摄像光学镜头的制作方法

文档序号:12715562阅读:373来源:国知局
摄像光学镜头的制作方法与工艺
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
:近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(ChargeCoupledDevice,CCD)或互补性氧化金属半导体器件(ComplementaryMetal-OxideSemicondctorSensor,CMOSSensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式透镜结构逐渐出现在镜头设计当中,但是,常见的五片式透镜虽然能够修正光学系统大部分光学像差,但是无法在具有良好成像品质的同时兼顾高像素和大像高的优点。技术实现要素:针对上述问题,本发明的目的在于提供一种摄像光学镜头,其在具有良好成像品质的同时兼顾高像素和大像高的优点。为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,由物侧至像侧依序包括:一光圈,一具有正屈折力的第一透镜,一具有负屈折力的第二透镜,一具有正屈折力的第三透镜,一具有正屈折力的第四透镜,一具有负屈折力的第五透镜;整体摄像光学镜头的焦距为f、光学总长为TTL,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2、折射率为n2、阿贝数为v2,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第五透镜的焦距为f5、折射率为n5,所述第二透镜的物侧面中心曲率半径为r3,所述第三透镜的像侧面中心曲率半径为r6,所述第二透镜的轴上厚度为d3,所述第四透镜的轴上厚度为d7,满足下列关系式:0.75<f1/f<0.82,-2.0<f2/f<-1.9,-7<f3/f<-6,0.54<f4/f<0.56,-0.48<f5/f<-0.45;11<v2/n2<14,1.15<n2/n5<1.25,0.03<d3/TTL<0.035,0.17<d3/d7<0.19;13<(r3-r6)/(r3+r6)<20。本发明实施方式相对于现有技术而言,通过上述透镜的配置方式,不仅可以能够修正光学系统大部分光学像差,还能同时兼顾高像素和大像高的优点。另外,所述第一透镜的焦距f1,所述第二透镜的焦距f2,所述第三透镜的焦距f3,所述第四透镜的焦距f4,所述第五透镜的焦距f5,满足下列关系式:2.9<f1<3.1,-8<f2<-7,-26<f3<-24,2.0<f4<2.2,-1.85<f5<-1.75。另外,所述第一透镜的折射率n1,所述第二透镜的折射率n2,所述第三透镜的折射率n3,所述第四透镜的折射率n4,以及所述第五透镜的折射率n5满足下列关系式:1.57<n1<1.59,1.8<n2<1.9,1.65<n3<1.68,1.53<n4<1.55,1.52<n5<1.55。另外,所述第一透镜的阿贝数v1,所述第二透镜的阿贝数v2,所述第三透镜的阿贝数v3,所述第四透镜的阿贝数v4,所述第五透镜的阿贝数v5满足下列关系式:57<v1<62,22<v2<25,20<v3<22,55<v4<57,55<v5<58。另外,摄像光学镜头的光学总长度小于或等于4.42毫米。另外,摄像光学镜头的光圈数小于或等于2.0。另外,所述第二透镜的轴上厚度为d3,所述第三透镜的轴上厚度为d5,满足下列关系式:0.6<d3/d5<0.7。另外,所述第一透镜和第二透镜的材质为玻璃,所述第三透镜、第四透镜和第五透镜的材质为塑料。附图说明图1是本发明的摄像光学镜头的第一实施方式的结构示意图;图2是图1所示摄像光学镜头的轴上色差示意图;图3是图1所示摄像光学镜头的倍率色差示意图;图4是图1所示摄像光学镜头的场曲及畸变示意图;图5是本发明的摄像光学镜头的第二实施方式的结构示意图;图6是图5所示摄像光学镜头的轴上色差示意图;图7是图5所示摄像光学镜头的倍率色差示意图;图8是图5所示摄像光学镜头的场曲及畸变示意图。具体实施方式为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。参考附图,本发明提供了一种摄像光学镜头。图1所示为本发明第一实施例的摄像光学镜头10,该摄像光学镜头10包括五个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈St、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、以及第五透镜L5。第五透镜L5和像面Si之间可设置有滤光片GF等光学元件。第一透镜L1具有正屈折力,其能够有效减少系统长度,其物侧面向外凸出为凸面,光圈St设置于被摄物与第一透镜L1之间。第二透镜L2具有负屈折力,本实施例中,第二透镜L2的像侧面为凹面。第三透镜L3具有负屈折力,本实施例中,第三透镜L3的物侧面为凹面、像侧面为凸面。第四透镜L4具有正屈折力,本实施例中,第四透镜L4的物侧面为凹面、像侧面为凸面。第五透镜L5具有负屈折力,其能够能够有效减少系统场曲,本实施例中,第五透镜L5的物侧面为凹面、像侧面为凹面。在此,定义整体摄像光学镜头10的焦距为f、光学总长为TTL,所述第一透镜L1的焦距为f1,所述第二透镜L2的焦距为f2、折射率为n2、阿贝数为v2,所述第三透镜L3的焦距为f3,所述第四透镜L4的焦距为f4,所述第五透镜L5的焦距为f5、折射率为n5,所述第二透镜L2的物侧面中心曲率半径为r3,所述第三透镜L3的像侧面中心曲率半径为r6,所述第二透镜L2的轴上厚度为d3,所述第四透镜L4的轴上厚度为d7,所述f、f1、f2、f3、f4、f5,v2、n2,n5,r3,r6,d3以及d7满足下列关系式:0.75<f1/f<0.82,-2.0<f2/f<-1.9,-7<f3/f<-6,0.54<f4/f<0.56,-0.48<f5/f<-0.45;11<v2/n2<14,1.15<n2/n5<1.25,0.03<d3/TTL<0.035,0.17<d3/d7<0.19;13<(r3-r6)/(r3+r6)<20。当本发明所述摄像光学镜头10的焦距、各透镜的焦距、折射率、轴上厚度、曲率半径以及阿贝系数满足上述关系式时,可以控制/调整各透镜的屈折力大小配置,在修正光学系统大部分光学像差的同时,满足高像素和大像高的设计需求,并且所述摄像光学镜头10为大相对孔径光学系统,能够有效提高低照度环境下的成像性能。具体的,本发明实施例中,所述第一透镜的焦距f1,所述第二透镜的焦距f2,所述第三透镜的焦距f3,所述第四透镜的焦距f4,所述第五透镜的焦距f5可以设计成为满足下列关系式:2.9<f1<3.1,-8<f2<-7,-26<f3<-24,2.0<f4<2.2,-1.85<f5<-1.75,单位:毫米(mm)。如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。优选的,本发明实施例的所述摄像光学镜头10的光学全长TTL≤4.42毫米。如此设计,更利于实现摄像光学镜头10的小型化设计。另外,第二透镜的轴上厚度为d3,第三透镜的轴上厚度为d5,满足下列关系式:0.6<d3/d5<0.7。如此设置,可使第二透镜和第三透镜具有最佳的厚度,有利于摄像光学镜头10的组装。优选的,本发明实施例中,摄像光学镜头的光圈数小于或等于2.0,从而实现系统的大光圈设计。本发明的摄像光学镜头10中,各透镜的材质可为玻璃或塑胶,若透镜的材质为玻璃,则可以增加本发明光学系统屈折力配置的自由度,若透镜材质为塑胶,则可以有效降低生产成本。本发明实施例中,第一透镜L1和第二透镜L2为玻璃透镜,可以有效降低温度对摄像光学镜头10性能的影响,所述第三透镜L3、第四透镜L4和第五透镜L5为塑胶透镜。进一步的,在本发明的优选实施例中,所述第一透镜的折射率n1,所述第二透镜的折射率n2,所述第三透镜的折射率n3,所述第四透镜的折射率n4,以及所述第五透镜的折射率n5满足下列关系式:1.57<n1<1.59,1.8<n2<1.9,1.65<n3<1.68,1.53<n4<1.55,1.52<n5<1.55。如此设计,有利于透镜在光学材质上取得较合适的匹配,进而可使该摄像光学镜头10获得较佳的成像品质。需要说明的是,本发明实施例中,所述第一透镜的阿贝数v1,所述第二透镜的阿贝数v2,所述第三透镜的阿贝数v3,所述第四透镜的阿贝数v4,以及所述第五透镜的阿贝数v5,可被设计为满足下列关系式:57<v1<62,22<v2<25,20<v3<22,55<v4<57,55<v5<58。如此设计,可以有效的抑制摄像光学镜头10成像时的光学色差现象。可以理解的是,上述各透镜的折射率设计方案和阿贝数设计方案可以相互结合而应用在摄像光学镜头10的设计中,如此以来,所述第二透镜L2和第三透镜L3采用高折射率、低阿贝数光学材料制成,能够有效减少镜头色差,大大提高摄像光学镜头10的成像品质。此外,透镜的表面可以设置为非球面,非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低本发明摄像光学镜头的总长度。本发明实施例中,各个透镜的物侧面和像侧面均为非球面。优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。以下示出了依据本发明实施例1的摄像光学镜头10的设计数据。表1、表2示出本发明实施例1的摄像光学镜头10的数据。【表1】各符号的含义如下。f:摄像光学镜头10的焦距;f1:第一透镜L1的焦距;f2:第二透镜L2的焦距;f3:第三透镜L3的焦距;f4:第四透镜L4的焦距;f5:第五透镜L5的焦距。【表2】其中,R1、R2为第一透镜L1的物侧面、像侧面,R3、R4为第二透镜L2的物侧面、像侧面,R5、R6为第三透镜L3的物侧面、像侧面,R7、R8为第四透镜L4的物侧面、像侧面,R9、R10为第五透镜L5的物侧面、像侧面,R11、R12为滤光片GF的物侧面、像侧面。其他各符号的含义如下。d0:光圈St到第一透镜L1的物侧面的轴上距离;d1:第一透镜L1的轴上厚度;d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;d3:第二透镜L2的轴上厚度;d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;d5:第三透镜L3的轴上厚度;d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;d7:第四透镜L4的轴上厚度;d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;d9:第五透镜L5的轴上厚度;d10:第五透镜L5的像侧面到滤光片GF的物侧面的轴上距离;d11:滤光片GF的轴上厚度;d12:滤光片GF的像侧面到像面的轴上距离;nd1:第一透镜L1的折射率;nd2:第二透镜L2的折射率;nd3:第三透镜L3的折射率;nd4:第四透镜L4的折射率;nd5:第五透镜L5的折射率;ndg:滤光片GF的折射率;v1:第一透镜L1的阿贝数;v2:第二透镜L2的阿贝数;v3:第三透镜L3的阿贝数;v4:第四透镜L4的阿贝数;v5:第五透镜L5的阿贝数;vg:滤光片GF的阿贝数。表3示出本发明实施例1的摄像光学镜头10中各透镜的非球面数据。【表3】表4、表5示出本发明实施例1的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,R1、R2分别代表第一透镜L1的物侧面和像侧面,R3、R4分别代表第二透镜L2的物侧面和像侧面,R5、R6分别代表第三透镜L3的物侧面和像侧面,R7、R8分别代表第四透镜L4的物侧面和像侧面,R9、R10分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。【表4】反曲点个数反曲点位置1反曲点位置2R110.965R210.505R30R40R50R60R710.945R821.0851.345R911.245R1020.5652.535【表5】驻点个数驻点位置1R10R210.825R30R40R50R60R70R80R912.265R1011.305图2、图3分别示出了波长为486nm、588nm和656nm的光经过实施例1的摄像光学镜头10后的轴上色差以及倍率色差示意图。图4则示出了,波长为588nm的光经过实施例1的摄像光学镜头10后的场曲及畸变示意图。以下表6按照上述条件式列出了本实施例中对应各条件式的数值。显然,本实施例的摄像光学系统满足上述的条件式。【表6】条件实施例10.75<f1/f<0.820.777373618-2.0<f2/f<-1.9-1.920509265-7<f3/f<-6-6.7248343440.54<f4/f<0.560.551869564-0.48<f5/f<-0.45-0.46736333311<v2/n2<1412.885760691.15<n2/n5<1.251.2030864670.03<d3/TTL<0.0350.0319004520.17<d3/d7<0.190.1824062113<(r3-r6)/(r3+r6)<2015.83726326在本实施例中,所述摄像光学镜头的入瞳直径为1.9mm,全视场像高为3.261mm,对角线方向的视场角为80.37°。本发明的第二实施方式涉及另一种摄像光学镜头,第二实施方式与第一实施方式大致相同,其主要区别在于:在本实施方式中,参考附图,本发明提供了一种摄像光学镜头。图5所示为本发明第二实施例的摄像光学镜头20,该摄像光学镜头20包括五个透镜。具体的,所述摄像光学镜头20,由物侧至像侧依序包括:光圈St、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、以及第五透镜L5。第五透镜L5和像面Si之间可设置有滤光片GF等光学元件。第一透镜L1具有正屈折力,其能够有效减少系统长度,其物侧面向外凸出为凸面,光圈St设置于被摄物与第一透镜L1之间。第二透镜L2具有负屈折力,本实施例中,第二透镜L2的像侧面为凹面。第三透镜L3具有负屈折力,本实施例中,第三透镜L3的物侧面为凹面、像侧面为凸面。第四透镜L4具有正屈折力,本实施例中,第四透镜L4的物侧面为凹面、像侧面为凸面。第五透镜L5具有负屈折力,其能够能够有效减少系统场曲,本实施例中,第五透镜L5的物侧面为凹面、像侧面为凹面。在此,定义整体摄像光学镜头20的焦距为f、光学总长为TTL,所述第一透镜L1的焦距为f1,所述第二透镜L2的焦距为f2、折射率为n2、阿贝数为v2,所述第三透镜L3的焦距为f3,所述第四透镜L4的焦距为f4,所述第五透镜L5的焦距为f5、折射率为n5,所述第二透镜L2的物侧面曲率半径为r3,所述第三透镜L3的像侧面曲率半径为r6,所述第二透镜L2的轴上厚度为d3,所述第四透镜L4的轴上厚度为d7,所述f、f1、f2、f3、f4、f5,v2、n2,n5,r3,r6,d3以及d7满足下列关系式:0.75<f1/f<0.82,-2.0<f2/f<-1.9,-7<f3/f<-6,0.54<f4/f<0.56,-0.48<f5/f<-0.45;11<v2/n2<14,1.15<n2/n5<1.25,0.03<d3/TTL<0.035,0.17<d3/d7<0.19;13<(r3-r6)/(r3+r6)<20。当本发明所述摄像光学镜头20的焦距、各透镜的焦距、折射率、轴上厚度、曲率半径以及阿贝系数满足上述关系式时,可以控制/调整各透镜的屈折力大小配置,在修正光学系统大部分光学像差的同时,满足高像素和大像高的设计需求,并且所述摄像光学镜头10为大相对孔径光学系统,能够有效提高低照度环境下的成像性能。具体的,本发明实施例中,所述第一透镜的焦距f1,所述第二透镜的焦距f2,所述第三透镜的焦距f3,所述第四透镜的焦距f4,所述第五透镜的焦距f5可以设计成为满足下列关系式:2.9<f1<3.1,-8<f2<-7,-26<f3<-24,2.0<f4<2.2,-1.85<f5<-1.75,单位:毫米(mm)。如此设计,能够使得整体摄像光学镜头20的光学总长TTL尽量变短,维持小型化的特性。优选的,本发明实施例的所述摄像光学镜头20的光学全长TTL≤4.42毫米。如此设计,更利于实现摄像光学镜头20的小型化设计。另外,第二透镜的轴上厚度为d3,第三透镜的轴上厚度为d5,满足下列关系式:0.6<d3/d5<0.7。如此设置,可使第二透镜和第三透镜具有最佳的厚度,有利于摄像光学镜头20的组装。优选的,本发明实施例中,摄像光学镜头的光圈数小于或等于2.0,从而实现系统的大光圈设计。本发明的摄像光学镜头20中,各透镜的材质可为玻璃或塑胶,若透镜的材质为玻璃,则可以增加本发明光学系统屈折力配置的自由度,若透镜材质为塑胶,则可以有效降低生产成本。本发明实施例中,第一透镜L1和第二透镜L2为玻璃透镜,可以有效降低温度对摄像光学镜头20的影响,所述第三透镜L3、第四透镜L4和第五透镜L5为塑胶透镜。进一步的,在本发明的优选实施例中,所述第一透镜的折射率n1,所述第二透镜的折射率n2,所述第三透镜的折射率n3,所述第四透镜的折射率n4,以及所述第五透镜的折射率n5满足下列关系式:1.57<n1<1.59,1.8<n2<1.9,1.65<n3<1.68,1.53<n4<1.55,1.52<n5<1.55。如此设计,有利于透镜在光学材质上取得较合适的匹配,进而可使该摄像光学镜头20获得较佳的成像品质。需要说明的是,本发明实施例中,所述第一透镜的阿贝数v1,所述第二透镜的阿贝数v2,所述第三透镜的阿贝数v3,所述第四透镜的阿贝数v4,以及所述第五透镜的阿贝数v5,可被设计为满足下列关系式:57<v1<62,22<v2<25,20<v3<22,55<v4<57,55<v5<58。如此设计,可以有效的抑制摄像光学镜头20成像时的光学色差现象。可以理解的是,上述各透镜的折射率设计方案和阿贝数设计方案可以相互结合而应用在摄像光学镜头20的设计中,如此以来,所述第二透镜L2和第三透镜L3采用高折射率、低阿贝数光学材料制成,能够有效减少镜头色差,大大提高摄像光学镜头20的成像品质。此外,透镜的表面可以设置为非球面,非球面可以容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减透镜使用的数目,因此可以有效降低本发明摄像光学镜头的总长度。本发明实施例中,各个透镜的物侧面和像侧面均为非球面。优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。以下示出了依据本发明实施例2的摄像光学镜头20的设计数据。表7、表8示出本发明实施例2的摄像光学镜头20的数据。【表7】各符号的含义如下。f:摄像光学镜头20的焦距;f1:第一透镜L1的焦距;f2:第二透镜L2的焦距;f3:第三透镜L3的焦距;f4:第四透镜L4的焦距;f5:第五透镜L5的焦距。【表8】其中,R1、R2为第一透镜L1的物侧面、像侧面,R3、R4为第二透镜L2的物侧面、像侧面,R5、R6为第三透镜L3的物侧面、像侧面,R7、R8为第四透镜L4的物侧面、像侧面,R9、R10为第五透镜L5的物侧面、像侧面,R11、R12为滤光片GF的物侧面、像侧面。其他各符号的含义如下。d0:光圈St到第一透镜L1的物侧面的轴上距离;d1:第一透镜L1的轴上厚度;d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;d3:第二透镜L2的轴上厚度;d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;d5:第三透镜L3的轴上厚度;d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;d7:第四透镜L4的轴上厚度;d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;d9:第五透镜L5的轴上厚度;d10:第五透镜L5的像侧面到滤光片GF的物侧面的轴上距离;d11:滤光片GF的轴上厚度;d12:滤光片GF的像侧面到像面的轴上距离;nd1:第一透镜L1的折射率;nd2:第二透镜L2的折射率;nd3:第三透镜L3的折射率;nd4:第四透镜L4的折射率;nd5:第五透镜L5的折射率;ndg:滤光片GF的折射率;v1:第一透镜L1的阿贝数;v2:第二透镜L2的阿贝数;v3:第三透镜L3的阿贝数;v4:第四透镜L4的阿贝数;v5:第五透镜L5的阿贝数;vg:滤光片GF的阿贝数。表9示出本发明实施例2的摄像光学镜头20中各透镜的非球面数据。【表9】表10、表11示出本发明实施例2的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。其中,R1、R2分别代表第一透镜L1的物侧面和像侧面,R3、R4分别代表第二透镜L2的物侧面和像侧面,R5、R6分别代表第三透镜L3的物侧面和像侧面,R7、R8分别代表第四透镜L4的物侧面和像侧面,R9、R10分别代表第五透镜L5的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头20光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头20光轴的垂直距离。【表10】反曲点个数反曲点位置1反曲点位置2R110.965R210.505R30R40R50R610.945R721.3651.415R821.0851.355R911.245R1020.5652.545【表11】图6、图7分别示出了波长为486nm、588nm和656nm的光经过实施例2的摄像光学镜头20后的轴上色差以及倍率色差示意图。图8则示出了,波长为588nm的光经过实施例2的摄像光学镜头20后的像散场曲及畸变示意图。以下表12按照上述条件式列出了本实施例中对应各条件式的数值。显然,本实施例的摄像光学系统满足上述的条件式。【表12】条件实施例20.75<f1/f<0.820.777655883-2.0<f2/f<-1.9-1.921522039-7<f3/f<-6-6.7571857910.54<f4/f<0.560.552075678-0.48<f5/f<-0.45-0.46770601311<v2/n2<1412.885760691.15<n2/n5<1.251.2030864670.03<d3/TTL<0.0350.0319004520.17<d3/d7<0.190.1824062113<(r3-r6)/(r3+r6)<2018.72805525在本实施例中,所述摄像光学镜头的入瞳直径为1.9mm,全视场像高为3.261mm,对角线方向的视场角为80.38°。本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1