一种LDI平台误差补偿方法与流程

文档序号:23068396发布日期:2020-11-25 17:56阅读:438来源:国知局
一种LDI平台误差补偿方法与流程

本发明涉及激光直接成像技术领域,尤其涉及一种ldi平台误差补偿方法。



背景技术:

ldi运动平台机械安装时不可避免的引入各种误差,如光栅尺过程中因受力不均引起的线性度误差,导轨安装时引入直线度误差,以及x轴和y轴垂直度误差,因此若想获得理想的曝光图形精度与对位精度,必须要对运动平台进行误差补偿。

目前ldi运动平台的补偿方案都是通过2dmapping的方式,即计算各网格点到起始网格点x向和y向的累积误差,并将这些误差数组补偿到控制器中,这种补偿方式的缺陷是只能补偿线性度,无法补偿直线度和轴正交性。



技术实现要素:

为了解决只能补偿线性度,无法补偿直线度和轴正交性的技术问题,为此,本发明提供一种ldi平台误差补偿方法。

为实现上述目的,本发明采用以下技术方案:一种ldi平台误差补偿方法,包括以下步骤:

s1、将标定板固定在吸盘上;

s2、ldi运动驱动组件使相机成像组件中的面阵相机通过对应的导轨在x轴上来回运动,使吸盘通过对应的导轨在与x轴水平垂直的y轴上且位于面阵相机下方来回运动,在此过程中,相机成像组件扫描标定板,抓取所有标定点;

s3、相机成像组件中的面阵相机将标定的坐标数据传输到主控组件中进行计算,获得各误差项对应的值,计算方法具体如下:

s31、以标定板的左下角标定点的圆心为标定板坐标系的原点,标定板上的所有标定点在标定板坐标系上形成标称网格;

s32、获得所有标称点在平台坐标系中的坐标值;标定板坐标系的各标定点变换到平台中,变换模型t为:

其中e和f分别表示标定板坐标系到平台坐标系在x轴和在y轴方向上的平移量,a和d分别表示平台坐标系相对于标准值在x轴方向和y轴方向上的拉伸,b表示标定板坐标系相对于平台坐标系的整体旋转角度,txy表示平台坐标系的x轴和y轴的垂直度;

s33、建立理想平台坐标系,在理想平台坐标系中设定补偿网格,每个补偿网格单元的宽高均与标定板中所有标定点形成的网格单元的宽高相同,且所有标称点分别落在补偿网格对应网格单元内,假设网格单元的四个补偿网格点在平台上的误差值,然后测量标称点与周围的四个补偿网格点的距离,获得标称点(x,y)对应的误差值(ex,ey);

s34、获得误差补偿模型,根据误差补偿公式计算补偿参数,ldi的所述误差补偿公式为:

ex=dxx(x)+dyx(y)-y·dxz(x)-y·txy(1)

ey=dxy(x)+dyy(y)-x·dyz(x)(2)

其中dxx(x)表示点(x,y)沿x轴运动的光栅尺示值误差、dxy表示点(x,y)沿x轴运动的导轨偏摆误差、dxz表示点(x,y)沿x轴运动的导轨扭摆误差、dyx表示点(x,y)沿y轴运动的导轨偏摆误差、dyy表示点(x,y)沿y轴运动的光栅尺示值误差、dyz点(x,y)沿y轴运动的导轨扭摆误差、txy表示x轴、y轴导轨之间的垂直度;且均为补偿参数;

s4、通过步骤s3获得的补偿参数计算出综合误差,然后将综合误差转化为主控组件可接受的形式写入主控组件中,完成补偿。

本发明的优点在于:

(1)本申请将ldi运动平台的误差分解为不同的误差项,如线性度,直线度,轴垂直度等,通过本方法可以利用标定板测量并计算出各个误差项的补偿值,将这些补偿值经过处理后写入控制器中,即可对平台的误差进行补偿。

(2)本方法将ldi运动平台离散化为多个相邻的网格点,每个网格点的宽高均为l,在标定过程中,标定板上的标定点间距也为l,且落在补偿网格内部,此时每个补偿点的误差由周围四个补偿网格点以及它到网格点的距离决定;每个网格点的误差参数由周围四个标定点的误差来计算获得。

(3)现有技术中在拼接处效果较差(标定板无法完成整个幅面的标定,需要移动标定板多次标定,因此在拼接处因为标定点不重合导致误差在标定处计算误差较大),本申请通过计算理想点的误差值,因此对标定板放置的位置不敏感,从而克服现有技术的缺陷;

(4)现有技术无法将多次标定的结果融合起来,因此标定误差较大,本申请通过利用标定板多次标定并融合结果,可得到更为精确的误差项补偿值。

(5)其中设置a和d的好处是当光栅尺拉伸和温度变化影响不大时,算法算出的a,d非常接近1,当温度或其他线性拉伸因素存在时,a,d能使dxx和dyy保持围绕0波动的小量,如前所述类似txy对dxy和dyx的作用是提高模型精度。

附图说明

图1中白色点连成的网格为补偿网格,黑色点连成的网格为标定点在平台上检测值对应的网格。

图2为多个标定板标定的流程图。

具体实施方式

一种ldi平台误差补偿方法,包括以下步骤:

s1、将标定板固定在吸盘上;

s2、ldi运动驱动组件使固定在龙门架上相机成像组件中的面阵相机通过对应的导轨在x轴上来回运动,使吸盘通过对应的导轨在与x轴水平垂直的y轴上且位于面阵相机下方来回运动,在此过程中,相机成像组件扫描标定板,抓取所有标定点;

s3、相机成像组件中的面阵相机将标定的坐标数据传输到主控组件中进行计算,获得各误差项对应的值,所述误差项包括沿x轴运动的光栅尺示值误差dxx、沿x轴运动的导轨偏摆误差dxy、沿x轴运动的导轨扭摆误差dxz、沿y轴运动的导轨偏摆误差dyx、沿y轴运动的光栅尺示值误差dyy、沿y轴运动的导轨扭摆误差dyz、x、y导轨之间的垂直度txy。

各误差项值计算方法具体如下:

s31、以标定板的左下角标定点的圆心为标定板坐标系的原点,标定板上的所有标定点在标定板坐标系上形成标称网格;

s32、获得所有标称点在平台坐标系中的坐标值;如图1所示标定板坐标系的各标定点变换到平台中,实际算法中把平移旋转模型泛化为仿射模型,用2x3的矩阵表示变换模型t并且不加任何限制,变换模型t为:

其中e和f分别表示标定板坐标系到平台坐标系在x轴和在y轴方向上的平移量,a和d分别表示平台坐标系相对于标准值在x轴方向和y轴方向上的拉伸,b表示标定板坐标系相对于平台坐标系的整体旋转角度,txy表示平台坐标系的x轴和y轴的垂直度;其中设置a和d的好处是当光栅尺拉伸和温度变化影响不大时,算法算出的a,d非常接近1,当温度或其他线性拉伸因素存在时,a,d能使dxx和dyy保持围绕0波动的小量,如前所述类似txy对dxy和dyx的作用是提高模型精度。

s33、如图1所示,建立理想平台坐标系,在理想平台坐标系中设定补偿网格,每个补偿网格单元的宽高均与标定板中所有标定点形成的网格单元的宽高相同,且所有标称点分别落在补偿网格对应网格单元内,假设网格单元的四个补偿网格点在平台上的误差值,然后测量标称点与周围的四个补偿网格点的距离,获得标称点(x,y)对应的误差值(ex,ey)。此时每个标定点的误差由周围四个补偿网格点以及它到网格点的距离决定;每个补偿网格点的误差参数由周围四个标定点的误差来计算获得。

其中补偿网格为m行n列,dxx、dxy、dyx向量长度为n,dyx、dyy、dyz向量长度为m。所述补偿参数dxx、dxy、dyx、dyy这4个线性量范围平均在±10微米以下,dxz,dyz两个扭摆量范围在1e-5弧度以下,txy和装配工艺有关,范围值在1e-4弧度以下。总结上述的分析,平台标定算法最终使用的参数空间是18个向量加上a,d和txy三个标量,补偿模型参数总个数为n=3m+3n+3。而求解过程需要求解包括e,f,b的n=3m+3n+6个参数。算法需要根据实测值填充一个n+1行n+1列的超大矩阵σ并求解。

本方案中获得误差值(ex,ey)的步骤如下:

s331、设标定板有r行c列,每个标定板上标定点的圆心坐标为(xij,yij)(i=0,1,...,c-1;j=0,1,...,r-1);设标定板间距相邻圆的间距是l,则对应的标称坐标为(i·l,j·l),网格拟合后的坐标为:

s332、假设点(xij,yij)落在补偿网格的r行到r+1行和c列到c+1列形成的方块中,在此方块中的x,y的相对位置为α、β∈[0,1];将公式(1)(2)变换为离散分段函数的版本为:

由于光栅值=真值+误差

把公式(3)和(4)(5)代入公式(6)(7),因为-y·txy已经在(3)中出现,所以去掉公式(4)中的对应项,得到如下标定核心公式:

应用公式(8)(9)的方法如下,以公式(8)为例,先得到系数向量

v=[-xij,(1-α),α,(1-β),β,-(1-α)·yij,-α·yij,i·l,-j·l,-j·l,1](10)

将矩阵vtv叠加到如下参数在矩阵∑对应的行列形成的子矩阵中:

对每一点(xij,yij)应用公式(8)(9)累加得到最终所需的∑,求逆矩阵∑-1结果的第一行用常数项归一化即所需的3m+3n+6个参数的最优值。将∑的常数维分解:

其中d为n1×n1的矩阵,b为n1×1的向量,a为常数项,则参数最优解向量为

s=-d-1b(12)

将结果s对号入座即得到6个向量和a,d,txy,e,f,b这6个标量,忽略e,f,b,即得到由dxx,dxy,dxz,dyx,dyy,dyz,a,d,txy组成的平台补偿模型。

s34、获得误差补偿模型,根据误差补偿公式计算补偿参数,ldi的所述误差补偿公式为:

ex=dxx(x)+dyx(y)-y·dxz(x)-y·txy(1)

ey=dxy(x)+dyy(y)-x·dyz(x)(2)

其中dxx(x)表示点(x,y)沿x轴运动的光栅尺示值误差、dxy表示点(x,y)沿x轴运动的导轨偏摆误差、dxz表示点(x,y)沿x轴运动的导轨扭摆误差、dyx表示点(x,y)沿y轴运动的导轨偏摆误差、dyy表示点(x,y)沿y轴运动的光栅尺示值误差、dyz点(x,y)沿y轴运动的导轨扭摆误差、txy表示x轴、y轴导轨之间的垂直度;且均为补偿参数;

s4、通过步骤s3获得的补偿参数计算出综合误差,然后将综合误差转化为主控组件可接受的形式写入主控组件中,完成补偿。

以上步骤为使用一块标定板标定的步骤,本申请为了实现更好的补偿,使用块标定板参与标定,如图2所示,使用多块标定板的步骤如下:

sa1、将标定板固定在吸盘上,按照步骤s1-s2,抓取所有的标定点,直至抓取结束;

sa2、将标定板取下重新放置,返回到步骤sa1中,直至若干次进入步骤s3。

n块标定板参与标定(标定板放置了n次),则每块标定板会有一个2x3的仿射矩阵t(k=0,1,…,n-1),共有6n个参数,其中各次的ak,dk,应该始终很接近,这是由机械本身性质决定。但是可能存在微小差异,例如如果x轴导轨中间一段完全较大,平均偏摆比首尾都大,则标定板放在中间得到的垂直度可能比放在两端算出的垂直度稍大一点。而平移ek,fk和旋转bk会差异很大,这取决于每次标定板的放置,各次之间没有任何关系,最终的标定模型中会忽略这三个值。建立模型的方法和单块模型相同,通过与单块标定板标定相同的计算方法即可计算出所有参数,此时求解的误差项相当于通过多组标定点计算得到,相对单标定板一组标定点而言,其拟合效果会比单标定板更好,因此获得的误差项也更准确。

以上仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1