一种紫外可见红外高效反射的银基薄膜结构及镀膜方法与流程

文档序号:19212879发布日期:2019-11-26 01:25阅读:1672来源:国知局
一种紫外可见红外高效反射的银基薄膜结构及镀膜方法与流程

本发明属于光学薄膜的技术领域,具体涉及一种紫外可见红外高效反射的银基薄膜结构及镀膜方法。



背景技术:

为了消除光学仪器中的色差影响,光学仪器常常采用反射式的光路结构,其中涉及的光学元件需要镀制反射膜。在多波段通用反射镜的镀膜,金属反射膜是最常见的,其中最常见的金属为铝、银、金。已知金膜只能高效反射红外波段的光,铝膜能反射紫外到红外波段的光,但平均反射率只有0.9左右,在追求极致能量效率的光学系统中并不可取,这极大限制了其在高端光学仪器的应用。银膜作为反射镜的镀膜选择,在可见至红外波段具有0.97以上的反射率,是可见红外波段理想的金属反射镜镀膜选择。

不带保护膜的裸银膜在近紫外350~400nm波段反射率大于0.9。然而,实际应用中,银膜反射镜都需要镀制介质保护膜以防止银膜产生划伤、腐蚀、氧化和硫化等物理化学损伤,而银膜与介质保护膜的界面在350~400nm波段存在强的表面等离子体吸收,这导致实际应用的银膜反射镜在该波段区域只有不到0.8的反射率,再加上银膜本身在小于350nm波段的反射率极低,因此,常规银反射镜在紫外几乎不能作为反射镜使用。针对紫外波段的反射元件镀膜一般只能采用铝反射膜,而这会导致光学系统在可见近红外的能量效率不高。

随着先进光学仪器对紫外可见红外全波段探测以及对光学能量效率提升的极致追求,铝反射镜已经逐渐不能满足先进光学仪器研制的需求,寻找新的反射镜膜系结构以及镀膜方法以满足光学仪器的光学全波段能量高效传递需求已成为未来反射镜镀膜的发展方向之一。



技术实现要素:

本发明的目的是克服现有金属反射镜膜系结构及镀膜技术中不能实现紫外可见红外全波段高效反射的不足,提供一种紫外可见红外高效反射的银基薄膜结构及镀膜方法。

本发明提出的技术方案是:

采用银反射膜加上长波通的介质反射膜构成膜系主体,其功能设计上,银膜高效反射可见红外波段,长波通介质反射膜反射紫外波段,同时作为银膜保护层;

膜系结构设计为:反射镜镜体1之上依次镀制粘合层一2、银膜3、粘合层二4、匹配层膜堆一5、介质反射膜堆6及匹配层膜堆二7;

所述反射镜镜体1为玻璃、熔石英、铝、钛、表面改性碳化硅或铍镜;

所述粘合层一2为al2o3、ni、cr、nicr合金、nicrn合金的单一膜层或多层复合膜,膜层厚度10~50nm;

所述银膜3的厚度为100~300nm;

所述粘合层二4为al2o3,厚度为5~30nm;

所述匹配层膜堆一5为低折射率膜sio2和高折射率膜hfo2的叠层,优选2层结构lh或4层结构lhlh,l为sio2,h为hfo2;

所述介质反射膜堆6为低折射率膜sio2和高折射率膜hfo2构成的200~400nm波段的介质反射膜堆,膜系结构为a(lh)x、a(lh)xb(lh)y或a(lh)xb(lh)yc(lh)z,其中a、b、c表示反射膜堆的中心波长系数值,满足a>b>c,x、y、z表示叠层周期数,分别优选2~5、6~8、6~8;

所述匹配层膜堆二7为低折射率膜sio2和高折射率膜hfo2构成的叠层,优选单层结构l或三层结构lhl。

本发明采用的镀膜技术方案为:

采用两种真空镀膜技术并用,分别为常温蒸镀技术与原子层沉积技术,按膜系沉积的不同阶段分别进行;

所述粘合层一2、银膜3、粘合层二4的镀制方式采用常温蒸镀方式,所述匹配层膜堆一5、介质反射膜堆6、匹配层膜堆二7采用原子层沉积技术镀制无针孔致密膜;

镀膜的具体步骤为:

1)采用丙酮、乙醇、去离子水依次清洗镜体,晾干,局部擦拭,放入真空室,镜体温度保持常温,抽真空至5×10-3pa以下;

2)采用霍尔离子源对镜面进行氩离子轰击,阳极电压120~300v,阳极电流2~10a,轰击5~20分钟;

3)在镜面上蒸镀粘合层一2,优选20nm厚度,速率0.2~0.6nm/s;

4)在镜面上蒸镀银膜3,优选厚度180nm,速率2~3nm/s;

5)在镜面上蒸镀粘合层二4,优选厚度5nm,速率0.3~0.5nm/s;

6)真空室放气,取样,转移至原子层沉积反应室,加热3小时至优选温度170℃;

7)采用tma和h2o热反应的原子层沉积方式在镜体上生长5nm厚al2o3;

8)根据理论设计膜系在镜体上采用原子层沉积技术生长sio2和hfo2的膜系结构;

9)完成镀膜后,停止加热,等待自然冷却至室温后取样。

与现有技术相比,本发明具有如下优点:

1、本发明以银基反射镜为基础保证了可见至红外的高反射,同时银膜保护层采用长波通的介质反射堆用于提高紫外波段的反射率,减小银膜本身吸收和表面等离子体吸收,实现银基薄膜紫外可见红外的高反射率;

2、本发明的银膜保护层为几十层高低折射率膜的叠层,均为硬质耐腐蚀膜层,总厚度400~1500nm厚,可以有效防止机械划伤、水汽、氧气、硫化物、卤化物等的物理化学侵蚀;

3、本发明的银膜保护层采用的原子层沉积技术进行镀膜,可以形成无针孔致密膜层,封闭纳米孔洞,有效保护银反射膜层的同时,利用原子层沉积技术保形性和均匀性特点实现镜面面形和光洁度的保持。

附图说明

图1为本发明的膜系结构示意图。

图2为本发明实施例一、三中的银基薄膜与典型银反射膜8°入射角度反射率光谱曲线对比。

图3为本发明实施例二中的银基薄膜与典型银反射膜45°入射角度反射率光谱曲线对比。

具体实施方式

下面结合具体实例对本发明作进一步说明

实施例一

本实施例中选择空间遥感载荷应用的卡塞格林望远镜系统的主次镜反射膜镀制为例,反射光谱指标是实现300~1200nm反射率大于96%,250~300nm反射率大于90%,200~250nm反射率大于70%。所选择的基本膜系结构如图1所示,其中各个功能膜层的精细结构如下说明:

镜体材料为熔石英材料,粘合层一2为nicr合金,粘合层二4为al2o3,匹配层膜堆一5、介质反射膜堆6以及匹配层膜堆二7均为低折射率膜sio2和高折射率膜hfo2构成的叠层;具体膜系结构为:

20np180ap10mp0.457l1.056h0.755l1.328h(0.92l0.97h)3(0.813l0.705h)6(0.666l0.453h)61.746l;

其中,下标p表示膜层代号前数字为几何厚度,单位为nm,n为nicr合金,a为ag,m为al2o3,h为hfo2,l为sio2,h和l前数字表示光学厚度的权重系数,参考中心波长为370nm,每个光学厚度为λ/4。各个膜层的材料参数经实测获得,具体方法为:采用相应薄膜生长工艺在硅片和熔石英上生长单层膜,然后采用椭圆偏振测量方法和光谱测量法进行生长速率以及材料折射率的标定,以标定的材料参数带入薄膜软件进行设计优化和薄膜沉积控制系统中。

图2为本实施例一的银基薄膜与典型银反射膜(银膜上依次镀30nmal2o3和150nmsio2的保护膜)的理论设计反射光谱对比(考虑了实测的表面等离子体吸收)。从图上可以看到,本发明提供的银基薄膜结构相较于典型银反射膜在200~400nm的紫外波段的反射率有了明显提升,且对可见红外波段的反射率损失极小,实现了紫外可见红外光的高效反射。

在镀膜方法上,具体步骤如下:

1)将熔石英镜体依次放入丙酮、乙醇、去离子水进行超声波清洗,清洗时间均为15分钟,晾干,根据表面情况用脱脂棉布蘸取酒精乙醚混合液对表面进行局部擦拭,擦拭完毕后,放入镀膜真空室,镜体温度保持常温,抽真空至5×10-3pa以下;

2)采用霍尔离子源对镜面进行氩离子轰击,阳极电压150v,阳极电流4a,轰击10分钟;

3)采用钨丝加热预熔镍铬丝团,待镍铬丝团融成液珠状,打开挡板,加大加热功率,在镜面上蒸镀镍铬膜,沉积速率0.4nm/s,沉积20nm厚度,关闭挡板;

4)采用钼舟盛放银颗粒,施加电流加热使银融化成一团液体,打开挡板,加大加热功率,使液态银蒸发,在镜面上沉积为银膜,沉积速率2~3nm/s,生长厚度180nm,关闭挡板;

5)采用电子束蒸发方式,加热al2o3靶材,在镜面上蒸镀5nmal2o3薄膜,生长速率0.3~0.5nm/s,保证银反射膜在短时间曝露在大气环境不会被氧化;

6)静置半小时后,对真空室放气,取样,将镜体转移至原子层沉积反应室,抽真空至0.4mbar以下,反应腔加热3小时至优选温度170℃;

7)采用tma和h2o热反应的原子层沉积方式在镜面上生长5nm厚al2o3,实现对银膜的致密均匀覆盖,以确保sio2和hfo2的原子层沉积工艺不会对银膜产生化学损伤;

8)根据理论设计膜系采用原子层沉积技术在镜面上生长sio2和hfo2的膜系结构;

9)完成镀膜后,停止加热,等待自然冷却至室温后取样。

实施例二

本实施例中选择空间对地遥感载荷常用的指向镜或扫描镜为例,这类型镜体通常工作在45度入射角,具有尺寸大,质量重,需做减轻处理,同时需要兼顾面形精度,因此在镀反射膜的过程中需要控制膜层应力以减小镀膜后的镜面面形变化。同时,300~400nm是对地遥感常设的紫外波段,在海面溢油遥感中具有独特优势。另外,大气对200~300nm的紫外波段不透光,因此含紫外波段的对地遥感载荷的反射镜只需在大于300nm波段都有较高的反射率。在不降低可见红外反射率的情况下,采用本发明的银基薄膜结构具有很好的反射效率。所选择的基本膜系结构仍然如图1所示,其中各个功能膜层的精细结构如下说明:

镜体材料为表面改性sic材料,粘合层一2为nicr合金,粘合层二4为al2o3,匹配层膜堆一5、介质反射膜堆6以及匹配层膜堆二7均为低折射率膜sio2和高折射率膜hfo2构成的叠层;具体膜系结构为:

20np100ap10mp0.408l0.947h1.048l0.97h(0.993l0.834h)31.699l;

其中,下标p表示膜层代号前数字为几何厚度,单位为nm,n为nicr合金,a为ag,m为al2o3,h为hfo2,l为sio2,h和l前数字表示光学厚度的权重系数,参考中心波长为370nm,每个光学厚度为λ/4。

与实例一相比,我们减薄了银膜3厚度,简化了介质反射膜堆6,以减小膜层应力带来的镜体面形变化,同时满足了大于300nm波长的高反射率。图3为实例二的银基薄膜与典型银反射膜的理论设计反射光谱对比。从图3上可以看到,本发明提供的银基薄膜结构在300~400nm的紫外波段的反射率有了明显提升,且对可见红外波段的反射率几乎没有损失。

实施例三

本实施例中选择地面用光谱仪器的反射镜为例,这类型反射镜对成像质量要求不高,因此对面形变化不敏感。另外,本身是在地面使用,即使要求面形控制也可以通过加厚基底来减小膜层应力影响。同时,该类型反射镜同样需要追求紫外到近红外的高反射效率,以提高仪器的信号灵敏度。

地面用的反射镜镜体表面加工并不像航空航天产品要求那么严格,在镜体表面相对会存在较多的点缺陷。为了避免这些点缺陷曝露在大气中潮气吸附以及其他腐蚀气体吸附,进而影响银反射镜的可靠性和寿命,我们考虑粘合层一2、银膜3进行加厚以保证对点缺陷的完整覆盖。该膜系结构基于实例一中的反射膜系结构,设计反射光谱仍然如图2所示,并没有发生改变。膜系结构中粘合层一2、银膜3厚度变为50nm和300nm。具体膜系结构为:

50np300ap10mp0.457l1.056h0.755l1.328h(0.92l0.97h)3(0.813l0.705h)6(0.666l0.453h)61.746l;

其中,下标p表示膜层代号前数字为几何厚度,单位为nm,n为nicr合金,a为ag,m为al2o3,h为hfo2,l为sio2,h和l前数字表示光学厚度的权重系数,参考中心波长为370nm,每个光学厚度为λ/4。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1