倾斜c板延迟器及包含该延迟器的显示系统的制作方法

文档序号:2679861阅读:239来源:国知局
专利名称:倾斜c板延迟器及包含该延迟器的显示系统的制作方法
技术领域
本发明涉及透射式液晶显示器及硅上反射式液晶显示器(reflective liquid crystalon silicon display),以及基于这种显示器的图像投影系统。具体地,它公开了一种补偿液晶显示面板的剩余延迟的改进装置。尤其,具有适当倾斜和转动的C板被用作延迟补偿器,以增强由显示面板产生的图像的图像对比度。
背景技术
与其它微显示投影显示器技术(诸如透射式液晶微显示器(xCLD)和数字光处理器(DLP))及直视显示面板相比较,基于硅上液晶(Liquid Crystal on Silicon,LCoS)微显示投影系统(MDPS)的线栅偏振器[C.Pentico,M.Newell和M.Greenberg,“Ultrahigh contrast color management system for projection displays(用于投影显示的超高对比度彩色管理系统)”SID 03摘要,pp.130-133,2003;以及Kurtz等人的美国专利,#6,585,378和Pentico等人的美国专利#6,857,747]实现了高分辨率和高图像对比度。通过三个微显示板的使用来缓解屏幕上亮度的不足,每一个微显示板用于原色带。

图1中给出基于WGP的投影系统的例子。来自高压放电灯的光由长光棒(管)均匀化。该光还可被优先偏振或使它未用过的部分重新使用。在光管出口处空间均匀光分布由一系列透镜、折镜(fold mirror)、二向色性频带分离器成像在一个或多个LCoS面板上(以一个、两个、三个和四个面板偏振器为基础的MDPS)。在基于WGP的MDPS中,线栅偏振器的主要功能是从入射光束分离出射光束D.Hansen,E.Gardner,R.Perkins,M.Lines,和A.Robbins,“The display applications and physics of the Proflux wiregrid polarizer(Proflux线栅偏振器的显示应用与物理特性)”,SID 02摘要,p.730,2002。在这方面,WGP一般在给定的LCoS面板照明臂(illumination arm)中相对于光传播的主要方向倾斜±45°。然后,从每个LCoS面板返回的光相对于入射的照明被导向(偏转至)正交的光路。WGP也可用作偏振器件。WGP是线栅偏振器,即,其透射正交于平行微线方向排列的线性偏振,并反射平行于线方向的补偿线性偏振。当用于偏位(off-normal)入射时,如果透射的线性偏振包含在入射平面(P平面)内,则将WGP配置为高偏振对比度模式。在图1的图示中,该高对比度配置需要平行于S平面(关于中心射线正交于入射面)定向的微线。该线垂直于图1中图示的平面排列。由于光学系统的亮度和孔径之间的平衡(“光学径角性(Etendue)”),MDPS也需要利用各光学元件的适中的数值孔径。使用f/2.4系统(在空气入射(air incidence)内大约为±12°)构造光学元件来实现良好的运行是非常典型的。那么,关于各局部WGP元件,偏振的P面和S面与锥形光束中的中心光线(下文中称为主光线)的线性偏振有关。在图1中所示的基于3面板WGP的MDPS中,由LCoS面板15、15a和15b(分别对应于红色、绿色和蓝色信道)显示的图像由X立方体19聚集(会聚),然后被投影至大屏幕。各颜色信道具有LCoS面板、WGP以及专用的调整延迟补偿器(trim retarder compensator)21、21’和21”,任一WGP作为分束器和偏振器/检偏器并倾斜+45°或-45°,各延迟补偿器分别与面板15、15a和15b相关联。各颜色信道同样具有其自身的前置偏振器和净化(clean-up)检偏器;其中,使该前置偏振器适于透射P偏振(一些WGP或二向色性偏振片的一个或多个元件关于主光线正入射定向;这些并未在图1中示出),使净化检偏器适于透射S偏振(一些WGP或二向色性偏振片的一个或多个元件关于主光线在正入射处定向;这些并未在图1中示出)。调整延迟补偿器(trim retarder compensator)是MDPS的各颜色信道的关键光学元件。其在面板的关闭状态(off-state)除掉了LCoS面板的剩余延迟D.Anderson和K.Shahzad,“Off-axis LCoS compensation for enhanced contrast(增强对比度的离轴LCoS补偿)”SID 03摘要,pp.1433-1435,2003。LCoS面板的剩余延迟可被分类为面内(也作A板)和面外(也作C板)分量。除非另有说明,在此术语“延迟”意指线性延迟量。线性延迟使相差成为两个正交的线性偏振,平行于线性延迟器的常轴和非常轴排列。还有一种类型的延迟,称作“圆形延迟”,该圆形延迟引起右手和左手圆偏振光的相对相差。锥形光束中的正入射线仅经历A板延迟,而离轴射线(倾斜的和弯曲的,倾斜的也就是不垂直但是沿着主S面和P面;弯曲的也就是不垂直并偏离主S面和P面入射)除A板延迟之外经历C板延迟。在双折射介质中90°射线角的不重要的位置并不经历A板延迟。)
在标准的A板补偿情况中,补偿器的A板延迟与处于关闭状态的LCoS面板的A板延迟相称。补偿器和LCoS面板的慢轴以正交的方位角偏差(称作“交叉轴”)配置。将同样的配置应用于两个快轴。对于正入射光线,快/慢轴的作用为从调整延迟补偿器元件向LCoS面板元件转换。两个连续的元件中,特定线性偏振的光线多然后少地交替地延时,或者反之亦然。对于入射偏振实际结果是零相对延时。因此关闭状态时从该调整延迟器和面板对的输出偏振相对于其输入偏振并未改变。这个输出光线然后被WGP和净化偏振器组合滤去,凭此,WGP的高反射轴和净化偏振器的高透射轴关于入射至所述调整延迟器和面板对的入射偏振垂直定向。于是暗态面板的照明并不出现在屏幕上。调整延迟器作为补偿器的引入同样不会显著地改变面板打开状态(on-state)时的吞吐量。因此,连续对比度(全部开/全部关)是极好的。实践中,由于器件厚度和材料双折射控制以及操作偏差(温度、机械应力等等)中的制造公差,从而LCoS和补偿器的A板延迟给出了数值范围。当时,在补偿器中提供比名义上的LCoS面板延迟值更高的A板延迟是典型的J.Chen,M.G.Robinson和G.D.Sharp,“General methodology for LCoS panel compensation(LCoS板补偿的一般方法论),”SID 04,摘要,pp.990-993,2004。例如,垂直排列向列(VAN)LCoS可展示2nm的A板延迟(在λ=550nnm时),而可以制造具有5nm(在λ=550nnm时)A板延迟的调整延迟补偿器。在A板中的这个失谐需要相对于调整延迟补偿器/LCoS面板对名义上的交叉轴配置,来偏置补偿器的光轴。由于VAN-LCoS,面板的慢轴被典型地配置为基本上平行于S面和P面的平分线(即,慢轴在±45°和±135°处,此处P偏振平行于0°/180°,以及S偏振平行于±90°)。这个配置对将VAN-LCoS面板用作有效的电控制双折射(ECB)器件是至关重要的,对于该反射器件的交叉偏振转化由下面的公式给出
I(输出交叉偏振)=I(输入交叉偏振)×[sin(Δnd/λ)×sin(2)]2,
其中,Δnd是VAN-LCoS面板的单向延迟;λ是照明波长,以及是慢轴相对于P偏振的方向。作为ECB要求的结果,VAN-LCoS被典型地配制为单向上近似的四分之一波板延迟器(在面板打开状态时),并且其慢/快轴近似地对开S偏振面和P偏振面。为了描述本发明的目的,将在VAN模式的LCoS微显示投影中心光学系统中参考单色信道。该单通道的描述是一个或多个基于面板WGP的微显示投影系统。同样,相对于主光线传播方向,在WGP之前非倾斜地设置预偏振器,并在WGP反射之后非倾斜地设置净化偏振器。预偏振器包括基于栅格(反射性)的偏振器(例如铝线栅)或规则的二向色性(吸收性)偏振片的基本上平行的元件的一个或多个阶段(stage)。净化偏振器包括基本上平行于吸收性的偏振器元件的一个或多个阶段。图2中描绘了图1光引擎(light engine)中的红色信道或蓝色信道的中心光学系统200的图示。从在前阶段的光导管(或者其它诸如蝇眼(Fly’s Eye)阵列的均化器)输出的,非偏振的或部分偏振的光锥,被预偏振器201线性偏振。这个偏振器220的透射轴基本上平行于随后的WGP元件202的透射轴。这个线性偏振方向被称为关于主光线和WGP元件的圆锥固定件(conical mount)的“P偏振”。WGP元件据称已经围绕+Y轴并相对于+Z轴旋转了+45°(或者仅仅相对于Z轴倾斜+45°)。这符合使用右手XYZ坐标系(RH-XYZ)欧拉角旋转定律。类似地,绿色信道(未示出)的中心光学系统使得WGP关于Z轴倾斜-45°,并将WGP的返回通道导向位于返回通道中的WGP的反射端口处的净化偏振器。在附图中WGP元件202的表面上的微线平行于Y轴排列。该线位于WGP基板后侧(远离输入端)以使得线性偏振光较少受到基板中由热应力或机械应力引起的双折射的影响。在完成双程(double pass)后,即在调整延迟补偿器(TR)203和VAN-LCoS面板204的平行阶段往返移动之后,WGP元件对该光束进行分析。由WGP元件的线侧反射的正交偏振,即S偏振偏转至净化偏振器205,该净化偏振器205的透射轴正交于预偏振器。检偏器的偏振示为221。该反射的光并不通过WGP基板,并因此较少受到在基板中引起的双折射的影响。当观察第一通道(RH-XYZ)中指向观测者的光束时,已经示出了LCoS面板的慢轴(SA)230,该慢轴位于RH-XYZ坐标系的第一象限。在描述VAN-LCoS面板的SA时,需要参考具有向着+Z轴的极角倾斜(正的倾斜)的SA的方位角取向。在所示的这个现有技术的例子中,LCoS的SA由方位角235给定,从X轴逆时针方向旋转为正角。VAN-LCoS面板的快轴(FA)定义为正交于SA方向(即,对SA有±90°的方位角偏差)。该FA 231示为位于第2和第4象限,从X轴偏移+135°/-45°的方位角。在较大量的延迟的情况下,调整延迟补偿器203必须被旋转或定时(clocked),以确定邻近LCoS的SA的象限中其SA的方向,以便使两组慢轴不交叉。一般的调整延迟补偿器的例子示为具有其慢轴240沿方位角245定向的元件203。对于适中的更高调整延迟补偿器延迟和更慢的VAN-LCoS面板延迟,该调整延迟补偿器的SA一般能够偏离最靠近的S或P轴30°,尽管小于15°的偏离是优选的。当术语SA和FA用于VAN-LCoS面板和调整延迟补偿器时,当在正入射处测量线性延迟时,该SA和FA在此被认为是两个正交的双折射轴。对于在非常大的入射角处的负的平面外的延迟分量,SA和FA的方向根据离轴照明以及,SA/FA角色的反向而改变。现有技术的披露中,最佳调整补偿器包括A板元件和C板元件(具有双折射负光性的平面外的延迟)。该调整延迟补偿器基本上平行于LCoS的X-Y平面排列。对良好的调整延迟补偿器装置的需求是众所周知的参见例子K.Tan等人,“Design andcharacterization of a compensator for high contrast LCoS projection systems(高对比度LCoS投影系统的补偿器设计和特征)”SID 2005,p.1810,2005。存在有多种材料,用于实现补偿A板和C板延迟的补偿器。传统上,各向同性聚合物沿着一个或两个轴延伸,结果双轴或单轴负层(negative layer)能够用于充分补偿LCoS面板的延迟H.Mori等人,“Novel optical compensation method based upon a discotic optical compensationfilm for wide-viewing-angle LCDs(基于宽观察角度的盘状光学补偿薄膜的新光学补偿方法)”,SID 03摘要,p.1058,2003。最近,已经示出了交联为聚合物基质(polymer host)的液晶混合物(LCP),其在可靠性、均匀性和达到延迟量目标的容易性方面更加通用Zieba等人的US专利申请公开号为20050128380。LCP层与无机薄膜结合起来,以实现C板元件Tan等人的US专利申请公开号为20050128391。已经示出了全部功能调整延迟补偿器以为了极好的对比度和环境上的稳定性而提供补偿M.Duelli等人,“High performancecontrast enhancing films for VAN-mode LCoS panels(VAN模式LCoS板的高性能对比度增强薄膜),”SID 05摘要,p.892,2005。本发明在此公开了使用双折射薄膜结构(form birefringent film),其倾斜一角度以补偿反射式LCoS或透射式LC器件在黑暗状态的延迟,结果对比度有显著的改进。双折射薄膜具有单轴晶体的光率体(uniaxial indicatrix),并且其被配置为带有平行于器件法线(device normal)的C轴。这种双折射元件并不包含有机材料,因此避免了随着时间的流逝而导致的可靠性下降或对比度降低,这些是现有技术的延迟器应用中的有机双折射器件的固有风险。只有C板(C-plate-only)延迟器是双折射元件,在此光学对称轴沿着基本上平行的板的器件法线设置。对于正入射线,C板延迟器并不呈现任何净余延迟。对于离轴光线,非常光线(e波),有效折射率能够比正交的、寻常光线(o波)偏振的给定值高或者低。这意味着C板能够拥有正C延迟或者负C延迟。除了对现有技术的延迟技术的可靠性的改进之外,倾斜取向的只有C板延迟器的使用对于通过减少光学系统中元件的数量大大减少延迟器花费以及简化装配是有利的。
发明概述[18]本发明涉及C板延迟补偿器的使用,以增强透射式及反射式液晶显示器和显示系统的图像对比度。通过为该补偿器引入相对于系统X-Y平面的小倾斜角度及相对于显示面板慢轴来选择倾斜板围绕Z轴的适当转动角,获得改良的剩余延迟补偿。
附图的简要描述[19]现在将结合附图来描述本发明的示范性特征。图1是现有技术基于Ultrex-3 3面板线栅偏振器(WGP)的硅上液晶(LCoS)投影光引擎(light engine)的示意图。图2示出了基于线栅偏振器(WGP)的光引擎的现有技术子系统,该光引擎包括LCOS面板、WGP、调整延迟补偿器和预偏振器和后偏振器。图3示出了基于线栅偏振器(WGP)的反射式光引擎的子系统的实施例,该反射式光引擎包括LCOS面板、WGP、倾斜的只有C板的延迟补偿器以及预偏振器和后偏振器。图4限定使用单轴晶体的双折射光率体(uniaxial birefringent indicatrix)结构,在(d)中给定的XYZ坐标系用作(a)A板,(b)C板以及(c)O板,其中器件平面平行于XY面,而Z轴平行于器件法线。图5示出了倾斜的C板的有效快/慢轴的关系,其中C板双折射是负的(a)和正的(b)。图6示出了LCoS的快/慢轴和倾斜的-C板的旋转轴之间的相对方位角,其中倾斜的C板延迟补偿器具有的轴上延迟大于或等于LCoS的A板延迟。图7示出了LCoS的快/慢轴和倾斜的-C板的旋转轴之间的相对方位角,其中倾斜的C板延迟补偿器具有的轴上延迟小于LCoS的A板延迟。图8是在空气中入射角范围处介电-C板延迟器的测量的和设计的净延迟的曲线图。图9是计算出的沿倾斜的-C板元件的倾斜平面的第一、第二和总的双通道净延迟的曲线图。图10是计算出的垂直排列向列(VAN)LCoS的锥光净延迟和慢轴映射(map)的等值线图表,其中LCoS的A板和C板延迟值分别为1.4和250nm(@λ=633nm)。图11是计算出的-110nm的只有C板的延迟器的锥光净延迟和慢轴映射的等值线图表,该延迟器关于45度旋转轴倾斜7度。图12是模拟的关于135°的旋转轴和VAN模式的LCoS面板,层叠倾斜的FBAR-C板以倾斜7°的双通道泄漏密度的等值线图表。图13是模拟的LCoS的A板延迟值的范围内倾斜7°的FBAR-C板和未倾斜的FBAR-C板的性能对比的曲线图。LCoS的慢轴在方位角γ=135°处定向,并且FBAR板围绕γ=45°的方位旋转。图14是模拟的具有旋转轴的变化和极角倾斜的倾斜的FBAR-C板容差的等值线图表。图15是+C板或-C板延迟器的示意图,该+C板或-C板延迟器夹在适当指数的两个楔形棱镜之间,以便制成平行于LCoS器件的补偿器元件排列平面。迭片范围内的C板延迟器的有效旋转轴不可平行于WGP的P偏振或S偏振。图16是+C板延迟器的示意图,该+C板延迟器夹在适当指数的两个楔形棱镜之间,以便制成平行于LCoS器件的补偿器元件排列平面。对一个或两个外表面应用-C板FBAR涂层,以供给总的净-C延迟。迭片范围内的C板延迟器元件的有效旋转轴不可平行于WGP的P偏振或S偏振。图17示出了透射式微显示投影系统,其中一个或多个倾斜的-C板位于入射侧偏振器和出射的交叉偏振检偏器之间,以便充分补偿轴上光线和离轴光线的显示元件延迟。图18(a)中,当观察指向观察者的光束时,对于正方位角,,限定用右手XYZ坐标系(称作“RH-XYZ”),连同逆时针方向(CCW)定律;而图18(b)中,当观察远离观察者的光束时,对于正方位角,,限定用左手XYZ坐标系(称作“LH-XYZ”),连同逆时针方向(CCW)定律。图19是示出了在各局部极大对比度时调整延迟器慢轴的相关取向以及用于具有倾斜-45°的WGP的不同面板定向的快/慢轴的示意图。图20是示出了在各局部极大对比度时调整延迟器慢轴的相对排列以及对于具有倾斜+45°的WGP的不同面板定向的快/慢轴的示意图。图21是相对于主光线倾斜大约20°的-C板延迟器的实验净延迟光谱的曲线图。图22是相对于X-Y平面倾斜大约20°的-C板延迟器的实验净延迟映射的等值线图表。实现平面外倾斜和倾斜的-C板延迟器的所得的慢轴的旋转轴在RH-XYZ坐标系中CCW大约20°处定向。会聚于一点的观察的光锥沿着所有方位角的平面延伸±20°的极角。
优选实施例的详细说明[42]本发明的优选实施例由图3中的例子示出。在中心光学系统300的图示中,非偏振的或部分偏振的,从在先阶段的光导管(或者其它诸如蝇眼阵列的均化器)输出的光锥由预偏振器301线性偏振。该偏振器320的透射轴基本上平行于随后的WGP元件302的透射轴这是P偏振轴。WGP元件以极角310倾斜,其相对于Z轴大约倾斜+45°。在完成双程(double pass),即在调整延迟补偿器(TR)303和VAN-LCoS(LCoS)面板304的非平行阶段往返移动之后,该光束由WGP元件302检测,该面板304的慢轴330在关于X轴的方位角335处定向。由WGP元件的线侧反射的正交偏振,即S偏振偏转至净化偏振器305,该净化偏振器305的透射轴正交于预偏振器。检偏器的偏振如321所示。光学元件303在几个关键方面不同于现有技术的延迟补偿器。光学元件303构成为C板延迟器,与现有技术的光学系统200中更典型的A/-C板延迟器、只有A板的延迟器或双轴延迟器203相反。C板延迟器303与其器件平面排列成直线,该器件平面不平行于LCoS 304的器件平面,然而可以发现现有技术的光学系统200中的相应延迟补偿器203和LCoS 204中该平行排列是很典型的。在光学系统300中,C板延迟补偿器303相对于系统X轴以极角311倾斜排列,相对于系统Y轴以在极角312倾斜排列。这个二维倾斜使得出现旋转轴340,该旋转轴340关于X轴以方位角345取向。旋转轴340平行于LCoS器件平面(也作系统X-Y平面)以及Z轴是关于第一通道(pass)的主光线的传播轴。通过遵守欧拉角旋转定律(关于+X、+Y和+Z轴的CCW旋转的正角),关于X轴和Y轴的有效极角分量能够分别被写作θx=θt×sin(φax)and θy=θt×cos(φax),其中θt是C板延迟器303的全倾斜角,围绕以方位角φax排列的轴在平面外旋转。根据该旋转,C板延迟补偿器303变得不平行于LCoS 304。为了分辨向前对向后倾斜,旋转轴横跨从0°至360°。本发明中的倾斜的C板延迟补偿器必须根据在此示出的XYZ坐标系以二维倾斜。这表示,在中心光学系统300中,倾斜的C板的有效快轴和慢轴必须不与系统的S偏振轴或P偏振轴排列成一条线,即φax≠0°,φax≠±90°和φax≠180°。C板延迟补偿器的倾斜极角θt,可在0.1°至45°的范围内变化,优选0.1°至30°,更优选0.1°至15°。倾斜极角指的是平面外倾斜的大小,正和负极角(分别从LCoS平面向前倾斜和向后倾斜)由旋转轴限定。考虑所设计的C板延迟、额外的Z轴间隔需求以及由倾斜板引起的视差导致的可接受的图像损伤,设置倾斜极角以产生适合大小的净延迟。当在正入射处使用C板延迟补偿器时,由于主要由基板中引起的双折射提供的剩余的净延迟非常低,因此该C板延迟补偿器不具有快/慢轴。在优选的实施例中,补偿器利用-C板延迟器。倾斜的-C板的正旋转轴平行于LCoS面板的快轴定向(典型地关于WGP的入射平面、P平面成±45°的方位角)。当C板延迟器从平行排列向LCoS元件倾斜,下面给出以纳米为单位的净延迟(延迟量)[48] ΓTR(θ)=[σe(θ)-σo(θ)]×dTR, (1)[49]e波和o波的本征型(σe,σo)由以下给定[50]---σe(θ)=no1-sin2(θ)ne2]]>和 (2)[51]---σo(θ)=no1-sin2(θ)no2;---(3)]]>[52]其中ne和no分别是对于波长λ的入射线的非常和寻常指数;光线关于C板器件法线的在空气中以θ极角入射,以及dTR是以纳米为单位的C板延迟厚度。净延迟对+C板具有正号,而对-C板具有负号。图4中示出了对于单轴双折射介质的光学对称性。图4(a)中,描绘了A板延迟器元件,凭此,光轴平行于器件平面(X-Y平面)排列。器件法线平行于Z轴。假定元件的X和Y尺度远远大于沿着Z轴的厚度。图4(b)中示出了C板对称性。光轴平行于器件法线排列。注意已经描绘出了正的单轴双折射,其中非常(e)指数大于寻常(o)指数,并且e波方向沿着Z轴指向。在本发明的优选实施的-C板元件中,指数特征曲线是“圆盘”状的,其e波方向再次沿着Z轴指向。对于一般光轴排列,获得斜对称(O板),如图4(c)中所示。该构造具有平面内(也称作A板)延迟,其快/慢轴平行定向并垂直于X-Y平面上的投影。对于一般O板延迟器元件,平面外(也称作C板)分量也呈现。器件X方向、Y方向和Z方向如图4(d)中的箭头所示。倾斜的C板延迟补偿器的快/慢轴相对于旋转轴的配置由C板延迟的符号决定。这在图5中示出。图5(a)中,-C板55围绕旋转轴51向平面外倾斜,相对于X轴以方位角54(φax)定向。旋转轴51平行于X-Y平面。在倾斜之后,该轴是光学系统300中的主光线的有效慢轴。该倾斜的-C板的快轴50位于倾斜表面上,该倾斜表面偏离慢轴±90°。当该轴投影至X-Y平面时,如果极角倾斜很小,则有效快轴仍然基本垂直于慢轴51。图5(b)中,示出了+C板56中快轴53和慢轴52的配置与-C板55中的配制相反。旋转轴关于X轴生成方位角54。该-C板的慢轴52位于倾斜表面上,该倾斜表面偏离快轴±90°。在带有调整延迟器的LCoS延迟补偿的应用中,理想方案包括将补偿器的有效轴上延迟与LCoS的A板延迟相匹配(称作“匹配值补偿”)。延迟器和LCoS的快/慢轴组是在现有技术中提到的交叉轴处。在将倾斜的-C板延迟器用作补偿器的情况下,如果极角调节为在倾斜的-C板中产生与LcoS的A板中相同的延迟量,则旋转轴(还有补偿器慢轴)基本上平行于LCoS快轴排列。然而,高产量的LCoS引擎装配将需要对补偿器轴上的延迟设置比LCoS的A板延迟更高的值,并依赖相对方位角(LCoS和延迟器)的超频(over-clocking),以最优化图像对比度性能。对延迟补偿领域的技术人员来说,在此注意倾斜的只有C板的补偿器的旋转轴不需要基本上平行或正交于LCoS的快轴排列。对于45°的名义上的LCoS快轴,如果倾斜的C板轴上净延迟的量大于LCoS的A板延迟,则倾斜的只有-C板的元件的慢轴(也作旋转轴)能够关于PBS的P平面“超频(over-clocked)”远离LCoS快轴。超时角(即,从S偏振轴和P偏振轴的平分线的方位偏离角)由下式近似地给出[56]φob≈cos-1(ΓLC/ΓTR)/2, (4)[57]其中,ΓLC是LCoS的A板延迟;ΓTR是由主光线入射时倾斜的C板元件的轴上延迟;并且ΓTR≥ΓLC。该“超值补偿”方案的相关方位角在图6中示出。“超值补偿”意指具有比LCoS的A板延迟65(ΓLC)高的倾斜的-C板的轴上延迟64(ΓTR);由于该相对同位角同步(clocking),对于光往返两个阶段该补偿产生总净延迟~0。为了计算LCoS图像仪的不对称特征(诸如区分VAN模式LC层的正倾斜和负倾斜以及TN模式LC层的入口至出口的扭曲跨度(twist span)),LCoS的慢轴在0°至360°的圆周上单独定义。图6中的例子的LCoS的慢轴66以135°的方位角排列。在名义上的情况下,为得到适当的倾斜极角60而调整倾斜的-C板,其中实现了匹配的C板延迟器的轴上延迟和LCoS的A板延迟,旋转轴能够以+45°的方位角63固定。对于“超值补偿”的情况,极角倾斜比名义上的情况大。此时旋转轴从S偏振轴和P偏振轴的平分线偏转φob,给出了四个局部最优定位,如61和62示出了其中的两个。通过选择方位角的补偿,能够获得较佳的补偿结果,其中所得的补偿器慢轴被定向为更接近WGP的P偏振而不是S偏振。因此,图6中的“第一最佳方案”61相对于“第二最佳方案”62更好。在表1中给出了在所有四个象限之上的任意LCoS慢轴方位的解空间(具体指的是VAN型成像器LC倾斜的正倾斜)。在具有方位角公差δ的光系统中,LCoS慢轴名义上排列在S和P平面的平分线处,其中δ可以是±20°,更优选为±10°,进一步更优选为±5°。该公差角度对由方程式(4)预测的方位角偏移量有小的影响;它是对LCoS A板延迟的cos2(2δ)修正,其中该函数对小角度相当不敏感。对于给定LCoS慢轴排列,两个优选转轴可能不会产生同等的对比效果;这两个优选方案之一对于与+45°和-45°WGP倾斜的两种情况配对可能是最好的(在多面板光引擎的不同颜色通道中)。
表1LCoS对倾斜的-C板延迟补偿器的方位解空间相反地,对于LCoS板,其快/慢轴与±45°方向相排列有小方位角偏差,倾斜的-C板补偿器的转轴可在与LCoS部件的快轴相同的象限内被固定在±45°,假定倾斜方位被控制,这样相对于LCoS板的A板延迟,该倾斜产生较小的轴上延迟。这被称为“低补偿值”方案,由于相对方位角同步(clocking),对于往返穿过两个阶段的光,补偿产生接近零的全部净延迟。在图7中,说明了这种补偿方案的相对方位角。实质上,LCoS板75的剩余延迟ΓLC被用于补偿-C板轴上延迟ΓTR74。LCoS慢轴76和快轴73相关于PBS平板典型地非常接近±45°方位角,因为被实施的电控制双折射(ECB)LC器件必须通过在灰度状态中驱动穿过LCoS单元的电压来产生。然而,LCoS制造过程经常引起慢/快轴与理想“S”和“P”平分线准线的小偏差72(φob)(比如,至多±10°)。“补偿器”和“补偿的”器件的作用可以被翻转正是由于方位角偏差72的存在。围绕转轴71实施-C延迟器的平面外倾斜70,基本上对开S-和P-平面对准。在将倾斜-C板引入LCoS系统的情况下,可以因较小轴上延迟要求而减少倾斜角。因倾斜光学元件的使用而可节省一些空间,也可降低图象质量损伤。倾斜-C板的轴上延迟与LCoS轴偏移量及LCoS A-延迟相关,可通过下列的近似式表示[62]φob≈cos-1(ΓTR/ΓLC)/2, (5)[63]其中,ΓTR和ΓLC与前面定义的相同,只是ΓTR<ΓLC。在匹配值补偿的情况下,双折射补偿器还可以是+C板延迟器,其实施倾斜的转动轴然后将基本上被定位为与面板的慢轴平行的方向。这是因为转动轴成为倾斜的+C板延迟器的快轴。一般而言,+C板的转动轴接近S极化,而不是P极化,以使得到的倾斜+C板的慢轴对准靠近WGP的P平面。表2中列出了在倾斜角处具有+C板延迟器的超过补偿值(over-value-compensation)的一般情况。此外,取决于WGP的排列,两个优选方案不可能产生相同的对比效果,其中的一个可能优于另一个。对于使用+C板延迟补偿器的低于补偿值(under-value-compensation)的情形在这里没有示出。通常,转动轴和LCoS慢轴被定位在同一象限内。
表2LcoS对倾斜的+C板延迟补偿器的方位解空间。在优选实施例中,C板延迟器由在透明基片上的双折射抗发射结构(formbirefringent anti-reflection,FBAR)涂层制造。介电涂层C板利用两种或多种不同折射率材料的一系列交替的薄膜层,以及按照LCoS引擎的反射几何学要求而产生低反射系数的所得到的介电堆。在图8中示出了由介电形成双折射涂层可获得净延迟的例子。在10°入射角(angle of incidence,AOI)处或相当此,-C板延迟补偿器的极化倾斜角θt,可以获得近似2nm轴上延迟,以补偿LCoS显示器。-C板延迟器的理论延迟曲线和实验测量值之间有相当好的一致性。延迟曲线以及因此给定倾斜角度要求的净延迟,可以通过电介质设计任意量身定做。倾斜的-C的轴上和离轴净延迟被实现,如图9所示。“D55”FBAR设计目标是在λ=633nm处,C板延迟为-110nm。该模拟假定,在偏离法线7°几何处安装C板延迟器。λ=633nm的主光射线以7°极化角入射,以及它看到近似1.4nm单通道净延迟。主光线的净延迟在第二通道上加倍。对于正极性AOI光线,第一通道入射(光)以比倾斜角高的AOI照射到倾斜板上,以及净延迟数量比主光线的净延迟大得多。在离开LCoS板的反射情况下,这些光线被折回到与倾斜-C板相对的方位,以使第二通道AOI及因此相对于第一通道,净延迟值被降低。对于第一通道中的负极性AOI光线,会出现类似的双通道折回现象。结果是产生相对于转动轴的自镜像、对称延迟曲线。图9中曲线示出沿单入射平面(对应于-C板延迟器的倾斜平面)的净延迟曲线。在整个观察锥体(例如,在空气中在AOI对LCoS器件法线的达到±12°处的f/2.4LCoS系统)上,LCoS器件的净延迟由于极化和方位视角的作用而改变。相关的慢/快轴也由于视角的作用而改变。然而,需设计具有适当-C延迟且倾斜适于引入合适数量的轴上延迟的倾斜-C板,来匹配对于每个光线角的LCoS净延迟。双通道倾斜-C板的慢轴基本上垂直于LCoS器件的慢轴。图10在(a)中示出LCoS模型的模拟双通道净延迟,及在(b)中示出LCoS模型的慢轴方位,该LCoS模型在=633nm处具有1.4nm A板延迟和250nm C板延迟。法向入射光线的慢轴相对于(w.r.t.)反射观察方向被定向在近似-45°(如图10(b)中所示或相对于透射观察方向为+45°)。这意味,相对于主光线,FBAR-C板的转动轴,其也是它的慢轴必须被排列在相对于RH-XYZ坐标集中的透射观察方向的135°处。这应用于匹配值补偿的标称情形中。相应的净延迟和7°倾斜FBAR-C板中的延迟器慢轴方位分别被示出在图11(a)和(b)中。曲线中的模糊是同时对一个入射面内观察光锥采样的伪影,且将数据转换至矩形样本栅格,用于绘制和锥形加权对比计算。注意的是,倾斜的FBAR-C板的延迟曲线匹配于靠近的LCoS的延迟曲线。FBAR-C板中的慢取向相对于反射观察方向具有法向(nominal)45°(如图11(b)中所示或相对于透射观察方向为-45°)。这意味,在延迟补偿器和LCoS阶段中,整个锥体中的每个光线被交替延迟较多然后较少,或者反之亦然(v.v.),,而与延迟的数量无关。所得的LCoS板黑暗状态是极好的。在图12中给出通过在全反射双通道中的一套交叉偏振光镜的黑暗状态泄漏密度。模仿了~80,000∶1的粗略双通道对比。整个结构的反射也是非常低的。然而,使用倾斜排列的延迟器补偿器,杂散反射光中的仅仅部分被有限系统数值孔径所俘获。假定6,000∶1的基线光系统对比,倾斜-C板和VAN模型LCoS的组合给出大约5,300∶1的完全开至完全关的对比率。只有C板补偿器相对于LCoS板是倾斜的。该板的倾斜引入如由主光线所见的净延迟,其数量用来校正LCoS板的剩余A板延迟。C板上的形成双折射涂层仍旧为离轴性能提供合适的C板校正。这种结构允许仅仅单个C板部件提供轴上和离轴LCoS延迟补偿,以获得高对比度图像。理论模仿和经验测量都确认这种结构产生高对比度。图13中示出的曲线是理论计算,该计算示出由于显示板A板延迟的作用的期望对比率。尽管未倾斜C板补偿适合非常小的LCoS A板延迟(例如,<0.5nm),计算的结果示出对于公共LCoS A板延迟值(至多2nm),通过倾斜排列C板可以获得明显增加的对比度。在这个模仿中,转动轴被固定在45°,以及倾斜角还被固定在板外7°处。C板FBAR涂层设计在630nm波长处具有-110nm C板延迟。在7°倾斜处的轴上延迟近似为1.4nm。因此,只有具有剩余A板延迟~1.4nm的LCoS板可被正确地补偿。然而,可以根据分析看出,可使用单个补偿器以固定倾斜角可明显地补偿大范围的板延迟。用于具有非常高或低的A板延迟(例如,大于2.5nm或小于0.5nm)的板,倾斜必须被调整,或者转动轴必须被改变,或者-C板的值必须被调整,或者三者的组合被调整。本领域技术人员将会意识到,通过当-C板的净延迟对LC装置的A板延迟过度补偿时,倾斜补偿器板和/或转动(也就是顺时针),固定值补偿板可被调整以匹配板延迟。图14中给出略微倾斜的将FBAR-C板配对到VAN模型LCoS的数值容差结果。该图示出对比度的变化,所述对比度作为-C板补偿器板外倾斜度和转动轴的函数。通过调整板的转动,LCoS板的过补偿值(Over-value compensation)可以以固定倾斜角度被优化。在这种LCoS和FBAR设计例子中,使用以7°的板倾斜和以45°的转动(绕LCoS板的快轴转动)可以获得高对比度。以9°板倾斜并绕LCoS快轴的平行排列轴以±25°转动时,获得高对比度。在利用WGP的实际光学系统中,近似20°的优化转动轴同样给出较好的对比度。在这里实施的数值模型中,WGP-PBS被模制成漏偏光器,该漏偏光器具有大约450∶1透射偏振常数和30∶1反射偏振常数。前置偏光器和净化检偏器被模制成偏振常数为1000∶1的部件,该部件被用于以法向入射至圆锥轴。在这些理想情况下,对于给定的LCoS慢轴排列,在四个局部对比最大值(倾斜的C板转动轴的两个方位被定位在两个相邻象限的每个)中每个之间存在有可以忽略不计的差异。在实际光系统中,WGP相关于Z轴被排列在-45°或+45°处,以及除了其主要的二次衰减(diattenuation)功能之外,WGP是具有寄生延迟特性的衍射部件。校验倾斜C板的转动轴的光学排列的快速方法是收集实验对比数据。这里使用的所有方位角(经验的和数值模型)被引用至RH-XYZ坐标系统。在指定装置模型时,RH-XYZ坐标系统被定位为入射束;在考虑到透射场时,RH-XYZ坐标系统被定位为透射束;在考虑到反射或双通过透射场时,RH-XYZ坐标系统被定位为返回束。作为这种惯例的结果,在透射和入射侧的坐标集是彼此一致的,但是反射侧的坐标集相对入射坐标集具有左右镜像性能。在椭圆偏振和延迟的说明中,圆本征偏振(eigenpolarization)的标记号被一致的使用在入射、透射和反射侧中。RH-XYZ坐标系统被示出在图18(a)中。在相对于考虑正面的入射束而指定欧拉角(用于单轴媒质的两个角和用于双轴媒质的三个角)时,坐标轴表示RH-XYZ。在该文献上下文中,各个单轴层的偏振和方位角由(θc,φc)来表示。在从入射侧观察反射(或双通道透射)装置时,通过翻转X轴方向RH-XYZ系统被保持。反射观察的RH-XYZ坐标集等同于如定位入射束的LH-XYZ坐标集(也就是,考虑入射的背面)。这被示出在图18(b)中。在RH-XYZ和LH-XYZ坐标系统(整体定义,如它们均被定位为入射)中,从正向X轴的逆时针(CCW)转动的方位角被定义为正的。例如,这种轴方位被用于描述延迟器的快/慢轴。用于在光锥中阐明观察面,透射观察面与入射面对齐。然而,用于反射(或双通道透射)系统,观察面具有与入射面180°的偏移量(用于360°方位角范围和至90°极角范围)。在已指定的XYZ坐标系统的惯例情况中,倾斜-C板延迟器补偿器的所有可能结构和LCoS方位被表示在图19(a)-(d)中,以用于EGP被相关于Z轴定位在-45的情况中。光系统结构被命名为500、520、540和560。这对应于LcoS SA分别被定位在3象限(504)、1象限(524)、4象限(544)和2象限(564),如被d定位至LH-XYZ坐标系统。该平面的SA方位被假定实质上对分系统的S和P偏振方向(例如,在平分线的10内)。倾斜C板的SA对应于转动轴,以实现平面外倾斜。该轴位于X-Y平面中。类似地,在WDP相关于z轴被定位在+45°时,四种可能的LCoS平面SA方位,连同16个可能的倾斜C板SA方位一起被示出在图20(a)-(d)中。结构600、620、640和660分别是结构500、520、540和560的镜像图像(关于y轴)。结构600、620、640和660的LCoS平面SA方位分别被定位在4象限(604)、2象限(624)、3象限(644)和1象限(664)。注意的是,尽管具有CCW正方位角规定的LH-XYZ坐标系统已经适用于倾斜C板和LCoS慢轴的方位的描述,但是实际上指示的方位表示LCoS装置的光轴相关于RH-XYZ坐标系统倾向Z方向。倾斜的C板延迟补偿器的倾斜面距离转轴又一90°CCW,以及该倾斜面倾斜向+Z轴。在四种可能的倾斜C板方位的每处,系统对比性能已经以各个给定LCoS SA方位(四种之外)和各个WGP方位(两种之外)用实验方法估计。实验使用f/2.4会聚光锥。有32种可能的结构,包括三种部件(WGP、倾斜的C板和LCoS)的方位。在这些实验中,我们实现了结构500s和600s的镜像参数的使用,以及消除16种非独特的结构。以λ=550nm为中心的绿波带被选择。我们期望,在三种颜色波带的每个中,对比率对倾斜的-C板方位的相对依赖是近似相似的(可能在蓝波段略微恶化些)。在这些实验中使用的VAN模式LCoS具有在λ=550nm处的大约2nm的A板和250nm的C板。-C板延迟器以大约20极角倾斜。该设计以-195nm C板延迟单通道为目标。在~20°倾斜处的净延迟在λ=550nm处为大约10.5nm。在图21中示出净延迟分布。在图22中说明以至多20°束锥、在0至360°观察面上的单通道净延迟图。使用PR-705辐射计,收集实验对比结果。在关灯和开灯状态处的强度在绿色波段(λ=490至620nm)被光适应的加权。这些结果被列举在表3中,用于结构500、520、540和560。考虑到光设置的对称性,结构600、620、640和660的实验结果从结构500s中得出。这些对比结果被列表在表4中。对于光学结构500s和600s,在绿波带,没有调整延迟补偿器的相应的板对比率的范围从1200∶1到2300∶1。
表3500s系列光结构在绿波带的实验对比测量结果。
表4600s系列光结构在绿波带的实验对比测量结果。取决于多面板LCoS系统如何被配置,承担倾斜C板慢轴的四个解中任意一个或多个的最佳拾取。作为例子,显示系统销售商想要保持WGP的方位在各个颜色波带中排列的弹性,从而仅仅有一种LCoS慢轴被选择。在这种情形中,倾斜C板延迟器的转动轴是最优的,此时它被排列以与P偏振轴最接近。延迟补偿器的慢轴基本上平行于P偏振轴,用于延迟器净延迟和LCoS A板延迟的大的失谐,这两个定位主射线。以这种方法,两种WGP方案中每个的对比性能的不同被最小化。在各个局部最佳状态的1/8周期中用于倾斜C板的转轴的优化排列空间被列表在表5中,用于所有八个光结构,其取决于LCoS SA方位被分组为四类。
表5层叠有倾斜C板延迟补偿器的VAN-LCoS板的最佳补偿的方位角范围,其中各个方位角范围从最接近P偏振轴展开为几乎45°。引入与S和P偏振平分线的名义上的0.1度偏差。在另一方面,如果给定的彩色信道被配置以与一个WGP方位一起工作,且两个LCoS慢轴方位被提供以用于可比较的对比度性能,将从系列500s和600s内进行选择。作为例子,如果45°和-135°。LCoS慢轴方位均要求用于-45°排列的WGP系统,则可以从结构500和540中选择倾斜C板的最优慢轴定位。根据表3中实验对比入口,分别提供6400∶1和6800∶1对比度的方位507和546为分别用于结构500和540的最优拾取。类似地,可以建立在相邻象限中的用于其它两个慢轴方位的最优C板延迟转动轴。最优解要求C板慢轴被定位以实质上平行于S偏振的选择机会,所述S偏振垂直向上指向光结构500s和垂直向下指向光结构600s。另一情形可包括在最弱对比度通道(典型的蓝通道)处加大对比以及在最优对比通道(典型的绿和红通道)处交换对比,以用于全面的无彩色的黑色状态。因为实质上的贫乏的表现光学装置,特别是交叉偏振器和WGP部件,蓝通道中的对比典型地是差的。在这种情况中,用于蓝通道的C板延迟器将围绕大致上平行于S偏振的轴转动,所述S偏振垂直地向上指向光学结构500s和垂直地向下指向光学结构600s,而蓝和红通道的转动轴将实质上被排列以平行于P偏振(每个光学结构两个选择机会)。相关于C板转动轴的排列的非均等对比性能是WGP部件中双折射的结果。虽然,完整的数值模型是最终目标,但是可以容易地实现对解空间的快速实验确认。对很小的对比值为5000∶1而言,这些对比数的误差和可重复性为大约±200点,也就是±4%。相对对比值明显地超过这个容限,所相对对比值述作为被观察到的倾斜C板的慢轴的函数。其他实施例可包含无机双折射晶体的使用,该晶体被切割为C板。只有C板的延迟被利用,以这种方式还可在微显示成像器的平面内实现适当数量的净延迟,以及提供合适数量的平面外延迟。这种倾斜晶体C板起到与Berek补偿器相同的功能。具有小的负双折射的单晶体板将是合适的(例如,具有Δn=-0.01的单晶体MgF2)。需要的板厚度将在数十微米的范围内,以传递大约200至500nm的-C板延迟。本发明的另一实施例寻求将C板150(例如FBAR涂层板或晶体板)夹持在楔形基片之间。该实施例被示出在图15中。被夹持部件的外表面153基本上是平行的且有AR涂层,以及延迟器组件被排列以大致上平行于LCoS台阶154。这降低了图象质量损伤,因第一通道光束151和第二通道光束152中的视差。在这种情况中,相对于夹持的C板,轴上延迟通过以主光线的非零入射角被引入。+C和-C板可以以这种方式被利用,但是只有-C板能够同时地补偿LCoS黑色板的板内和板外延迟。倾斜+C板的轴上性能可与补偿LCoS的倾斜-C板一样好地被实现。然而,离轴射线将比单独的LCoS板看到更大净延迟。该+C板结构仅仅对非常有限的锥入射角是有用的。示出在图16中的另一实施例,使用嵌入在楔形基片之间的倾斜+C板160,以校正剩余A板延迟,以及-C板在法线入射外表面163上以校正LC平面164内的C板延迟。第一通过束和第二通过束分别被161和162指示。在浸入或非浸入C板延迟器的所有应用中,C板延迟器部件的有效转动轴必须既不平行WGP的P偏振又不平行WGP的S偏振。其慢/快轴被排列以平行于显示器系统的S-和P-面的延迟器部件(倾斜的和不倾斜的)具有轴上延迟效果,其被两种束传播模式的缺少而取消。尽管使用倾斜FBAR-C板的模拟和实验利用反射VAN模式LCoS成像器,所述倾斜FBAR-C板作为微显示投影系统的补偿器的,但倾斜板补偿器也适于透射微显示投影系统。倾斜的-C板延迟器从单个部件中产生轴上延迟和离轴延迟。轴上延迟可被用于取消透射式显示板的剩余A板延迟,诸如TN模式LCD和VAN模式LCD。注意的是,透射显示板近似是其LC层的两倍厚,因此倾斜C板所要求的轴上延迟的数量是显著大的。成像器板和倾斜的-C板补偿器在被用在单通道透射时,很可能面对不对称延迟曲线与锥角的问题。在TN模式板的情况中,在板关闭状态(panel off-state)中的小数量的圆周延迟没有有诸如倾斜-C板的线性延迟器所补偿。将倾斜C板结合在透射光系统中的本发明的实施例被说明在图17中。在锥光400中,从前级光管(或诸如蝇眼阵列之类的其它均衡器)输出的光锥被前置偏振器401线性偏振。这在中偏振器420的传递轴在整个选换上可被随意排列,更通常地在±45°、0°或90°。该说明使用0°偏振入射420。通过前置偏振器的光照射在透射LCD成像器404上。该成像器具有慢轴430,其被排列以相对前置偏振器透射轴以±45°偏离方位角435。然后,光经后检偏器405进入该系统,其透射轴421被排列以垂直于前置偏振器轴420。一级或多级调整延迟补偿器403被插入在前置偏振器401和后检偏器405之间。在成像器之前或成像器之后或两者之后,可以排列调整延迟器部件。至少一个调整延迟器部件利用倾斜安装的只有C板的延迟器。该倾斜的部件被示出在光系统400中,该光系统400被定位在成像器之前。411和412的组合非零倾斜确定440方位角的转动轴。对于倾斜的-C板延迟器,相关联的角度445名义上垂直成像器慢轴435;或者倾斜的+C板延迟器,相关联的角度445名义上平行于成像器慢轴435。延迟补偿的公共实施为过同步(over-clock)C板延迟器慢轴,通过执行过补偿值方案(over-value compensation scheme)从平行或垂直排列至成像器慢轴。如果透射板是VAN式成像器,则必须施加-C板的倾斜,以使在倾斜的-C板处、沿给定锥入射的方位角平面的光线还经历相对正单轴VAN-LC材料的特定轴(e波)的较大角度差,该光线比主光线看到大的AOI。取决于补偿功效,单通道透射系统将产生一些方位角。上面要求还有助于减轻使用倾斜-C板延迟器和倾斜的的LC排列的不理想的效果。如果透射板是扭转向列(TN)成像器,其中总的扭转角小于或等于大约90度,则围绕转动轴必须实施-C板延迟器的倾斜,该转动轴基本上正交于TN扭转角范围的平分线。倾斜的C板延迟的大小和极角倾斜的大小必须被调整,以使倾斜-C板延迟器的锥光偏振仪净延迟图的不对称和TN单元很好地匹配。取决于补偿功效,单通道透射系统将产生某些方位角。上面的要求有助于减轻在黑暗状态中的TN单元内使用倾斜的-C板延迟器和倾斜的的LC排列及扭转的不理想的效果。在上面参考各种示范性实施例,已经描述了本发明。然而,本领域技术人员将会认识到,不脱离本发明的范围可对示范性实施例作出改变和变化。例如,多种部件可被以替换的方式来实施,诸如,例如通过提供其它光学结构或布置。取决于具体应用或考虑到与该系统的工作相关联的因素,这些替换可适当地被选择。此外,这些和其它改变或变化被用于被包含在本发明的范围内,如下面的权利要求书所表达的。总之,公开一种液晶显示投影仪,其包括光源,光照明系统,其用于将有光源发射的光会聚至要求的光路,该光路具有主轴;液晶显示板,其被定位在板平面内且在其中具有慢轴和快轴,用于光调制由光照明系统会聚的光;投影透镜,用于放大和投影由液晶显示板调制的光;第一偏振装置,被设置以接收由光照明系统会聚的光,用于以近似法线入射将具有第一线性偏振轴的第一线性偏振光传递在液晶显示板上;第二偏振装置,被设置以接收由液晶显示板调制的光,用于发射具有第二线性偏振轴的第二线性偏振光,以及输出相同的偏振光给投影透镜;以及具有单轴C对称的延迟补偿板,其相对于倾斜轴成锐角离开板平面,以及被设置在液晶显示板和第一或第二偏振装置之间,其中倾斜轴平行于板平面;其中延迟补偿板的慢轴或快轴与倾斜轴对准;其中倾斜轴被定位于近似平行于液晶显示板的慢轴或快轴;以及其中倾斜轴没有平行于第一和第二线性偏振轴。该液晶显示投影仪可具有透射或反射液晶显示板,具有第一和第二偏振装置,该第一和第二偏振装置被结合进偏振分光器,具有与主轴成大约45度定向的分束表面,分别被设置成透射式和反射式;以及其中第一和第二线性偏振轴是正交的。该液晶显示投影仪可使用硅上垂直排列的向列液晶(VAN-LCoS)板。延迟补偿板可具有成形双折射抗反射涂层,该层具有大量无机透明层,沉积在第一表面和第二表面中至少一个上,具有+C板延迟或-C板延迟。延迟补偿板的倾斜角被调整以实现延迟补偿板补偿延迟的量大于液晶显示板的剩余延迟的量。围绕主轴的倾斜轴的方位角定位被选择,以使在液晶显示板中产生的图像在第二偏振装置的出口侧具有最佳对比度。优选地,延迟补偿板的慢轴与第一线性偏振轴成大约45度或大约135度角。
权利要求
1.一种液晶显示投影仪,包括光源;光照明系统,其用于将所述光源发射的光会聚至要求的光路,该光路具有主轴;液晶显示板,其被定向在板平面内且在其中具有慢轴和快轴,用于光调制由所述光照明系统会聚的光;投影透镜,用于放大和投影由所述液晶显示板调制的光;第一偏振装置,被设置以接收由所述光照明系统会聚的光,用于以近似法线入射将具有第一线性偏振轴的第一线性偏振光传递到所述液晶显示板上;第二偏振装置,被设置以接收由所述液晶显示板调制的光,用于发射具有第二线性偏振轴的第二线性偏振光,以及输出该偏振光给投影透镜;以及具有单轴C对称的延迟补偿板,其相对于倾斜轴成锐角离开板平面,以及被设置在所述液晶显示板和所述第一或第二偏振装置之间,其中所述倾斜轴平行于板平面;其中所述延迟补偿板的慢轴或快轴与所述倾斜轴对准;其中所述倾斜轴被定向于近似平行于所述液晶显示板的慢轴或快轴;以及其中所述倾斜轴不平行于所述第一和第二线性偏振轴。
2.依据权利要求1所述的液晶显示投影仪,其中所述液晶显示板是透射式液晶显示板。
3.依据权利要求1所述的液晶显示投影仪,其中所述液晶显示板是反射式液晶显示板;其中所述第一和第二偏振装置被结合进偏振分光器,具有与主轴成大约45度定向的分束表面,分别被设置成透射式和反射式;以及其中第一和第二线性偏振轴是正交的。
4.依据权利要求3所述的液晶显示投影仪,其中所述液晶显示板是硅上垂直排列的向列液晶(VAN-LCoS)板。
5.依据权利要求1所述的液晶显示投影仪,其中所述延迟补偿板具有成形双折射抗反射涂层,该层具有多个无机透明层,沉积在入口表面和出口表面中至少一个上。
6.依据权利要求5所述的延迟补偿板,其中所述成形双折射抗反射涂层具有+C板延迟或-C板延迟。
7.依据权利要求1所述的液晶显示投影仪,其中所述倾斜角被调整以实现延迟补偿板补偿延迟的量大于液晶显示板的剩余延迟的量。
8.依据权利要求1所述的液晶显示投影仪,其中围绕主轴的倾斜轴的方位角定向被选择,以使在液晶显示板产生的图像在第二偏振装置的出口侧具有最佳对比度。
9.依据权利要求1所述的液晶显示投影仪,其中所述延迟补偿板的慢轴与第一线性偏振轴成大约45度或大约135度角。
10.依据权利要求1所述的液晶显示投影仪,其中所述延迟补偿板被夹在两个楔形棱镜之间,每个楔形棱镜具有约等于所述倾斜角的楔形角,使得所述两个楔形棱镜和所述延迟补偿板形成一个具有平行面的光学元件。
全文摘要
本发明公开了一种C板补偿器,用于在投影显示系统中补偿硅上反射液晶(LCoS)显示或透射液晶(LC)显示中剩余的A板和C板延迟。该C板结合成形双折射涂层,该板的延迟量可通过相对于显示板(X-Y)平面倾斜而被调整。所述倾斜板以预定的大小从显示板的慢轴绕Z轴旋转。标准被描述以用于选择倾斜和转动角,以使由补偿板产生的显示系统的对比度达到最优。
文档编号G03B21/14GK1869762SQ20061008067
公开日2006年11月29日 申请日期2006年5月25日 优先权日2005年5月25日
发明者谭金良, 布雷特·J.·布尔扬斯, 卡伦·丹尼斯·亨德里克斯, 大卫·M.·西蒙, 托马斯·梅尔 申请人:Jds尤尼弗思公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1