剂,通常用下式表示 1.(Cp)mMRnXq 其中Cp是环戊二烯基环,M是4b、5b、或6b族的过渡金属,R是含1-20个碳原子的烃基或氢羧基,X是卤素,以及m-1-3,n=0-3,q=0-3,m+n+q之和等于金属的氧化态。
II.(C5R’k)gR”s(C5R’k)MQ3-g III.R”s(C5R’k)2MQ’ 其中(C5R’k)是环戊二烯基或取代的环戊二烯基,每个R’相同或不同,是氢或者是含1-20个碳原子的烃基,如烷基、链烯基、芳基、烷芳基或芳烷基,或者是两个碳原子连接在一起形成C4-C6环,R”是C1-C4的亚烷基,二烷基锗或硅或硅氧烷,或烷基膦或胺基桥连双环(C5R’k),Q是烃基,如含1-20个碳原子的芳基、烷基、链烯基、烷芳基或芳烷基,含1-20个碳原子的氢羧基或卤素,并且彼此可以相同,也可以不同,Q’是含1-20个碳原子的亚烷基,s是0或1,g是0,1或2,当g为0时s为0,当s为1时k为4,当s为0时k为5,以及M如上所定义。
根据本领域的任何已知方法可以承载金属茂。在其有载体的情况下,本发明使用的载体可以是任何有机或无机固体,特别是多孔载体,如滑石、无机氧化物和树脂载体材料,例如聚烯烃。载体材料优选的是细粉状的无机氧化物。
活性位点是通过加入具有电离作用的活性剂而产生的。
优选的是,在聚合过程中加入铝氧烷(alumoxane)作为活化剂,本领域任何已知的铝氧烷都适用。优选的铝氧烷包含低聚线型和/或环状的烷基铝氧烷,用公式表示

低聚、线型铝氧烷和

低聚、环状铝氧烷 其中n是1-40,优选10-20;m是3-40,优选3-20;R是C1-C8的烷基,优选甲基。
优选使用甲基铝氧烷。
当不用铝氧烷作活化剂时,使用一种或多种由式AIRx表示的烷基铝,其中每个R相同或不同,选自卤化物或含1-12个碳原子的烷氧基或烷基,x为1-3。特别适合的烷基铝是三烷基铝,最优选三异丁基铝(TIBAL)。
用金属茂催化剂的乙烯聚合可以在气相、液相或浆料相中进行。优选聚合过程是在浆料相聚合条件下进行。聚合温度为20-125℃,优选60-95℃;压力为0.1-5.6Mpa,优选2-4Mpa;时间为10分钟-4小时,优选1-2.5小时。
优选聚合反应在稀释剂中进行,温度条件是聚合物在稀释剂中保持为悬浮的固体。
优选使用连续的回路反应器进行聚合反应。
在聚合中通过加氢来控制平均分子量。加入到聚合反应器中氢和烯烃的相对量,以氢和烯烃的总量为基准,为0.001-15mol%氢,99.999-85mol烯烃%,优选0.2-3mol%的氢和99.8-97mol%的烯烃。
聚乙烯的密度是通过注入反应器中共聚单体的数量来控制的,使用的共聚单体的例子包括1-烯烃丁烯、己烯、辛烯、4-甲基-戊烯等,最优选己烯。聚乙烯的熔融指数是通过注入到反应器中氢的量来控制的。
本发明使用的聚乙烯树脂可以用单点金属茂催化剂或多点金属茂催化剂来制备,因此它具有单峰或双峰分子量分布。该分子量分布为2-20,优选2-7,更优选2-5。
塑料容器的外层或内层是用金属茂制备的中密度聚乙烯(mMDPE)制造的。在用于制备外层或内层的优选金属茂催化剂中,可以列举乙烯二-(四氢茚基)二氯化锆,乙烯二-(茚基)二氯化锆和二-(正丁基环戊二烯基)二氯化锆,如WO96/35729所述。最优选的金属茂催化剂是乙烯二-(四氢茚基)二氯化锆,因为它可以有最大选择性的密度、分子量和熔融流动指数。
本发明制备塑料容器的外层或内层所需聚乙烯的密度为0.925-0.940g/cm3,优选0.930-0.940g/cm3。本发明所用的熔融指数为0.5-2.5g/10’,分子量分布为2-7,优选2-5,最优选小于3。
金属茂制备的中密度聚乙烯树脂(mMDPE)和高密度聚乙烯树脂(HDPE)被共挤出制成型坯,型坯被吹塑成型为物理性能和光学性能良好的塑料容器。而且本发明的容器具有显著的抗环境应力龟裂性,并且易于加工。它们还具有优异的熔融破裂开始的剪切速率(melt fracture onset in shear rate)。
更优选的是,将它们应用于制备化妆品包装和家用包装,例如容积为0.01-20升的洗涤剂包装。
吹塑成型设备(包含有挤出吹塑用型坯的共挤出模头)可以是吹塑成型中经常使用的任何设备。以下用于加工聚乙烯 -Battenfeld Fisher VK,购自Battenfeld连续挤出或共挤出吹塑成型设备,制备容量0.7升的聚乙烯瓶子的6挤出机,瓶子可以是单层,也可以多达6层的多层; -6腔连续挤出的高生产率轮状构型的机器(wheel configurationmachine)。
本发明的塑料容器特征在于很高的光泽度(使用ASTM D 2457-90试验测量)和优异的抗坠落性(resistance to drop)。
在本发明制备的0.7升瓶子上进行抗坠落性测试。
以如下方法测试抗坠落性 -如果没有明确的冲击作用或如果盖子有泄漏的话,除去此试验; A.设备和瓶子的准备 -在制备瓶子的当天,清洗吹塑成型设备的模头和销; -瓶子厚度非常均匀; -瓶子的净重为60g; -空瓶在室温下存放约20小时; -然后将瓶子装满液体,密闭并置于以下条件下 1)室温,水,24+-3小时; 2)-18℃,水+防冻剂,24+-3小时。
B.在20个瓶子的样品上进行试验,包括如下步骤 -确定零高度; -选择坠落试验的起始高度; -选择均匀的间距,以保证对于每一个测试的瓶子使用至少3个不同的高度; -在表1的网格中记录结果; -根据瓶子破裂与否,通过减去或增加间距来改变高度; -14个瓶子测试之后, 1)如果破裂的数目N=7,中断试验; 2)如果N<7,继续试验直到N=7, 3)如果N>7,连续试验直到未破裂的数目为7 -然后由以下公式作出破裂高度HF的计算 HF=H0+[ΔH(A/N-0.5)] 其中 -H0是最小高度, -ΔH是间距(step distance), -A是乘积(i*n1),其中n1表示在每一高度破裂的数目,只考虑最后7个破裂,i是整数0,1,2,…,指的是最小高度H0之上的间隔数, -N是破裂的总数目。
在本发明的树脂或对比树脂上进行的所有测试中,瓶子都从最大高度6.5m处坠落。无破裂发生(n1=0,i*n1=0)。
可以制备其中外层是金属茂制备的聚乙烯树脂而内层是用齐格勒-纳塔催化剂制备的双峰分子量分布的高密度聚乙烯树脂的共挤出塑料容器。外层相当于容器总重的10-30wt%,优选约15wt%。
由于金属茂树脂的抗环境应力龟裂性优异,如果需要的话,容器的典型重量可以减少30-40%。
而且更令人惊奇的是,即使熔融指数低,生产率也非常高。
实施例 制备数个塑料容器,测试光泽度、ESCR、载荷下的层积密度及熔融破裂开始的剪切速率。用如下树脂制备塑料容器。
树脂R1是金属茂制备的中密度聚乙烯树脂。它是在回路浆料反应器中用载体和电离金属茂催化剂连续聚合得到的,该催化剂的制备是用两步法进行的首先将SiO2与MAO反应制备SiO2.MAO,然后将94wt%第一步中制备的SiO2.MAO与6wt%的乙烯二(四氢茚基)二氯化锆反应。干催化剂在注入到反应器中之前,将其混合在异丁烷中,并与三异丁基铝(TIBAI,10wt%,在己烷中)预接触。反应在70L容量的回路反应器中进行,聚合温度保持在85℃。操作条件如下 TIBAI120cm3/h IC426kg/h C29kg/h C650cm3/h H21.2N/h. 另外,使用三种用齐格勒-纳塔催化剂制备的高密度聚乙烯树脂 -树脂R2是BP Chemicals销售的Rigidex4820, -树脂R3是Dow Plastics销售的DSV 10305.00, -树脂R4是由FINA Research S.A制备的Finathene Bm593。
这四种树脂的特征概括于表1中。
表1特征R1R2R3R4 HLMIg/10min25524926 MI2g/10min0.851.701.000.27 密度g/cm30.9340.9500.9530.959 Bell ESCR F50h>1000<2443250 GPC Mn34083191601769012717 Mw88134102896125473170284 D2.65.47.113.4 使用ASTM D1690的标准测试方法测量Bell ESCR,使用ASTM1238的标准测试方法测量HLMI,测试温度190℃,载荷21.6kg。
用VK-14Battenfeld挤出机共挤出这些树脂以制备7个不同组成的双层700ml瓶子。内层和外层组成以及比例和瓶子特征如表II所述。在所有瓶子的内层中加入约30wt%的瓶子废料。所有样瓶的高度为213mm。
设备操作条件如下设备输出约15kg/h,物料(mass)温度为170-215℃。模口间隙在设备安装时逐步减少100阶(steps),输出保持恒定。记录熔融破裂开始的剪切速率,在此位置停止试验。
在模口间隙为500和1000的位置处记录重量增加(型坯长度50cm)。
表II瓶子 B1 B2 B3 B4 B5 B6 B7 内层树脂 R4 R4 R4 R4 R4 R4 R4 内层厚度% 70 70 70 70 85 85 85 外层树脂 R2 R1 R1 R1 R1 R1 R1 外层厚度% 30 30 30 30 15 15 15 物料温度℃ 213 208 210 210 210 211 209 瓶子厚度mm 0.7 0.7 0.85 1.0 0.7 0.85 1 瓶子重量g 41.238 47 54 38 47 54 用ASTM D2457-90标准试验方法,测量60°角的光泽度。
在装填98%容积(含5%的浓缩Antarox洗涤剂)的瓶子上测量抗环境应力龟裂性。然后将它们置于10kg的载荷下,温度为40℃。试验延续10周,本发明的所有瓶子均未显示出任何的破裂迹象。
在温度为40℃载荷10kg的试验的48小时后,测量瓶子偏转。
本发明塑料容器的增重较由树脂R4制备的单层容器减少5%。
结果示于表III。
表III 瓶子 B1 B2 B3 B4 B5 B6 B7熔融破裂开始s-1 1074 9500 9500 9500 9500 9500 9500外部光泽% 58 90 90 90 90 90 90破裂时间(天) 6.6 ≥400 ≥400 ≥400 ≥250 ≥250 ≥250起始瓶的高度mm 213 213 213 213 213 213 213瓶子偏转Mm 8 13.6 8.8 6.8 11.8 8.8 6.2 用如下组合物在连续5腔设备上共挤出两个200ml的瓶子 -在物料温度为170℃时共挤出瓶子B8其包含70wt%由Dow35060 EHDPE(用齐格勒-纳塔催化剂制备,并具有双峰分子量分布)树脂制备的内层和30wt%的由Dow DSV10305.00MDPE树脂R3制备的外层; -在物料温度为170℃时共挤出瓶子B9其包含80wt%由Dow35060 EHDPE树脂制备的内层和20wt%的由金属茂MDPE树脂R1制备的外层。
测试这些瓶子的熔融破裂开始和外部光泽。结果示于表IV。 表IV瓶子B8B9 主温度℃170170 熔融破裂开始s-11500无 外部光泽%3787 这些例子清楚地表明当塑料容器的外层是由金属茂制备的中密度聚乙烯制成时,由于金属茂树脂对熔融破裂几乎不敏感,所以成品的加工性极好。而且,它们的外部光泽度极高,极大地改进了抗环境应力龟裂性。可以制备重量轻的瓶壁较薄或者内层较高密度级的具极高ESCR潜能的结构。
而且,市售的大多数共挤出结构中,内层为总壁厚的70%,外层为30%。本发明的例子表明当外层是由金属茂制备的中密度聚乙烯制成时,85/15的共挤出组合物的性能优异。
已经制备出着色的多层瓶子,其中外层是用mPE制成,厚度为总壁厚的5-30%。由于外层的透明度极好,不需要加着色剂到外层中,只有内层需要着色。在外mPE层中,用或不用着色剂制备的瓶子看不出差别。因此可以得到特别美的效果。
根据本发明制备的容器适用于化妆品和洗涤剂包装。
权利要求
1.一种两层或多层的塑料容器,其中外层或内层主要由金属茂制备的中密度聚乙烯(mMDPE)树脂组成,该塑料容器的外层或内层的光泽度分别至少为40,抗环境应力龟裂性是至破裂时测得的时间为至少30天。
2.根据权利要求1的塑料容器,其中金属茂制备的中密度聚乙烯的密度为0.925-0.940g/cm3,熔融指数MI2为0.5-2.5g/10min.。
3.根据权利要求1或2的塑料容器,其中金属茂制备的中密度聚乙烯的分子量分布为2-7。
4.根据前述任一权利要求所述的塑料容器,其中应用于外层或内层的金属茂制备的中密度聚乙烯树脂为容器总重的10-30wt%。
5.根据前述任一权利要求所述的塑料容器,由两层组成,其中外层是金属茂制备的中密度聚乙烯,内层是双峰分子量分布的齐格勒-纳塔高密度聚乙烯树脂。
6.根据前述任一项权利要求的塑料容器,该容器是由共挤出的型坯进行吹塑成型制备的。
7.根据权利要求1-5任一项制备的化妆品包装。
8.根据权利要求1-5任一项制备的洗涤剂包装。
9.着色的多层瓶子,其中外层是金属茂制备的聚乙烯,厚度为总壁厚的5-30%,该着色的多层瓶子的外层不含着色剂。
全文摘要
两层或多层的塑料容器,其中外层或内层主要由金属茂制备的中密度聚乙烯树脂构成,该塑料容器的外层或内层的光泽度分别至少为40,抗环境应力龟裂性为其至破裂时测得的时间至少30天。
文档编号B32B1/02GK1681652SQ02822
公开日2005年10月12日 申请日期2002年9月26日 优先权日2001年10月2日
发明者埃里克·梅齐尔斯 申请人:阿托菲纳研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1