光刻掩模板的制作方法

文档序号:14623366发布日期:2018-06-08 03:34阅读:219来源:国知局

本发明涉及一种光刻掩模板的技术领域,尤其涉及一种用于制备微纳米结构的光刻掩模板。



背景技术:

目前,随着对微细结构研究的深入,微细结构可被应用于多个领域,如光学器件的特殊表面、疏水材料、减反射面等。例如在光学器件中,为了提高光的出射效率,一般会在导光板等结构中设置微结构。制备微结构的制作方法主要有光刻法、刻蚀法等。在这些方法中,光刻法由于工艺简单、操作方便、可大面积制备而被广泛使用。然而,一般光刻法中采用塑料、玻璃或金属图案化作掩模,制备得到的微结构尺寸精度低,难以做到纳米级尺寸。



技术实现要素:

有鉴于此,确有必要提供一种可大面积制备、低成本的制备微纳米结构的光刻掩模板。

一种光刻掩模板,其包括:一基板;一图案化铬层,所述图案化铬层覆盖于所述基板的表面;一碳纳米管层,所述碳纳米管层设置于所述图案化铬层远离基板的表面,且所述碳纳米管层中碳纳米管的排列图案与所述图案化铬层的图案相同;一遮盖层,所述遮盖层覆盖于所述碳纳米管层远离基板的表面。

一种采用光刻掩模板制备微纳米结构的方法,其包括以下步骤:提供一第一基板,所述第一基板的表面上设置有一光刻胶层;将一光刻掩模板覆盖至所述光刻胶层的表面,所述光刻掩模板为上述所述的光刻掩模板;采用紫外光照射所述光刻掩模板,并使得该紫外光穿过所述基板及复合层入射至该光刻胶层上,对该光刻胶层进行曝光;对曝光后的光刻胶层进行显影处理。

一种制备光刻掩模板的方法,其包括以下步骤:提供一基板,在所述基板的表面上沉积一金属铬层;将一碳纳米管层设置在所述金属铬层的表面,从而使所述金属铬层的部分表面暴露;以该碳纳米管层为掩模刻蚀所述金属铬层,从而得到一图案化铬层;在所述碳纳米管层远离所述基板的表面上沉积一遮盖层。

相较于现有技术,本发明提供的光刻掩模板采用了碳纳米管和金属铬对紫外光的吸收较强、透过率低的特点,且碳纳米管层中包括多个微孔,当紫外光照射光刻胶时,利用碳纳米管和金属铬与微孔对紫外线的透过率不同,容易制备得到图案化的光刻胶层,继而得到图案化的微纳米结构;采用碳纳米管和金属铬制备的掩模可重复使用,节约成本、易于产业化。

附图说明

图1为本发明第一实施例提供的所述微纳米结构的制备方法的流程图。

图2为本发明采用的碳纳米管拉膜的扫描电镜照片。

图3为本发明采用lift-off剥离方法制备微纳米结构的流程图。

图4为本发明第二实施例提供的所述微纳米结构的制备方法的流程图。

图5为本发明第三实施例提供的所述微纳米结构的制备方法的流程图。

图6为本发明第四实施例提供的所述微纳米结构的制备方法的流程图。

图7为本发明第四实施例提供的光刻掩模板。

图8为本发明第四实施例提供的所述光刻掩模板的制备方法的流程图。

图9为本发明第五实施例提供的所述微纳米结构的制备方法的流程图。

图10为本发明第五实施例提供的光刻掩模板。

图11为本发明第五实施例提供的所述光刻掩模板的制备方法的流程图。

图12为本发明第六实施例提供的所述微纳米结构的制备方法的流程图。

图13为本发明第六实施例提供的光刻掩模板。

图14为本发明第六实施例提供的所述光刻掩模板的制备方法的流程图。

主要元件符号说明

如下具体实施例将结合上述附图进一步说明本发明。

具体实施方式

下面将结合具体实施例,对本发明提供的微纳米结构的制备方法作进一步详细说明。

请参阅图1,本发明第一实施例提供的微纳米结构的制备方法,其包括以下步骤:

步骤S11,提供一第一基板150,所述第一基板150的表面上设置有一光刻胶层160;

步骤S12,将一光刻掩模板100覆盖至所述光刻胶层160的表面,所述光刻掩模板100包括一第二基板110和设置于该第二基板110的表面上的一复合层140;

步骤S13,采用紫外光180照射所述光刻掩模板100,并使得该紫外光180穿过所述第二基板110及复合层140入射至该光刻胶层160上,对该光刻胶层160进行曝光;

步骤S14,从所述光刻胶层160的表面上移除所述光刻掩模板100,对曝光后的光刻胶层进行显影处理,得到一图案化光刻胶微纳米结构170。

在步骤S11中,所述第一基板150的材料不限,可为二氧化硅、氮化硅等材料形成的绝缘基板、金、铝、镍、铬、铜等材料形成的金属基板或者硅、氮化镓、砷化镓等材料形成的半导体基板。本实施例中,所述第一基板150的材料为硅基底。

所述光刻胶层160的种类不限,可为负性光刻胶或正性光刻胶。所述光刻胶层160可为S9912正性光刻胶、SU8负性光刻胶等。该光刻胶层160可通过旋涂的方法直接涂敷于所述第一基板150的表面上。所述光刻胶层160的厚度为50纳米-200纳米。可以理解,所述光刻胶层160的厚度太薄,会使得光刻后的图形对比度下降;所述光刻胶层160的厚度太厚,图形化后的光刻胶容易发生倾倒。本实施例中,所述光刻胶层160的材料为S9912正性光刻胶,厚度为100纳米。

在步骤S12中,所述光刻掩模板100用于提供图案化掩模。具体地,该光刻掩模板100包括至少一第二基板110和设置于该第二基板110的表面上的一复合层140。其中,该复合层140包括一碳纳米管层120和一遮盖层130,所述碳纳米管层120直接设置于所述第二基板110的表面上,所述遮盖层130覆盖于所述碳纳米管层120远离所述第二基板110的表面上。具体地,该遮盖层130连续且直接附着于该碳纳米管层120的表面,所述遮盖层130与该碳纳米管层120结合形成一复合层140。可以理解,所述第二基板110未被所述碳纳米管层120覆盖的部分会被该遮盖层130覆盖,沉积于该碳纳米管层120表面的遮盖层130可将该碳纳米管层120固定于所述第二基板110上。

将所述光刻掩模板100覆盖至所述光刻胶层160的表面,具体地,该光刻掩模板100设置于所述光刻胶层160远离所述第一基板150的表面。可选择地,该光刻掩模板100中所述复合层140与所述光刻胶层160远离第一基板150的表面接触设置,所述第二基板110远离所述光刻胶层160的表面。可选择地,该光刻掩模板100中所述第二基板110与所述光刻胶层160远离第一基板150的表面接触设置,所述复合层140远离所述光刻胶层160的表面。本实施例中,所述复合层140与所述光刻胶层160的表面接触设置,所述第二基板110远离所述光刻胶层160的表面。可以理解,所述复合层140与所述光刻胶层160的表面之间并非完全紧密接触,部分的复合层140与所述光刻胶层160的表面之间可能存在空气。

所述第二基板110起支撑作用,该第二基板110的材料可选择为玻璃、石英等硬性材料,也可选择塑料、树脂等柔性材料。所述柔性材料可为聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰亚胺等。所述第二基板110的材料不限于上述列举材料,只要确保该第二基板110相对于紫外光具有较高的透过率即可,如透过率大于60%。本实施例中,所述第二基板110的材料为石英。

所述碳纳米管层120包括多个碳纳米管,该多个碳纳米管平行于所述碳纳米管层120的表面,在延伸方向上相邻的碳纳米管通过范德华力首尾相连。所述多个碳纳米管通过范德华力紧密连接从而使该碳纳米管层120形成一自支撑结构。所谓自支撑结构是指该结构可以无需一支撑体而保持一特定的膜状结构。因而,所述碳纳米管层120具有自支撑性而可部分悬空设置。所述碳纳米管层120中的碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5纳米~10纳米,双壁碳纳米管的直径为1.0纳米~15纳米,多壁碳纳米管的直径为1.5纳米~50纳米。所述碳纳米管的长度大于50微米。优选地,该碳纳米管的长度为200微米~900微米。

所述碳纳米管层120包括至少一碳纳米管膜、至少一碳纳米管线状结构或其组合。进一步,所述碳纳米管层120可为纯碳纳米管层。所述碳纳米管膜包括多个均匀分布的碳纳米管。该碳纳米管膜中的多个碳纳米管沿一个方向延伸,该多个碳纳米管组成多个碳纳米管束,所述碳纳米管的延伸方向平行于所述碳纳米管膜的表面。具体地,该碳纳米管膜可包括一碳纳米管拉膜。该碳纳米管线可以为一非扭转的碳纳米管线或扭转的碳纳米管线。当所述碳纳米管层120包括多个碳纳米管线时,该多个碳纳米管线相互平行间隔且呈一定角度交叉排列而形成一层状的碳纳米管结构。该层状的碳纳米管结构包括多个微孔,该微孔为一贯穿该层状的碳纳米管结构的厚度方向的通孔。

请参阅图2,具体地,该碳纳米管拉膜包括多个连续且定向排列的碳纳米管束。该多个碳纳米管束通过范德华力首尾相连。每一碳纳米管束包括多个相互平行的碳纳米管,该多个相互平行的碳纳米管通过范德华力紧密结合。该碳纳米管束的直径为10纳米~200纳米,优选的,10纳米~100纳米。该碳纳米管拉膜中的碳纳米管沿同一方向择优取向排列。所述碳纳米管拉膜包括多个微孔。该微孔为一贯穿该层状的碳纳米管结构的厚度方向的通孔。该微孔可为孔隙和/或间隙。当所述碳纳米管层120仅包括单层碳纳米管拉膜时,该碳纳米管拉膜中相邻的碳纳米管片段之间具有间隙,其中,该间隙的尺寸为1纳米~0.5微米。可以理解,在由多层碳纳米管拉膜组成的碳纳米管层120中,相邻两个碳纳米管拉膜中的碳纳米管的排列方向有一夹角α,且0°<α≤90°,从而使相邻两层碳纳米管拉膜中的碳纳米管相互交叉组成一网状结构,该网状结构包括多个孔隙,该多个孔隙均匀且规则分布于碳纳米管层120中,其中,该孔隙直径为1纳米~0.5微米。所述碳纳米管拉膜的厚度为0.01微米~100微米。所述碳纳米管拉膜可以通过拉取一碳纳米管阵列直接获得。所述碳纳米管拉膜的结构及其制备方法请参见范守善等人于2007年2月9日申请的,于2010年5月26日公告的第CN101239712B号中国公告专利“碳纳米管薄膜结构及其制备方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司。为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。

所述非扭转的碳纳米管线包括多个沿该非扭转的碳纳米管线长度方向排列的碳纳米管。具体地,该非扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该非扭转的碳纳米管线长度不限,直径为0.5纳米~100微米。非扭转的碳纳米管线为将碳纳米管拉膜通过有机溶剂处理得到。具体地,将有机溶剂浸润所述碳纳米管拉膜的整个表面,在挥发性有机溶剂挥发时产生的表面张力的作用下,碳纳米管拉膜中的相互平行的多个碳纳米管通过范德华力紧密结合,从而使碳纳米管拉膜收缩为一非扭转的碳纳米管线。该有机溶剂为挥发性有机溶剂,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本实施例中采用乙醇。通过有机溶剂处理的非扭转的碳纳米管线与未经有机溶剂处理的碳纳米管膜相比,比表面积减小,粘性降低。

所述扭转的碳纳米管线为采用一机械力将所述碳纳米管拉膜两端沿相反方向扭转获得。该扭转的碳纳米管线包括多个绕该扭转的碳纳米管线轴向螺旋排列的碳纳米管。具体地,该扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该扭转的碳纳米管线长度不限,直径为0.5纳米~100微米。进一步地,可采用一挥发性有机溶剂处理该扭转的碳纳米管线。在挥发性有机溶剂挥发时产生的表面张力的作用下,处理后的扭转的碳纳米管线中相邻的碳纳米管通过范德华力紧密结合,使扭转的碳纳米管线的比表面积减小,密度及强度增大。

所述碳纳米管线状结构及其制备方法请参见范守善等人于2002年9月16日申请的,于2008年8月20日公告的第CN100411979C号中国公告专利“一种碳纳米管绳及其制造方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司,以及于2005年12月16日申请的,于2009年6月17日公告的第CN100500556C号中国公告专利申请“碳纳米管丝及其制作方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司。为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。

本实施例中,所述碳纳米管层120为两层垂直交叉设置的碳纳米管拉膜,所述碳纳米管拉膜直接从生长好的碳纳米管阵列拉取得到,该碳纳米管层120中的多个碳纳米管通过范德华力首尾相连且沿同一方向排列。

所述碳纳米管层120可以直接设置于所述第二基板110的表面上,即,将所述碳纳米管层120直接平铺于所述第二基板110的表面。由于所述碳纳米管层120具有多个微孔,因而所述第二基板110的表面部分通过该多个微孔暴露出来。

将所述碳纳米管层120设置于所述第二基板110的表面之后,进一步还可以包括一通过溶剂对所述碳纳米管层120进行处理,使所述碳纳米管层120贴附在所述第二基板110表面的步骤。当向所述碳纳米管层120的表面滴加溶剂,所述溶剂会浸润所述碳纳米管层120,并将所述碳纳米管层120与所述第二基板110的表面之间的空气排出。当所述溶剂被去除后,所述碳纳米管层120与所述第二基板110的表面形成紧密的接触。所述溶剂可为水、有机溶剂等。所述有机溶剂为挥发性有机溶剂,如乙醇、甲醇、丙酮、二氯乙烷及氯仿。本实施例中,所述溶剂为乙醇,通过将所述乙醇滴加于所述碳纳米管层120的表面,然后自然风干,使得所述碳纳米管层120紧密贴附于所述第二基板110的表面上。

所述遮盖层130的材料可为金、镍、钛、铁、铝等金属、氧化铝、氧化镁、氧化锌、氧化铪等金属氧化物、或者金属硫化物等中的至少一种。可以理解,所述遮盖层130的材料不限于上述列举材料,还可以为二氧化硅等非金属氧化物等,只要确保该遮盖层130相对于紫外光具有较高的透过率即可,如透过率大于60%。

所述遮盖层130可通过原子层沉积法沉积于所述碳纳米管层120的表面。具体地,在所述碳纳米管层120铺于所述第二基板110表面后,再将该遮盖层130沉积于所述碳纳米管层120的表面,用以将所述碳纳米管层120固定于所述第二基板110的表面。可以理解,所述沉积的方法不限于上述列举的方法,还可以为磁控溅射法、电子束蒸镀法等气相沉积法,只要保证所述遮盖层130能够连续沉积在所述碳纳米管层120的表面并且在沉积的过程中不破坏所述碳纳米管层的结构即可。所述遮盖层130的厚度为5纳米-20纳米。可以理解,所述遮盖层130的厚度过厚如大于20纳米,会严重降低紫外光线的透过率。本实施例中,所述遮盖层的材料为氧化铝,该遮盖层的厚度为5纳米。

进一步,当所述碳纳米管层120为一自支撑结构时,该碳纳米管层120可不通过第二基板110的支撑而与所述遮盖层130形成所述复合层140。这时,该复合层140可单独作为光刻模板使用,而不需要该第二基板110的支撑固定。

在步骤S13中,当紫外光180照射所述光刻掩模板100时,由于所述第二基板110及所述遮盖层130对紫外光具有较高的透过率,紫外光在穿过该第二基板110及遮盖层130时的损失可忽略不计。而由于碳纳米管本身对紫外光的吸收较强,透过率几乎为零,因此紫外光在穿过碳纳米管层120时,照射在碳纳米管结构上的光线几乎全部被吸收,而照射在碳纳米管间的微孔处的光线则会直接穿过碳纳米管层120而不会产生损失。紫外光180穿过所述光刻掩模板100时,会直接照射至所述光刻胶层160的表面上而产生曝光。因此,在所述光刻胶层160的表面上,对应于碳纳米管间的微孔的表面会受到紫外光的照射产生曝光,而对应于碳纳米管结构的表面由于碳纳米管对紫外光的吸收而不会受到紫外光的照射。所述光刻胶层160的曝光时间为2s-7s。本实施例中,所述光刻胶层160的曝光时间为2s。

在步骤S14中,所述光刻胶层160与所述光刻掩模板100的接触仅为物理接触,即所述光刻胶层160与所述光刻掩模板100之间的结合力远小于所述复合层140与所述第二基板110之间的结合力,所以只需对该光刻掩模板100施加远离光刻胶层160表面的作用力,即可使得所述光刻掩模板100与所述光刻胶层160分离开,且不会破坏所述光刻掩模板100的本身结构。所述光刻掩模板100在从所述光刻胶层160的表面分离后,由于整体结构不会被破坏,因此,该光刻掩模板100仍可重新被用作掩模模板,即可反复用于步骤S12-S13中。

将曝光后的光刻胶层160进行显影处理,具体方法为:将曝光后的光刻胶层160置于一显影溶液中一段时间,所述显影液为含0.4%的NaOH+1%的NaCl溶液,所述光刻胶层160在显影液中显影时间为20s。其中,所述显影液不限于上述一种,只要满足光刻胶显影即可。所述显影时间根据显影液成分、浓度等确定。所述显影液的成分可为NaOH溶液和NaCl溶液的混合溶液,所述混合溶液中NaOH的质量含量为0.2%-1%,NaCl的质量含量为0.5%-2%。该光刻胶层160显影处理后,得到一图案化的光刻胶微纳米结构170。可以理解,所述光刻胶微纳米结构170所形成的图形,与所述复合层140在第一基板150正向投影所形成的图形是一致的。因此,通过显影处理得到的所述光刻胶微纳米结构170包括多个凸条结构及相邻凸条之间的多个微孔,所述微孔为孔隙或间隙。所述凸条的宽度尺寸及所述微孔的直径尺寸与所述复合层140中碳纳米管的直径及微孔有关。所述微孔的直径尺寸是指孔隙的孔径尺寸或间隙的间隔尺寸。该多个微孔基本为贯穿于整个光刻胶微纳米结构170的厚度方向上的通孔,所述微孔及凸条的厚度尺寸与所述光刻胶层160的厚度一致。所述光刻胶微纳米结构170中所述凸条的宽度为20纳米~200纳米,所述微孔的直径尺寸为20纳米~300纳米。

请参阅图3,进一步,根据上述制备得到图案化的光刻胶微纳米结构170,还可进一步制备由其它非光刻胶材料形成的微纳米结构152。具体地,可通过lift-off剥离方法、刻蚀或其组合等方法在所述第一基板150表面制备得到微纳米结构152。可以理解,通过图案化的光刻胶微纳米结构170制备微纳米结构152的方法不限于此,只要能够得到相应的图案化的微纳米结构即可。本实施例中,采用lift-off剥离方法制备得到微纳米结构152。

具体地,采用lift-off剥离方法制备得到微纳米结构152的方法包括以下步骤:一、在所述光刻胶微纳米结构170远离第一基板150的表面及第一基板150暴露的表面上沉积一预制层190;二、将整体结构浸入丙酮,去除该光刻胶微纳米结构170,在所述第一基板150的表面上得到图案化的微纳米结构152。

在步骤一中,所述预制层190可为金、银、铝、镍、铬、铜等金属材料,也可为二氧化硅、氮化硅等绝缘材料或者硅、氮化镓、砷化镓等半导体材料。可以理解,所述预制层190的材料不限于此,只需在步骤二中满足不与丙酮发生反应即可。所述预制层190可通过磁控溅射法、蒸镀法、CVD等方法沉积形成。在制备预制层190时,所述预制层190被沉积于所述光刻胶微纳米结构170远离第一基板150的表面上及第一基板150暴露的表面上,且覆盖于所述光刻胶微纳米结构170上的预制层190是不连续的,以使得在后续步骤二中丙酮可与所述光刻胶微纳米结构170直接接触并反应。本实施例中,所述预制层190的材料为铝,所述预制层190通过蒸镀法沉积而成。

在步骤二中,由于所述光刻胶微纳米结构170为图案化的光刻胶,且该光刻胶微纳米结构170的两侧面未被所述预制层190完全覆盖,当浸入丙酮后,丙酮会与光刻胶反应,从而去除光刻胶。这时,覆盖于所述光刻胶微纳米结构170远离第一基板150的表面上的预制层材料也会随之被去掉。因此,步骤一中在第一基板150暴露的表面上沉积的预制层材料,即形成为图案化的微纳米结构152。本实施例中,所述碳纳米管层120为两层垂直交叉设置的碳纳米管拉膜时,从而得到的图案化的微纳米结构152为垂直交叉的条形结构,设所述条形结构在垂直于延伸方向上的宽度为l。所述微纳米结构152的条形结构的尺寸l大小为20纳米~200纳米,在垂直于条形结构的延伸方向上相邻的两个宽度之间的间距为20纳米~300纳米。所述微纳米结构152的厚度可根据预制层190的厚度决定。

可选择地,所述微纳米结构152也可通过刻蚀的方法形成。具体地,将所述光刻胶微纳米结构170为模板,干法刻蚀被暴露的第一基板150的表面。所述干法刻蚀是指通入一气体在电场作用下得到一等离子体,该等离子体可与被刻蚀物质发生反应而得到挥发性物质,比如:等离子体刻蚀、反应性离子刻蚀(RIE)。

具体地,在刻蚀所述第一基板150的过程中,所述刻蚀气体与被暴露的第一基板150的部分发生化学反应,而并不与光刻胶微纳米结构170发生化学反应或者与光刻胶微纳米结构170发生化学反应的速度和程度远远小于刻蚀气体与第一基板150发生的化学反应。由于光刻胶微纳米结构170与所述第一基板150的表面紧密结合,因而该第一基板150被所述光刻胶微纳米结构170覆盖的表面所形成的图形,与所述光刻胶微纳米结构170的图形一致。即最后得到的图案化的微纳米结构152的整体图案与所述光刻胶微纳米结构170的整体图案基本相一致。

进一步,在刻蚀完成后可包括一去除所述光刻胶微纳米结构170的步骤。所述去除光刻胶微纳米结构170的方法不限,可为超声法、撕除法、氧化法等。本实施例中,采用超声法去除所述光刻胶微纳米结构170。

请参阅图4,本发明第二实施例提供的微纳米结构的制备方法,其包括以下步骤:

步骤S21,提供一第一基板150,所述第一基板150的表面上设置有一光刻胶层160;

步骤S22,将一光刻掩模板200覆盖至所述光刻胶层160的表面,所述光刻掩模板200包括至少两个第二基板110和分别设置于每个第二基板110的表面上的一复合层140;

步骤S23,采用紫外光180照射所述光刻掩模板200,并使得该紫外光180穿过所述第二基板110及复合层140入射至该光刻胶层160上,对该光刻胶层160进行曝光;

步骤S24,从所述光刻胶层160的表面上移除所述光刻掩模板200,对曝光后的光刻胶层160进行显影处理,得到一图案化光刻胶微纳米结构170。

本发明第二实施例提供的微纳米结构的制备方法与第一实施例提供的微纳米结构的制备方法基本相同,其区别在于,第二实施例中,所述光刻掩模板200包括多个第二基板110和多个复合层140,其中,每个第二基板110及设置于该第二基板110的表面上的该复合层140可看作为一光刻掩模板单元,即该光刻掩模板200包括多个光刻掩模板单元。所述多个光刻掩模板单元层叠设置,所述光刻掩模板单元中的碳纳米管可为沿一个方向平行排列,也可沿多个方向交叉排列。

所述光刻掩模板200的掩模图案可通过选择具有不同排列碳纳米管的光刻掩模板单元来调节,以满足不同的图案形状及尺寸需求。具体地,若所述光刻掩模板200的掩模图案为网络交叉图案,则该掩模图案可通过直接选择具有交叉排列碳纳米管的光刻掩模板单元得到;也可选择两个具有沿同一方向排列的碳纳米管的光刻掩模板单元,再将两光刻掩模板单元层叠设置,并使得两光刻掩模板单元中的碳纳米管呈交叉排列,交叉的角度可根据需要选择。若所述光刻掩模板200的掩模图案为间隔距离为l的条状图案,可选择两个间隔距离分别为2l的平行排列的碳纳米管的刻掩模板单元,再将两刻掩模板单元层叠设置,并保持重叠后的掩模图案的投影为间隔距离为l的条状图案。

请参阅图5,本发明第三实施例提供的微纳米结构的制备方法,其包括以下步骤:

步骤S31,提供一第一基板150,所述第一基板150的表面上设置有一光刻胶层160;

步骤S32,将一光刻掩模板300覆盖至所述光刻胶层160的表面,所述光刻掩模板300包括层叠设置的一第二基板110、一第三基板109以及夹在两基板之间的的一碳纳米管层120;

步骤S33,采用紫外光180照射所述光刻掩模板300,并使得该紫外光180穿过所述光刻掩模板300入射至该光刻胶层160上,对该光刻胶层160进行曝光;

步骤S34,从所述光刻胶层160的表面上移除所述光刻掩模板300,对曝光后的光刻胶层进行显影处理,得到一图案化光刻胶微纳米结构170。

本发明第三实施例提供的微纳米结构的制备方法与第一实施例提供的微纳米结构的制备方法基本相同,其区别在于,在第三实施例中,所述光刻掩模板300包括层叠的两基板110、109及设置于两基板之间的碳纳米管层120。所述第三基板109所起的作用与第二基板110相同,所述第三基板109的材料可选择与所述第二基板的材料相同。将所述碳纳米管层120设置于第二基板110、一第三基板109之间并接触设置,以使得所述第二基板110和第三基板109对所述碳纳米管层120起到固定、夹持的作用。其中,所述碳纳米管层120被牢固固定于两基板之间,并在该碳纳米管层所在平面上以及垂直于该平面的方向上均不会移动。所述光刻掩模板300的结构制备简单,不需要通过沉积遮盖层的步骤,即可得到具备固定碳纳米管层的光刻掩模板。

请参阅图6,本发明第四实施例提供的微纳米结构的制备方法,其包括以下步骤:

步骤S41,提供一第一基板150,所述第一基板150的表面上设置有一光刻胶层160;

步骤S42,将一光刻掩模板400覆盖至所述光刻胶层160的表面,所述光刻掩模板400包括一第二基板110、一第一图案化铬层122、一碳纳米管层120以及一遮盖层130;

步骤S43,采用紫外光180照射所述光刻掩模板400,并使得该紫外光180穿过所述光刻掩模板400入射至该光刻胶层160上,对该光刻胶层160进行曝光;

步骤S44,从所述光刻胶层160的表面上移除所述光刻掩模板400,对曝光后的光刻胶层进行显影处理,得到一图案化光刻胶微纳米结构170。

本发明第四实施例提供的微纳米结构的制备方法与第一实施例提供的微纳米结构的制备方法基本相同,其区别在于,该第四实施例中所述光刻掩模板400包括一第二基板110、一第一图案化铬层122、一碳纳米管层120以及一遮盖层130。其中,所述第一图案化铬层122的图案与所述碳纳米管层120的图案一致且重合。可以理解,所述光刻掩模板400也可作为一光刻掩模板单元,多个光刻掩模板单元组合使用。由于金属铬对紫外光的吸收率较高,因此,所述第一图案化铬层122可使得所述光刻掩模板400对紫外光的吸收效果更好。同时,由于该第一图案化铬层122与所述碳纳米管层120的图案重合,紫外光在穿过掩模板时,设置碳纳米管、第一图案化铬层的位置与未设置碳纳米管、第一图案化铬层的位置处对紫外光的吸收率差距增大,从而使用该光刻掩模板400制备的微纳米结构的精度更高。

请参阅图7,本发明第四实施例的光刻掩模板400包括:一第二基板110;一第一图案化铬层122,覆盖于所述第二基板110的表面;一碳纳米管层120,所述碳纳米管层120设置于所述第一图案化铬层122远离第二基板110的表面,且所述碳纳米管层120中碳纳米管的排列图案与所述第一图案化铬层122的图案相同;一遮盖层130,所述遮盖层130覆盖于所述碳纳米管层120远离第二基板110的表面。

具体地,该遮盖层130连续且直接覆盖于该碳纳米管层120的表面。所述碳纳米管层120中碳纳米管的排列图案与所述第一图案化铬层122的图案相同,该遮盖层130同时覆盖于所述碳纳米管层120与所述第一图案化铬层122上。可以理解,所述第二基板110未被所述碳纳米管层120及第一图案化铬层122覆盖的部分会被该遮盖层130覆盖,沉积于该碳纳米管层120表面的遮盖层130可将该碳纳米管层120固定于所述第二基板110上。

本发明第四实施例提供的光刻掩模板400与第一实施例提供的光刻掩模板100基本相同,其区别在于,所述光刻掩模板400中,在所述碳纳米管层120与第二基板110之间设置了一第一图案化铬层122。其中,所述第一图案化铬层122的图案与碳纳米管排列形成的图案一致。由于金属铬对紫外光的吸收率较高,所述第一图案化铬层122与所述碳纳米管层120共同作为掩模,对紫外光的吸收效果更好。因此,在对应碳纳米管的位置与碳纳米管空隙的位置处接收紫外光的强度差别更加明显,从而在采用所述光刻掩模板400制备微纳米结构时,得到的微纳米结构的尺寸精度更高。进一步,当采用金属铬与碳纳米管共同作为掩模时,紫外光照射掩模时不容易发生散射,从而制备的微纳米结构的精度更高。

请参阅图8,本发明第四实施例进一步提供制备所述光刻掩模板400的方法,其包括以下步骤:

步骤S51,提供一第二基板110,在所述第二基板110的表面上沉积一金属铬层121;

步骤S52,将一碳纳米管层120设置在所述金属铬层121的表面,从而使所述金属铬层121的部分表面暴露;

步骤S53,以该碳纳米管层120为掩模刻蚀所述金属铬层121,从而得到一第一图案化铬层122;

步骤S54,在所述碳纳米管层120远离所述第二基板110的表面上沉积一遮盖层130。

在步骤S51中,所述第二基板110与前述实施例中所述第二基板110描述相同。在所述第二基板110的表面上沉积所述金属铬层121的方法不限,可采用电子束蒸发、离子束溅射、原子层沉积、磁控溅射、蒸镀、化学气相沉积等方式。所述金属铬层121连续沉积于所述第二基板110的表面,该金属铬层121的厚度为10-50纳米。本实施例中,该金属铬层121通过蒸镀沉积于所述第二基板110的表面,且该金属铬层121的厚度为20纳米。

在步骤S52中,所述碳纳米管层120与前述实施例中所述的碳纳米管层120相同,对所述碳纳米管层120的处理方法与前述实施例中相同。从而使所述碳纳米管层120贴附于所述金属铬层121上,所述金属铬层121表面对应于所述碳纳米管层120空隙的位置暴露出来。

在步骤S53中,所述刻蚀方法与前述实施例中刻蚀第一基板150的刻蚀方法相同。其中,刻蚀的气体及参数根据刻蚀基板的材料而定,只要保证所述金属铬层121被刻蚀得到所述第一图案化铬层122且所述碳纳米管层120不与刻蚀气体反应即可,因此制备得到的所述第一图案化铬层122的图案与所述碳纳米管层120中碳纳米管排列的图案一致。

在步骤S54中,所述遮盖层130的制备方法与上述实施例中所述遮盖层130的制备方法相同。该遮盖层130连续且直接附着于该碳纳米管层120的表面,并同时覆盖所述第一图案化铬层122,将该碳纳米管层120固定于所述第二基板110上。

请参阅图9,本发明第五实施例提供的微纳米结构的制备方法,其包括以下步骤:

步骤S61,提供一第一基板150,所述第一基板150的表面上设置有一光刻胶层160;

步骤S62,将一光刻掩模板500覆盖至所述光刻胶层160的表面,所述光刻掩模板500包括一第二基板110、一第一图案化铬层122、一碳纳米管层120以及一遮盖层130;

步骤S63,采用紫外光180照射所述光刻掩模板500,并使得该紫外光180穿过所述光刻掩模板500入射至该光刻胶层160上,对该光刻胶层160进行曝光;

步骤S64,从所述光刻胶层160的表面上移除所述光刻掩模板500,对曝光后的光刻胶层进行显影处理,得到一图案化光刻胶微纳米结构170。

本发明第五实施例提供的微纳米结构的制备方法与第四实施例提供的微纳米结构的制备方法基本相同,其区别在于,第五实施例的所述光刻掩模板500中,所述第一图案化铬层122覆盖于所述碳纳米管层120远离第二基板110的表面上。所述第一图案化铬层122的图案与所述碳纳米管层120的图案一致且重合。由于所述第一图案化铬层与所述碳纳米管层对紫外光的吸收率较高,因此,所述光刻掩模板500作为掩模制备的微纳米结构的精度更高。

请参阅图10,本发明第五实施例的所述光刻掩模板500,其包括:一第二基板110;一碳纳米管层120,所述碳纳米管层120设置于所述第二基板110的表面;一第一图案化铬层122,覆盖于所述碳纳米管层120远离第二基板110的表面,且所述第一图案化铬层122的图案与所述碳纳米管层120中碳纳米管的排列图案相同;一遮盖层130,所述遮盖层130覆盖于所述第一图案化铬层122远离第二基板110的表面。

本发明第五实施例提供的光刻掩模板500与第四实施例提供的光刻掩模板400基本相同,其区别在于,第五实施例中,所述第一图案化铬层122覆盖于所述碳纳米管层120远离第二基板110的表面上。由于所述第一图案化铬层122的图案与所述碳纳米管层120中碳纳米管的排列图案一致且重合,从而在采用所述光刻掩模板500制备微纳米结构时,得到的微纳米结构的尺寸精度较高。

请参阅图11,本发明第五实施例进一步提供制备所述光刻掩模板500的方法,其包括以下步骤:

步骤S71,提供一第四基板101,在所述第四基板101的表面上设置一碳纳米管层120;

步骤S72,在所述碳纳米管层120远离所述第四基板101的表面沉积一金属铬层121,所述金属铬层121包括一第一图案化铬层122和一第二图案化铬层123,所述第一图案化铬层122沉积于碳纳米管层的碳纳米管表面,所述第二图案化铬层123沉积在对应于碳纳米管层空隙暴露的第四基板101的表面;

步骤S73,将沉积第一图案化铬层122的碳纳米管层120从所述第四基板101的表面转移至一第二基板110的表面,并使该碳纳米管层120与所述第二基板110的表面接触设置;

步骤S74,在所述第一图案化铬层122远离所述第二基板110的表面上沉积一遮盖层130。

在步骤S72中,在所述碳纳米管层120的表面沉积金属铬层121时,当所述金属铬层121的厚度小于所述碳纳米管层120的厚度时,该金属铬层121为非连续结构,分成间隔设置的一第一图案化铬层122和一第二图案化铬层123。其中,所述第一图案化铬层122仅覆盖于碳纳米管的表面,而所述第二图案化铬层123则覆盖于第四基板101的部分表面,该部分表面对应于碳纳米管间的空隙处。

在步骤S73中,由于所述金属铬层121为一非连续的层状结构,因此,表面沉积有第一图案化铬层122的碳纳米管层120可直接从所述第四基板101的表面脱离。同时,当所述第二图案化铬层与所述第四基板的结合力大于所述第二图案化铬层与所述第一图案化铬层或碳纳米管层的结合力时,在所述第一图案化铬层与碳纳米管层转移后,所述第二图案化铬层的结构不会受到破坏并保持不变,因此,表面沉积有第二图案化铬层123的第四基板101也可作为光刻掩模板使用。

请参阅图12,本发明第六实施例提供的微纳米结构的制备方法,其包括以下步骤:

步骤S81,提供一第一基板150,所述第一基板150的表面上设置有一光刻胶层160;

步骤S82,将一光刻掩模板600覆盖至所述光刻胶层160的表面,所述光刻掩模板600包括一第二基板110、一碳纳米管复合结构141,以及一遮盖层130;

步骤S83,采用紫外光180照射所述光刻掩模板600,并使得该紫外光180穿过所述光刻掩模板600入射至该光刻胶层160上,对该光刻胶层160进行曝光;

步骤S84,从所述光刻胶层160的表面上移除所述光刻掩模板600,对曝光后的光刻胶层进行显影处理,得到一图案化光刻胶微纳米结构170。

本发明第六实施例提供的微纳米结构的制备方法与第四实施例提供的微纳米结构的制备方法基本相同,其区别在于,所述光刻掩模板600中所述碳纳米管复合结构141设置于所述第二基板110的表面,所述碳纳米管复合结构141包括一碳纳米管层120及包裹于该碳纳米管层120的一金属铬层121,具体地,所述金属铬层将所述碳纳米管层中的每一个碳纳米管完全包覆。

本发明提供的所述微纳米结构的制备方法,采用了碳纳米管和金属铬对紫外光的吸收较强、透过率低的特点,且碳纳米管层中包括多个微孔,当紫外光照射光刻胶时,利用碳纳米管、金属铬与微孔对紫外线的透过率不同,可容易制备得到图案化的光刻胶层,继而得到图案化的微纳米结构;通过沉积遮盖层将碳纳米管层固定于第二基板上作为一整体结构,当紫外光照射时作为掩模遮挡,照射结束后可整体移开,拆卸方便,并能反复使用、节约成本,相较于直接采用碳纳米管本身作为掩模更便捷简单、可重复利用,可大面积生产制备。

请参阅图13,本发明第六实施例提供一种光刻掩模板600,其包括:一第二基板110;一碳纳米管复合结构141,设置于所述第二基板110的表面,所述碳纳米管复合结构141包括一碳纳米管层120及包裹于该碳纳米管层120的一金属铬层121;一遮盖层130,所述遮盖层130覆盖于所述碳纳米管复合结构141远离第二基板110的表面。

本发明第六实施例提供的光刻掩模板600与第五实施例提供的光刻掩模板500基本相同,其区别在于,第六实施例中,所述金属铬层121仅包裹于所述碳纳米管层120中碳纳米管的表面上,且碳纳米管间的空隙不被金属铬层121掩盖。由于金属铬仅包裹于碳纳米管的表面,由此形成的所述光刻掩模板600在制备微纳米结构时,得到的微纳米结构的尺寸精度较高。

请参阅图14,本发明第六实施例进一步提供制备所述光刻掩模板600的方法,其包括以下步骤:

步骤S91,提供一碳纳米管复合结构141,该碳纳米管复合结构141包括一碳纳米管层120及包裹于该碳纳米管层120表面的一金属铬层121;

步骤S92,提供一第二基板110,将所述碳纳米管复合结构141设置于所述第二基板110的表面上,并使所述第二基板110的部分表面暴露;

步骤S93,在所述碳纳米管复合结构141远离所述第二基板110的表面上沉积一遮盖层130。

本发明第六实施例提供的光刻掩模板600的制备方法与第五实施例提供的光刻掩模板500的制备方法基本相同,其区别在于,第六实施例中,金属铬将所述碳纳米管层120中的碳纳米管的整个表面全部包裹。在使用所述光刻掩模板600制备微纳米结构时,当紫外光穿过该光刻掩模板600时会两次穿过金属铬层,从而使得图案化的结构对紫外光的吸收效果更好。

另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1