定向耦合器的制作方法

文档序号:23068395发布日期:2020-11-25 17:56阅读:164来源:国知局
定向耦合器的制作方法

本发明涉及定向耦合器。



背景技术:

以往,已知有在副线路的隔离端口侧连接了可变阻抗电路的定向耦合器(例如,参照专利文献1)。通过可变阻抗电路对隔离端口侧的阻抗进行调整,从而可防止在主线路中向与想要检波的方向的高频信号相反的方向行进的无用的高频信号侵入到耦合端口,可改善方向性。

在先技术文献

专利文献

专利文献1:美国专利申请公开第2017/0324392号说明书



技术实现要素:

发明要解决的课题

然而,若隔离端口侧的阻抗可自由变更,则会与耦合端口侧的阻抗不匹配,副线路的损耗增大,其结果是,检波精度有可能劣化。

此外,在专利文献1记载的定向耦合器中,虽然可改善方向性,但是想要检波的方向的高频信号中包含的、与想要检波的频带不同的频带的无用的信号分量有可能会输出到耦合端口。由此,定向耦合器的检波精度也有可能劣化。

因此,本发明的目的在于,提供一种在能够变更隔离端口侧的阻抗的同时还能够抑制检波精度的劣化的定向耦合器。

用于解决课题的技术方案

为了达到上述目的,本发明的一个方式涉及的定向耦合器具备:主线路;副线路;可变阻抗电路,终止所述副线路的一端部;以及可变滤波器电路,与所述副线路的另一端部连接。

发明效果

根据本发明涉及的定向耦合器,能够在调整可变阻抗电路而得到稳定的方向性的同时调整可变滤波器电路而缩小耦合端口侧的阻抗匹配的偏移,且通过除去无用波从而抑制检波精度的劣化。

附图说明

图1是示出实施方式1涉及的定向耦合器的功能性的结构的一个例子的电路图。

图2是示出实施方式1涉及的可变滤波器的功能性的结构的几个例子的电路图。

图3是示出实施方式1涉及的开关的构造的一个例子的示意图。

图4是示出比较例涉及的定向耦合器的耦合度的一个例子的曲线图。

图5是示出实施方式1涉及的定向耦合器的耦合度的一个例子的曲线图。

图6是示出实施方式1涉及的定向耦合器的耦合度的一个例子的曲线图。

图7是示出实施方式2涉及的定向耦合器的功能性的结构的一个例子的电路图。

图8是示出实施方式2涉及的定向耦合器的耦合度的一个例子的曲线图。

图9是示出实施方式3涉及的定向耦合器的功能性的结构的一个例子的电路图。

图10是示出实施方式4涉及的定向耦合器的功能性的结构的一个例子的电路图。

具体实施方式

使用附图对本发明的多个实施方式进行详细地说明。另外,以下说明的实施方式均示出总括性的或具体的例子。在以下的实施方式中示出的数值、形状、材料、构成要素、构成要素的配置以及连接方式等是一个例子,其主旨并不在于限定本发明。

(实施方式1)

列举在副线路的一端以及另一端分别连接了可变阻抗电路以及可变滤波器电路的定向耦合器的例子,对实施方式1涉及的定向耦合器进行说明。

图1是示出实施方式1涉及的定向耦合器2的功能性的结构的一个例子的电路图。如图1所示,定向耦合器2具备主线路11、副线路12、可变终止器13以及可变滤波器电路15。像图1的点线箭头m所表示的那样,主线路11和副线路12相互进行电磁耦合。

主线路11的一端111以及另一端112分别与输入端口rfin以及输出端口rfout连接。

副线路12的一端121被可变终止器13终止。副线路的另一端122经由可变滤波器电路15而与耦合端口cpl连接。

在此,副线路12的一端121是副线路的隔离端口侧的端部的一个例子,副线路12的另一端122是副线路的耦合端口侧的端部的一个例子。另外,也可以是,可变终止器13与另一端122连接,可变滤波器电路15与一端121连接。

可变终止器13是以所希望的阻抗将副线路12的一端121进行终止的可变阻抗电路。可变终止器13例如是为了调整定向耦合器2的隔离度来改善方向性而设置的。可变终止器13没有特别限定,但作为一个例子,可以包含可变电容和可变电阻相互并联连接的电路。可变终止器13的一端与副线路12的一端121连接,另一端与接地电极连接。

可变滤波器电路15是能够对由使其通过的信号的频带和阻止的信号的频带所表示的滤波器特性进行可变控制的滤波器。可变滤波器电路15例如在选择性地使用多个频带的高频信号进行通信的多频段通信中,使通信中使用的频带的高频信号通过,并阻止其它频带的信号。

可变滤波器电路15没有特别限定,但作为一个例子,可以是如下的可调谐滤波器,即,通过利用开关对具有相互不同的滤波器特性的多个信号路径进行切换,从而得到所希望的滤波器特性。

图2是示出可变滤波器电路15的功能性的结构的一个例子的电路图。

图2的(a)所示的可变滤波器电路15a包含旁路路径150、滤波器151以及开关160、161。具体地,旁路路径150是未配置阻抗元件的单纯的布线导体。另外,这里所指的阻抗元件,是指电容器、电感器或电阻。

在可变滤波器电路15a中,通过开关160、161从旁路路径150以及设置有滤波器151的路径之中选择的路径的信号传递特性,即,决定在各路径传递的信号的频带的特性成为可变滤波器电路15a的滤波器特性。

在图2的(b)所示的可变滤波器电路15b中,在可变滤波器电路15a进一步追加了滤波器152、153以及开关162、163。也就是说,可变滤波器电路15b具有多个滤波器。

在可变滤波器电路15b中,通过开关160~163从旁路路径150以及设置有滤波器151~153的各路径之中选择的路径的信号传递特性成为可变滤波器电路15b的滤波器特性。

作为一个例子,可变终止器13和可变滤波器电路15基于经由控制端口ctl供给的控制信号进行调整。控制信号例如电可以从rf信号处理电路(未图示)等外部电路供给。可变终止器13和可变滤波器电路15也可以基于相互独立的控制信号进行调整。

图2的(c)所示的可变滤波器电路15c与可变滤波器电路15a相比,不同点在于,在设置有滤波器151的路径进一步追加了开关261、361、461。

开关261串联地连接在连结滤波器151和开关161的路径上的节点与接地之间。开关361串联地连接在滤波器151与设置有滤波器151的路径和旁路路径150的连接节点之间。开关461串联地连接在连结开关361和滤波器151的路径上的节点与接地之间。

开关161以及开关361是串联地连接在设置有滤波器151的路径上的“第1开关”。开关161以及开关361相互联动而进行动作。在可变滤波器电路15c中,在使信号传输到设置有滤波器151的路径的情况(不使信号传输到旁路路径150的情况)下,将开关161以及开关361设为导通状态。此外,在可变滤波器电路15c中,在不使信号传输到设置有滤波器151的路径的情况(使信号传输到旁路路径150的情况)下,将开关161以及开关361设为非导通状态。

开关261与开关361排他性地动作,开关461与开关161排他性地动作。即,在开关161以及开关361为导通状态时,开关261以及开关461成为非导通状态。此外,在开关161以及开关361为非导通状态时,开关261以及开关461成为导通状态。另外,开关261以及开关461是串联地连接在设置有滤波器151的路径上的节点与接地之间的“第2开关”。

在可变滤波器电路15c中,通过具备开关261以及开关461,从而能够抑制在开关161以及开关361为非导通状态时产生的断开(off)电容coff对定向耦合器2的主线路11的影响。

更详细地,在设置有滤波器151的路径具备的开关161、361为非导通状态时产生的断开电容coff有可能使主线路11的频率特性产生纹波。相对于此,在可变滤波器电路15c中,在设置有滤波器151的路径具备开关261以及开关461,开关261以及开关461在开关161以及开关361为非导通状态时使设置有滤波器151的路径上的节点和接地导通。因此,可抑制开关161、361的断开电容coff对主线路11的影响,在主线路11的频率特性不易产生纹波。

此外,通过具备开关261以及开关461,从而能够强化各个开关所对应的开关(即,与开关261对应的开关361以及与开关461对应的开关161)对esd(electrostaticdischarge,静电放电)的保护。

另外,可变滤波器电路15c只要在设置有滤波器151的路径上具备开关161以及开关361中的任一者,就能够作为可变滤波器电路而发挥功能。此外,在设置有滤波器151的路径上仅具备开关161以及开关361中的任一个开关的情况下,只要具备开关261以及开关461中的一个开关,就能够抑制在主线路的频率特性产生纹波。

另外,如图3所示,在可变滤波器电路15a、15b、15c中,在设置于旁路路径150的开关160被设置在基板上的情况下,也可以在开关160的输入端子in与输出端子out之间具有被设定为接地电位的凸块gnd(设置在基板的背面的安装用的电极)。根据这样的结构,能够进一步提高开关160的输入端子侧与输出端子侧之间的隔离度特性,因此能够增大滤波器151的带外衰减量。

另外,所谓设置了开关160的基板,也可以是像后述的那样形成可变滤波器电路的、与形成了定向耦合器的集成电路独立的外部元件具有的基板。此外,也可以是安装形成了可变滤波器电路的外部元件和形成了定向耦合器的集成电路的模块基板。或者,在可变滤波器电路形成于与形成了定向耦合器的集成电路相同的集成电路的情况下,也可以是该集成电路具有的基板。另外,开关160是连接在旁路路径150上的“第3开关”。

此外,设置在开关160的输入端子in与输出端子out之间的只要是被设定为接地电位的布线部即可。即,设置在开关160的输入端子in与输出端子out之间的也可以不是凸块gnd,例如也可以是被设定为接地电位的电极、布线。

接着,对定向耦合器2的效果进行说明。在以下的说明中,作为实施例参照定向耦合器2,作为比较例参照在副线路的耦合端口侧的端部不具有可变滤波器电路的定向耦合器(未图示)。

图4是示出比较例涉及的定向耦合器的耦合度的一个例子的曲线图,实线以及点线表示耦合度的设计值以及实际值。图4的设计值是定向耦合器2的单体的耦合度,是副线路12的两端部的阻抗彼此的匹配取理想值的情况下的耦合度。图3的实际值例如是在将定向耦合器2安装于安装基板的情况下使用可变终止器13对副线路的一端121侧的阻抗进行了调整时的耦合度。

例如,在向安装基板安装了定向耦合器2时,在副线路12的耦合端口cpl侧的另一端122被附加寄生阻抗,与隔离端口iso侧的一端121的匹配会偏移。在寄生阻抗中,例如包含对地电容以及安装基板中的布线的引绕所引起的阻抗。像这样,若副线路12的一端121侧的阻抗从与另一端122侧的阻抗匹配的状态偏移了,则定向耦合器2的方向性会劣化。此时,如果使用可变终止器13对副线路12的一端121侧的阻抗进行调整,则能够抑制方向性的劣化。

示出像这样通过可变终止器13使副线路12的一端121侧的阻抗从理想值变动之后的耦合度的正是在图2中作为实际值示出的耦合度。如果使用可变终止器13,则能够缩小寄生阻抗所引起的隔离度的变动而抑制方向性的劣化,但是如同图所示,有时会对定向耦合器的耦合度造成影响而产生耦合度从设计值的偏移。

作为设想了这样的状况的一个例子,在图3中,分别示出将副线路12的一端121的终止阻抗设为50ω、0pf的情况下的第1耦合度以及设为60ω、2pf的情况下的第2耦合度作为耦合度的设计值以及实际值。

如图3所示,例如,着眼于3.7ghz以及4.8ghz的频率,对于任一频率处的耦合度,设计值和实际值均不同。

相对于此,在定向耦合器2中,通过可变滤波器电路15对副线路12的另一端122处的阻抗进行调整,从而能够降低副线路的损耗,缩小耦合度从设计值的偏移。

一般来说,为了通过滤波器来调整使其通过的信号的频带和阻止的信号的频带,需要调整滤波器的阻抗。其结果是,对连接该滤波器的路径赋予的阻抗分量也会被变更。即,对滤波器特性进行可变控制的可变滤波器电路15还能够作为在连接可变滤波器电路15的路径上附加所希望的阻抗的可变阻抗电路而发挥功能。

因此,如果使用可变滤波器电路15,则能够调整副线路12的另一端122处的匹配而抑制检波精度的劣化。

图5是示出实施例涉及的定向耦合器2的耦合度的一个例子的曲线图,实线表示耦合度的调整值。图4的调整值是如下的情况下的耦合度,即,在将副线路12的一端121的终止阻抗设为与得到图3的实际值的条件相同的60ω、2pf的同时,对可变滤波器电路15的阻抗进行调整。

根据图5可知,在定向耦合器2中,通过可变滤波器电路15的调整,可得到与比较例的设计值大致等同的耦合度。

像这样,根据定向耦合器2,与以往同样地,能够通过可变终止器13对副线路12的隔离端口iso侧的阻抗进行调整,因此可防止无用的高频信号侵入到耦合端口cpl,可得到稳定的方向性。进而,对于由于该调整而产生的耦合端口cpl侧的阻抗匹配的偏移,通过可变滤波器电路15的调整来缩小,由此能够使耦合度稳定而抑制检波精度的劣化。

此外,通过具备可变滤波器电路15,从而还产生如下的效果。

在以下的说明中,方便起见,作为低频段lb而参照包含900mhz频段的频带,作为高频段hb而参照包含2.0ghz频段以及3.5ghz频段的频带。

图6是示出定向耦合器2的耦合度的一个例子的曲线图,实线以及点线分别表示将可变滤波器电路15的滤波器特性设为滤波器特性1以及滤波器特性2时的耦合度1以及耦合度2。

滤波器特性1是用于低频段lb的高频信号的检波的特性,在低频段lb具有通带,在高频段hb具有阻带。滤波器特性2是用于高频段hb的高频信号的检波的特性,在高频段hb具有通带,在低频段lb具有阻带。另外,在图6中未示出滤波器特性本身。

根据图6可知,按照滤波器特性,通带外的耦合度下降。由此,能够从耦合端口cpl所输出的信号除去无用波,也就是说,能够除去想要检波的方向的高频信号中包含的、与想要检波的频带不同的频带的无用的信号分量,因此能够更有效地抑制检波精度的劣化。

此外,在可变滤波器电路15中,设置旁路路径150,从而使得能够进行选择。由此,通过选择未配置阻抗元件的旁路路径150,从而耦合端口cpl不易受到隔离端口iso的阻抗变化的影响,因此能够更加有效地抑制检波精度的劣化。

(实施方式2)

对实施方式2涉及的定向耦合器进行说明。

图7是示出实施方式2涉及的定向耦合器3的功能性的结构的一个例子的电路图。如图7所示,在功能性的结构中,定向耦合器3与图1的定向耦合器2等同。在定向耦合器3中,主线路11、副线路12以及可变终止器13形成为集成电路装置10,可变滤波器电路15由与集成电路装置10独立的元件形成。在此,所谓集成电路装置,例如是指利用光刻等半导体制造工艺形成的安装部件。

另外,控制可变滤波器电路的可变控制机构(例如,开关等)也可以形成在集成电路装置。

一般来说,利用半导体制造工艺形成的线路精细且尺寸精度高。因此,通过将主线路11以及副线路12形成在集成电路装置10,从而可得到小型且耦合度的制造偏差小的高性能的定向耦合器3。另一方面,形成在集成电路装置的可变滤波器电路不能由布线电阻小的厚膜的布线形成,因此其q值低,多数情况下特性差。

因此,由与集成电路装置独立的外部元件来形成可变滤波器电路15。外部元件例如可以是电感器、电容以及弹性波元件,使用由这些元件形成的lc滤波器以及弹性波滤波器,能够构成q值高的可变滤波器电路15。

接着,对定向耦合器3的效果进行说明。在以下的说明中,作为实施例参照定向耦合器3,作为比较例参照将可变滤波器形成于集成电路装置10的定向耦合器(未图示)。此外,将可变滤波器电路15的滤波器特性作为在实施方式2中参照的低频段lb用的滤波器特性。

图8是示出定向耦合器的耦合度的一个例子的曲线图,实线以及点线分别表示作为实施例的定向耦合器3的耦合度以及比较例涉及的定向耦合器的耦合度。根据图7可知,在定向耦合器3中,与将可变滤波器形成于集成电路装置10的比较例涉及的定向耦合器相比,在通带外可得到更强的衰减。由此,能够从耦合端口cpl所输出的信号更有效地除去无用波,因此抑制检波精度的劣化的效果进一步提高。

(实施方式3)

对实施方式3涉及的定向耦合器进行说明。

图9是示出实施方式3涉及的定向耦合器4的功能性的结构的一个例子的电路图。如图9所示,定向耦合器4构成为在图1的定向耦合器2追加了可变电容17。

可变电容17连接在主线路11与副线路12之间。可变电容17没有特别限定,但作为一个例子,可以包含相互并联地连接的多个电容171~174和分别与该多个电容串联地连接的多个开关181~184。在该情况下,可变电容17的电容根据开关181~184的切换而变更。

在定向耦合器4中,通过除可变滤波器电路15以外还设置可变电容17,从而能够在更宽的范围内调整耦合度,因此能够更可靠地抑制检波精度的劣化。例如,在通过可变滤波器电路15的调整得不到所希望的耦合度的情况下,也可以根据可变电容17的电容而进一步增加定向耦合器4的耦合度。

(实施方式4)

对实施方式4涉及的定向耦合器进行说明。

图10是示出实施方式4涉及的定向耦合器5的功能性的结构的一个例子的电路图。如图10所示,定向耦合器5构成为在图1的定向耦合器2追加了检波器19。

检波器19经由可变滤波器电路15而与副线路的另一端122连接。检波器19根据从副线路的另一端122经由可变滤波器电路15供给的信号来生成表示该信号的电平的感测信号。检波器19没有特别限定,但作为一个例子,可以包含基准电压源191、比较器192以及积分器193。

在定向耦合器5中,通过将电平已知的高频信号输入到输入端口rfin,从而能够根据由检波器19生成的感测信号来测定耦合度,因此能够根据耦合度的测定值和设计值的偏移来调整可变滤波器电路15。

在定向耦合器5中,通过设置了检波器19,从而能够更高精度地调整耦合度,因此变得能够更有效地抑制检波精度的劣化。

另外,在使用定向耦合器5且具备放大器的通信装置中,还能够根据由检波器19生成的感测信号对放大器的增益进行反馈控制。

(总结)

像以上说明的那样,本发明的一个方式涉及的定向耦合器具备:主线路;副线路;可变阻抗电路,终止所述副线路的一端部;以及可变滤波器电路,与所述副线路的另一端部连接。

根据这样的结构,能够在调整可变阻抗电路而得到稳定的方向性的同时调整可变滤波器电路而缩小耦合端口侧的阻抗匹配的偏移,且通过除去无用波从而抑制检波精度的劣化。

此外,也可以是,所述可变滤波器电路包含:滤波器;旁路路径;以及开关,与所述滤波器和所述旁路路径中的至少一者连接。

根据这样的结构,通过选择未配置阻抗元件的旁路路径,从而副线路的另一端部不易受到副线路的一端部的阻抗变化的影响,因此能够更有效地抑制检波精度的劣化。

此外,也可以是,所述定向耦合器具备多个所述开关,多个所述开关包含:第1开关,串联地连接在设置有所述滤波器的路径上;以及第2开关,串联地连接在设置有所述滤波器的路径上的节点与接地之间。

此外,也可以是,所述第1开关和所述第2开关排他性地动作。

根据这样的结构,能够通过使第2开关为导通状态从而抑制在第1开关为非导通状态时产生的断开电容的影响,因此能够使主线路的频率特性不易产生纹波。

此外,也可以是,多个所述开关包含串联地连接在所述旁路路径上的第3开关,所述第3开关设置在基板上,在俯视所述基板的情况下,在所述第3开关的输入端子与输出端子之间设置有被设定为接地电位的布线部。

根据这样的结构,能够通过被设定为接地电位的布线部而在旁路路径中包含的第3开关的输入-输出端子之间提高隔离度,因此能够增大设置了滤波器的路径的带外衰减。

此外,也可以是,所述可变滤波器电路包含多个滤波器。

根据这样的结构,通过在可变滤波器电路中更多地切换特性从而能够提高调整的精度,因此能够更有效地抑制检波精度的劣化。

此外,也可以是,所述主线路、所述副线路以及所述可变阻抗电路形成为集成电路装置,所述可变滤波器电路由与所述集成电路装置独立的元件形成。

根据这样的结构,使用q值比较高的外部元件来构成可变滤波器,因此能够更有效地抑制检波精度的劣化。

此外,也可以是,所述定向耦合器还具备:可变电容,连接在所述主线路与所述副线路之间。

根据这样的结构,能够在更宽的范围内调整定向耦合器的耦合度,因此能够更可靠地抑制检波精度的劣化。

此外,也可以是,所述定向耦合器还具备:检波器,与所述副线路的所述另一端部连接。

根据这样的结构,能够基于检波器的输出来测定耦合度,并根据测定结果来调整耦合度,因此能够更可靠地抑制检波精度的劣化。

以上,基于实施方式对本发明的定向耦合器进行了说明,但是本发明并不限定于各个实施方式。只要不脱离本发明的主旨,对本实施方式实施了本领域技术人员想到的各种变形而得到的方式、将不同的实施方式中的构成要素进行组合而构筑的方式也可以包含于本发明的一个或多个方式的范围内。

产业上的可利用性

本发明能够作为定向耦合器而广泛利用。

附图标记说明

2、3、4、5:定向耦合器;

10:集成电路装置;

11:主线路;

12:副线路;

13:可变终止器;

15、15a、15b、15c:可变滤波器电路;

17:可变电容;

19:检波器;

111:主线路的一端;

112:主线路的另一端;

121:副线路的一端;

122:副线路的另一端

150:旁路路径;

151、152、153:滤波器;

160、161、162、163、181、182、183、184、261、361、461:开关;

171、172、173、174:电容;

191:基准电压源;

192:比较器;

193:积分器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1