照明装置和照相机的制作方法

文档序号:2913192阅读:175来源:国知局
专利名称:照明装置和照相机的制作方法
技术领域
本发明涉及一种照明装置及具有照明装置的照相机,特别是涉及一种不加大装置的整体形状、可将来自照明装置的光射出的射出开口部的在装置上下方向的长度缩短的照明装置。
背景技术
现有技术中,在照相机等中使用的照明装置由光源、将从该光源发出的光束导向装置前方(被摄物体)的反光镜及菲涅耳透镜等光学部件构成。
为了在这种照明装置中将从光源向各个方向射出的光束高效率地聚光在需要照射范围内,提出了各种方案。特别是近年来提出了一种通过设置利用棱镜光波导等的全反射的光学部件来替代相对于光源设置于装置前方的菲涅耳透镜,以提高聚光效率及减小装置体积的方案。
作为这种提案,具有如JP特开平4(1992)-138438(以下称为文献1)所公开的、通过由具有正的折射力的透镜将从光源向装置前方射出的光束聚光,同时由朝向装置前方反射的全反射面将从光源向装置侧方射出的光束聚光,以从同一射出面照射照明光的光学系统。即,具有使从光源射出的光束中在向光学部件的入射面位置上被光程分割的光束从同一射出面射出,并且使用能够减小体积及提高聚光效率的棱镜的照明光学系统。
此外,作为上述照明光学系统的改进,提出了一种如JP特开平8(1996)-262537(以下称为文献2)所公开的,将棱镜比光源还靠装置前方设置的、使照明光学系统整体体积减小的光学系统及使棱镜中射出全反射光的面相对于光轴倾斜的光学系统的方案。
另一方面,在照明光的照射角度范围被固定型的照明装置中,伴随着摄影光学系统的高倍率变焦,在需要照射角度窄的望远状态下,有照明光照射在不需要范围中的情况,造成很大的能量损耗。因此,为了消除能量损耗,提出了能够对应于摄影范围的变化(摄影光学系统的变焦)而变化照明光的照射角度范围的各种照射角可变照明装置。
作为这种照明装置,通过相对地移动第1光学部件及第2光学部件,变化两者的间隔来变化照明光的照射角度范围。具体地如JP特开2000-298244(以下称为文献3)所公开的、第1光学部件具有将从光源向装置前方射出的光束变换成光轴方向的光束、构成入射面的一部分的凸透镜,通过将从光源向装置侧方射出的光束全反射而变换为光轴方向的光束的全反射面,以及由多个小透镜构成的射出面。
此外,第2光学部件在入射从第1光学部件射出的光的入射面上具有抵销第1光学部件的小透镜的折射力的多个小透镜。并且,通过相对地移动上述第1光学部件及第2光学部件,能够变化照明光的照射角度范围。
近年来,与照相机本体的小型化相结合,希望搭载于照相机本体上的辅助光源的光学系统更加小型化。在此,在文献1、2中提出了上述的通过使用棱镜实现小型化及高性能化的照明光学系统。
另一方面,为了与照相机的新型设计相对应,要求对现有技术中的照明光学系统的形式进行改进,特别是产品(照相机)的外观上所呈现的、构成光射出区域的开口部小型化。即,如现有技术那样,通过使用棱镜实现照明装置小型化的同时,要求尽可能减小照明装置的开口部,这是以往没有实施过的很困难的要求。
在此,文献1及文献2所示的任一种照明光学系统中,全反射面的最宽的部分为照明光学系统的宽度(开口部),减小上述开口部的宽度,顺延以往的思考方法的话,不极大地降低光学特性(配光特性)就不能实现。
此外,照明装置的开口部小型化的要求不仅限于上述照明光的照射角度范围被固定的照明装置,在可变化照射角度范围的照明装置中也有强烈的要求。
但是,现有技术中的照射角可变型的照明装置中开口部的大小正如主要由文献3中所示的光波导型的照明装置可知,需要与由全反射面的最宽部分形成的开口部(第1光学部件的射出面)大致相同的尺寸,不能称之为照明装置的开口部充分的小型化。此外,在其他多种照射角可变型的照明装置中,照明装置(光学部件)的开口部也需要比进行聚光的反射伞更宽的尺寸,顺延以往的思考方法的话,要使开口部进行这以上程度的小型化,不极大地降低光学特性就不能实现。

发明内容
由于以上的情况,本发明的主要目的是提供一种通过使用光学部件(棱镜)能够实现装置的小型化及提高聚光效率,同时只减小开口部的尺寸的照明装置。此外,本发明的另一目的是提供一种能够以高效利用来自光源的能量,在照射面上保证均匀的配光特性的照明装置。
本发明的照明装置的一个方面为具有光源、将来自该光源的射出光向光轴侧聚光的聚光单元、设置于装置前面且具备有负的折射力的凹透镜部的光学部件。
本发明的照相机的另一个方面为具有上述的照明装置。
本发明的照明装置及照相机的特征通过以下参照附图的具体实施例的说明变得更加明确。


图1为本发明的第1实施例中闪光放电管的径向的闪光发光装置的中央剖面图。
图2为本发明的第1实施例中来自光源的光线分布图。
图3为本发明的第1实施例中来自光源的光线分布图。
图4为本发明的第1实施例中,闪光放电管的轴向的闪光发光装置的剖面图。
图5为用于示出作为本发明的第1实施例的闪光发光装置的主要部件结构的分解立体图。
图6为具有作为本发明的第1实施例的闪光发光装置的照相机的外观立体图。
图7为本发明的第2实施例中闪光放电管的径向的闪光发光装置的中央剖面图。
图8为本发明的第2实施例的聚光光学系统的形状的考虑方法说明图。
图9为本发明的第2实施例中来自光源的光线分布图。
图10为本发明的第2实施例中来自光源的光线分布图。
图11为本发明的第2实施例中,闪光放电管的轴向的闪光发光装置的剖面图。
图12为用于示出作为本发明的第2实施例的闪光发光装置的主要部件结构的分解立体图。
图13为本发明的第3实施例中,闪光放电管的径向的闪光发光装置的剖面图(聚光状态)。
图14为本发明的第3实施例中,闪光放电管的径向的闪光发光装置的剖面图(扩散状态)。
图15为本发明的第3实施例中来自光源的光线分布图(聚光状态)。
图16为本发明的第3实施例中来自光源的光线分布图(扩散状态)。
图17为本发明的第3实施例的聚光光学系统的形状的考虑方法说明图。
图18为本发明的第3实施例中闪光放电管的轴向的闪光发光装置的剖面图。
图19为用于示出作为本发明的第3实施例的闪光发光装置的主要部件结构的分解立体图。
图20为本发明的第4实施例中,闪光放电管的径向的闪光发光装置的剖面图(聚光状态)。
图21为本发明的第4实施例中,闪光放电管的径向的闪光发光装置的剖面图(扩散状态)。
图22为本发明的第4实施例的聚光光学系统的形状的考虑方法说明图。
图23为本发明的第4实施例中来自光源的光线分布图(聚光状态)。
图24为本发明的第4实施例中来自光源的光线分布图(扩散状态)。
图25为本发明的第4实施例中,闪光放电管的轴向的闪光发光装置的剖面图。
图26为用于示出作为本发明的第4实施例的闪光发光装置的主要部件结构的分解立体图。
图27为本发明的第5实施例的聚光光学系统的形状的考虑方法说明图。
图28为本发明的第5实施例中来自光源的光线分布图(聚光状态)。
图29为本发明的第5实施例中来自光源的光线分布图(扩散状态)。
具体实施例方式
(第1实施例)下面,根据附图详细地说明上述本发明的实施例。
以下,参照附图对作为本发明的第1实施例的照明装置进行说明。图1~图6为用于说明本实施例的照明装置,特别是闪光发光装置的图。本实施例的闪光发光装置为照射角固定型的装置。
图1为闪光放电管的径向的闪光发光装置的中央剖面图,图2及图3分别为在图1所示的剖面图中,标出从光源中心射出的光线轨迹的视图。此外,图4为表示闪光放电管的轴向的闪光发光装置的剖面图。另一方面,图5为用于示出闪光发光装置的主要部件结构的分解立体图,图6为具有闪光发光装置的照相机的外观立体图。
在图6中,1为设置于闪光发光装置内的光学棱镜,如后所述地将从光源射出的光束变换为具有规定的角度范围的光束。21为释放按扭,通过半压操作开始摄影准备动作(焦点调节动作及测光动作等),通过全压开始摄影动作(对胶卷的曝光或对CCD等摄像元件的曝光及从摄像元件读出的图像数据向记录介质记录)。22为照相机的电源开关,23为用于观察被摄体图像的取景器光学系统中设置于照相机前面的窗部。
24为测定外光亮度的测光装置的窗部。25为具有摄影透镜的透镜镜筒,通过在摄影光轴方向上进退可进行摄影光学系统的变焦。26为照相机本体,在其内部设置有摄影所必需的各种部件。此外,由于上述的部件中除闪光发光装置外其他的部件的功能为公知的功能,省略对其详细说明。并且,本实施例的照相机的部件结构并不限定于上述结构。
图5为用于说明图6所示照相机的闪光发光装置的内部构造的分解立体图。此外,在同图中只示出了闪光发光装置的主要部分,未示出保持部件及导线。
在图5中,光学棱镜1设置在闪光发光装置内射出方向(装置前方)上,由丙烯树脂等透射性高的光学用树脂材料或玻璃材料构成。2为通过输入触发信号而发生闪光的直管状的闪光放电管(氙气管)。3为将从闪光放电管2射出的光束中向装置后方射出的成分向装置前方反射的反射伞,内面(反射面)由具有高反射率的辉光铝等金属材料形成。
对在上述构成中,例如照相机设定为“闪光灯自动模式”时的照相机动作进行说明。
由操作者半压操作释放按扭21时,由测光装置对外光的亮度进行测定(测光),将该测光结果送至设置于照相机本体26内的中央计算装置中。中央计算装置通过外光的亮度和摄影介质(胶卷或CCD等的摄影元件)的感光度判断闪光发光装置是否发光。
在判断为“闪光发光装置发光”的场合,中央计算装置通过根据释放按扭21的全压操作向闪光发光装置发出发光信号,经过安装在反射伞3上的未图示的触发导线使闪光发光管发光。在此,从闪光放电管2射出的光束中朝向与照射方向(被摄体方向)相反方向射出的光束由设置于装置后方的反射伞3反射并导向照射方向。此外,向照射方向射出的光束直接入射到设置于装置前面的光学棱镜中,变换为规定的配光特性后,向被摄体侧照射。
本实施例的闪光发光装置,在如后所述地减小照相机的外观上呈现的闪光发光装置的射出开口部的尺寸(照相机上下方向的尺寸)的同时,可使配光特性最优化。以下,使用图1~图3对闪光发光装置(光学棱镜)的最佳形状的设定方法进行详细说明。
图1~图3为闪光放电管2的径向的闪光发光装置的纵剖面图。在这些图中,1为用于控制配光的光学棱镜,2为直管状的闪光放电管,3为具有与闪光放电管2同心的半圆筒部3a的反射伞,4为构成照相机本体26的外装部件的罩体。
在图2及图3中,在图1所示的剖面图以外,同时也示出了从闪光放电管2的内径中心部射出的代表光线的轨迹。在此,图2为从闪光放电管2射出的光束中接近射出光轴(以下称为光轴)成分的光线轨迹图。图3为从闪光放电管2射出的光束中朝向离开光轴方向(图中上下方向)成分的光线轨迹图。此外,在图2及图3中,光线以外的全部照明光学系统的构成及形状是相同的。
在本实施例的发光装置中,具有在保持装置的上下方向的配光特性均匀的同时,能够使闪光发光装置的射出开口部中装置上下方向的尺寸(开口高度)为最小的特征。以下对闪光发光装置(光学棱镜1)的形状的特性及从闪光放电管2发出的光线如何行动进行详细说明。
首先,使用图2及图3所示的光线轨迹图对于实际的照明光学系统的光线的动作进行详细说明。在图2中,作为闪光放电管2示出了玻璃管的内外径。作为闪光放电管2的发光现象,为了提高发光效率,以闪光放电管2的内径全体发光的情况为多,可以闪光放电管2的内径整体大致均匀地发光来考虑。
另一方面,在设计阶段,为了有效地控制从构成光源的闪光放电管2射出的光,比起同时考虑闪光放电管2的内径全体的光束最好假定理想的情况下在光源中心上为点光源来设计照明光学系统的形状。并且,在设计照明光学系统的形状后,考虑到光源具有有限的尺寸来进行修正,能够得到高效率的设计。本实施例也根据这种思考方法,将光源中心作为决定照明光学系统的形状时的基准值来考虑,如以下所说明地设定照明光学系统各部的形状。
图2所示的光线轨迹图示出了从光源中心射出的光束中朝向光学棱镜1的入射面1a直接入射的成分。该成分为相对于光轴构成比较小的角度的成分,在光学棱镜1中只受到折射的影响。
光学棱镜1的入射面(凸透镜部)1a由具有正的折射力的柱状透镜构成,具有极强的折射力。因此,如图2所示,从光源中心射出的、通过入射面1a后的光束朝向光轴聚光地前进。该光束由光学棱镜1的射出面1b折射,变换为规定的配光分布后向被摄体方向射出。
光学棱镜1的射出面(凹透镜部)1b由具有负的折射力的柱状透镜构成,在入射面1a向光轴聚光的光束在射出面1b中受到折射的影响朝向离开光轴的方向。因此,通过射出面1b后的光束的照射角度变宽。
因此,从光源中心射出的光束中直接入射到入射面1a的光束从光学棱镜1的射出面1b中比接近光轴的入射面1a窄的区域(中央区域)射出,并变换为角度范围具有比从光源射出时的角度范围窄的光束。
另一方面,从光源中心射出的光束中朝向装置后方的光束由设置于装置后方的反射伞3反射。在此,由于反射伞3具有与光源中心同心的半圆筒部3a,所以由反射伞3的半圆筒部3a反射的光束再次被导向光源中心附近。并且,此后与上述的光程相同地、从光学棱镜1的射出面1b的中央区域射出。
在此,应该注意的一点是,从光源中心射出的光束的在射出面1b上的通过区域与在入射面1a上的通过区域相比变窄,以及从射出面1b射出的光束的角度范围比光束入射到入射面1a的时刻的角度范围窄。即,如果将光源作为点光源来考虑,在光学棱镜1的入射面侧形成具有强的正折射率的入射面1a的同时,在射出面侧形成具有负的折射力的射出面1b,这样,将来自光源中心的射出光束在入射面1a上向光轴侧聚光后,从射出面1b中光轴附近的曲率比较缓的区域射出。因此,能够从射出面1b的窄小区域射出高效率地被聚光的光束。
另一方面,图3所示光线轨迹图示出了从光源中心射出的光束中向光学棱镜1的入射面1c、1c’入射的成分。即,图3所示的光束与图2所示的光束比较,为相对于光轴具有比较大的角度的成分,为在光学棱镜1中被反射的成分。
在此,光学棱镜1的入射面1c、1c’由相对于光轴具有比较大的角度的面构成。因此,入射到入射面1c、1c’的光束由入射面1c、1c’折射,并导向全反射面(反射部)1d、1d’。然后,由全反射面1d、1d’反射的光束朝向光轴聚光地前进。
如上所述,入射面1c、1c’由相对于光轴具有比较大的角度的面构成,这是为了防止在相对于入射面1c、1c’的光轴倾斜角度小的情况下,产生从光源中心射出的光束中由入射面1c、1c’全反射的成分,来自光源的射出光束朝向与图3所示的预先计划的光线轨迹方向不同的方向。因此在本实施例中,通过对入射面1c、1c′施加规定的倾斜来防止发生由入射面1c、1c′全反射的成分。
由全反射面1d、1d′反射的成分如图3的光线轨迹图所示,被导入射出面1b中比入射面1c、1c′的区域窄的区域中。与此同时,由全反射面1d、1d′反射的成分被导向射出面1b中上端及下端的周边区域,通过在该区域的折射得到在光学棱镜1中的入射、射出上的较大的角度变化。并且,减小了从射出面1b射出的光束的相对于光轴的倾斜角度。因此,从光学棱镜1射出的光束的角度范围与入射到光学棱镜1之前的光束的角度范围相比变得相当窄。
另一方面,对于作为从光源中心射出的光束的朝向装置后方的光束中相对于光轴为比较大的角度的成分由设置于装置后方的反射伞3反射。在此,反射伞3由于具有与光源中心同心的半圆筒部3a,由反射伞3的半圆筒部3a反射的光束被导向光源中心附近。并且,此后与上述的光程相同,从光学棱镜1的射出面1b的周边区域射出。
以上,由图2及图3所示的2个成分的光线轨迹图所知,在2个成分的任一个情况下,与入射面1a、1c(1c′)的区域相比较,射出面1b的光通过区域一方变窄,同时,在向光学棱镜1入射时与射出时,照射角度范围极窄。因此,成为较狭窄的射出开口部(射出面1b),并且聚光效果良好。
此外,图2所示的折射光程及图3所示的全反射光程走向的光束都要通过射出面1b,由于该射出面1b由具有连续性的曲面构成,能够减少由于各部件的加工精度引起的误差及照明光学系统组装上的位置误差的影响。即,即使到达射出面1b的光束的位置有微小的误差,对光学特性的影响也较小,能够得到稳定的光学特性。
在上述的照明光学系统的构成中,即使在假定光源的尺寸具有某一定尺寸的情况下,也难以产生光学特性的大幅度地变化,相对于光源的尺寸的变化能够得到连续的光学特性的变化,因此在作为具有均匀地配光分布的照明光学系统上为情况良好的结构。
在此,由于光学棱镜1的射出面1b不是形成复杂的面,而是形成单一的凹面形状,所以具有作为闪光发光装置的外观部件也能直接使用的优点。此外,由于在本实施例的闪光发光装置中,能够以极少的构成部件将来自光源的射出光聚光,所以聚光效率良好,具有能够进行在光学特性上没有配光不匀的均匀照明的优点。
在本实施例的闪光发光装置中,在使用光学棱镜1的照明光学系统中,在具有小型化及高聚光率的特征的同时,为能够尽可能使闪光装置的射出开口部(射出面1b)的尺寸在装置上下方向上小型化的结构。即,作为照明光学系统所必需的尺寸(装置高度)取决于由全反射面1d、1d′构成的尺寸,但用于向被摄体照射照明光的实际所必需的射出开口部的尺寸能够比由全反射面1d、1d′构成的尺寸减小很多。
使用图1对本实施例的照明光学系统的理想形状进行说明。图1为闪光放电管2的径向的闪光发光装置的剖面图,在同图中示出了构成照相机本体26的外装部件的罩体4与照明光学系统的配置关系。如上所述,由于作为照明光学系统的射出开口部而起作用的是光学棱镜1的射出面1b,罩体4以在照相机外部仅露出射出面1b的状态形成。因此,能够减小形成于罩体4上的开口部在装置上下方向上的尺寸,能够最大限度的实现本实施例的照明光学系统的特征。
此外,光学棱镜1中形成于光源侧的前端部1h如图1所示地以延伸到与光源中心相当的位置的状态构成。这是因为如果光学棱镜1的前端部1h位于比与光源中心相当的位置靠装置前方的位置时,不能拾取从光源射出的光束中向相对于光轴大致90°方向(图1中上下方向)射出的成分,不能将从光源射出的光束高效率地聚光。
相反,如果光学棱镜1的前端部1h以延伸到比与光源中心相当的位置靠装置后方的位置的状态形成,将来自光源的所有射出光束高效率地聚光时,光学棱镜1的体积就会增大。并且来自光源的射出光束难以由反射面1d、1d′全反射,由于脱出光学棱镜1的成分增加,来自光源的射出光束不能被高效率地利用。
因此,从照明光学系统的聚光效率及尺寸的关系上,最好如图1所示,光学棱镜1的前端部1h形成在与光源中心的位置大致一致的位置上。
此外,反射伞3在如上所述地具有与光源中心同心的半圆筒部3a的同时,在半圆筒3a的两端上具有与半圆筒3a一体成形的相对于光学棱镜1的前端部1h向装置后方绕入的侧边部3b。
对于从光源中心射出的光束如图2及图3所示的光线轨迹图所示,不会从光学棱镜1的全反射面1d、1d’脱出,但在从相对于光源中心错开位置射出的光束中,存在从全反射面1d、1d’脱出的光束。因此,通过在反射伞3上设置侧边部3b,从全反射面1d、1d’脱出的光束由侧边部3b反射,从光学棱镜1的全反射面1d、1d’再入射。
在此,由于反射伞3的侧边部3b如图1所示,为沿光学棱镜1的全反射面1d、1d’的形状,由侧边部3b反射、向全反射面1d、1d’再入射的反射光也能够作为被摄体照明光被有效地利用。
以下,对光学棱镜1的理想形状进行说明。首先,对于光学棱镜1的在装置上下方向的尺寸进行说明。
在图1中,在装置上下方向的射出面1b的开口高度D最好在下述关系式(1)的范围内。即,光学棱镜1的射出面1b的开口高度D与由光学棱镜1的全反射面1d、1d’构成的最大高度A的比在以下的范围内。
0.4≤D/A≤0.8 ……(1)为了与照相机的新设计相对应,极力地抑制开口高度D是理想的,但是由于作为光源的闪光放电管2的尺寸,随着开口高度D的长度的缩短,光量损失加大,不能构成有效的聚光光学系统。
即,在射出面1b的开口高度D的长度缩短的场合,在光源的尺寸加大的情况下,直接朝向光学棱镜1的射出面1b的光束减少,在光学棱镜1的内部反复地全反射的成分增加。结果,本来必须从射出面1b射出的成分许多都从光学棱镜1的其他部分射出,减少了来自光源的射出光束中有效地使用于被摄体的成分。因此,在上述的构成中,虽然抑制了射出面1b的开口高度D,但不一定在有效地利用来自光源的射出光束方面成为理想的照明光学系统。
由于上述的观点,上述式(1)的下限值为在作为光源的闪光放电管2的尺寸(直径)比较小的场合,作为照明光学系发挥有效功能的射出面1b的开口高度D的尺寸。此外,上述式(1)的上限值为在作为光源的闪光放电管2的尺寸(直径)大的场合,作为照明光学系发挥有效功能的开口高度D的尺寸。
如上所述,上述式(1)的下限值为在闪光放电管2的直径小的场合,作为照明光学系发挥有效功能的开口高度D的尺寸,在数学公式上闪光放电管2越小、开口高度D的尺寸就能够越小。但是,实际上由于闪光放电管2的耐久性能及制造方法等原因,不存在规定的直径以下的闪光放电管2。
因此,考虑可实质性制造的闪光放电管2的直径,以D/A的下限值为0.4为妥。
另一方面,在D/A的值超过上述式(1)的上限值0.8的场合,开口高度D增大,从减小射出开口部的在装置上下方向的尺寸的本发明的目的来看并不好。
将实际的数值适当地代入上述式(1)来讨论本实施例的闪光发光装置。在本实施例中,闪光放电管2的内径为φ1.3mm、光学棱镜1的全反射面1d、1d′的最大高度A为5mm、光学棱镜1的射出面1b的开口高度D为3mm。由这些数值求出式(1)的D/A的值为0.6、该值为上述关系式(1)的大致中心值。
以下,关于本实施例的光学棱镜1的光轴方向的形状最好为以下的形状。即,从射出面1b的前端到全反射面1d、1d′的最大外径(最大开口位置)的距离L与全反射面1d、1d′的最大外径到光源中心的距离B的比在以下范围内。
0.1≤L/B≤0.5 ……(2)在上述式(2)中,极力缩短距离L、在使闪光发光装置在光轴方向上小型化上是有益的。但是,为了形成射出面1b,由于制造上的原因等需要一定程度的长度是事实。此外,构成照相机本体26的外装部件的罩体4以沿射出面1b的外周侧面1i的状态构成,即使从光学棱镜1的射出面1b看上去较细,也需要距离L有一定程度的长度。
在本实施例中,考虑上述2个因素,以使上述关系式(2)成立的方式决定距离L及距离B的关系。
作为式(2)的下限值的0.1为根据由上述2个因素在基于形成光学棱镜1上所需要的距离L及距离B所决定的值,在低于该下限值的情况下,不能构成在聚光效率等方面有效的照明光学系统。
另一方面,作为式(2)的上限值的0.5为根据下述的观点决定的值。即L/B为0.5以上的数值的场合,光学棱镜1的在光轴方向的长度加长(大型化),偏离了作为本实施例的效果之一的希望闪光发光装置小型化的意图。
将实际的数值适当地代入上述式(2)来讨论本实施例的闪光发光装置。在本实施例中,距离L为1.1mm、距离B为3.9mm。由这些数值求出式(1)的L/B的值为0.28、该值为上述式(2)的大致中心值。
如上所述,通过将光学棱镜1的形状限制在上述式(1)及(2)的范围内,能够在防止光学棱镜1大型化的同时,减小射出面1b的开口高度D的尺寸。
以下,使用图4对闪光放电管2的轴向的闪光发光装置的构成进行说明。图4为闪光放电管2的轴向(纵长方向)的闪光发光装置的剖面图,对于与图1到图3中说明的部件相同的部件标以相同的符号。
作为光学棱镜1的特征,在位于其两端的侧面上形成全反射面1e、1e′。由此,能够将从向被摄体照射照明光时所必要的范围(必要照射角度范围)离开的光束通过全反射面1e、1e′全反射地导向必要照射角度范围内,能够有效地利用来自光源的射出光线。
此外,作为光学透镜1的射出面1b的形状的特征,为位于射出面1b的纵长方向两端的端面为倾斜面1f、1f′。由此,在防止从光源射出的、朝向必要照射角度范围内的光束被射出面1b的两端反射掉的同时,在与构成照相机26的外装部件的罩体4接缝处没有异常不谐调感。
另一方面,在射出面1b的中央区域中,通过全面地形成具有负的折射力的柱状透镜,成为不对装置上下方向的聚光作用施加不良影响的结构。此外,通过使射出面1b的中央区域为单一的凹面形状的柱状透镜,具有能够形成不会对照相机的外观上施加异常感的顺畅形状的优点。
在本实施例中,示出了从光源中心射出的光束通过光学棱镜1扩散在必要照射角度范围内的结构的照明光学系统的一例。但本发明并不限于上述的第1实施例的光学棱镜1的形状。
例如,也可以使形成于光学棱镜的入射面上的凸面形状的柱状透镜由具有正的折射力的菲涅耳透镜构成,或使形成于射出面上的凹面形状的柱状透镜由具有负的折射力的菲涅耳透镜构成。此外,在本实施例中,光学棱镜1的反射面1d、1d’为全反射面,但也可由蒸镀金属面构成,在此场合,由于照射在反射面上的光束的角度的限定减少,所以在能够使光学棱镜小型化的同时,能够将从光源射出的光束高效率地聚光。
再者,在本实施例中,在反射伞3上形成相对于闪光放电管2的中心同心的半圆状筒部3a,但并不一定限定于这种形状,也可以具有椭圆面等2次曲面的状态形成反射伞。
(第2实施例)图7~图12为用于说明作为本发明的第2实施例的闪光发光装置(照明装置)的图。此外,本实施例的闪光发光装置为照射角固定型的装置。
图7为闪光放电管的径向的闪光发光装置的中央剖面图,图8为用于说明光学棱镜的形状的示意图。图9及图10分别标注了图7所示的剖面图中从光源中心射出的光线轨迹图。图11为闪光放电管的轴向(纵长方向)的闪光发光装置的剖面图,图12为用于示出闪光发光装置的主要部件结构的分解立体图。
图12为用于说明闪光发光装置的内部构造的分解立体图,只示出了闪光发光装置的主要部分,未示出保持部件及导线。
在图12中,6为在闪光发光装置内设置于射出方向(装置前方)的光学棱镜、由丙烯树脂等透射率高的光学用树脂材料或玻璃材料构成。7为接受触发信号的输入而产生闪光的圆筒状的闪光放电管(氙气管)。8为将从闪光放电管7射出的光束中朝向装置后方射出的成分向射出方向(装置前方)反射的反射伞,内面(反射面)由具有高反射率的辉光铝等的金属材料形成。并且,本实施例的闪光发光装置装设于由第1实施例说明了的照相机(图6)中。
本实施例的闪光发光装置为如后所述地减少呈现于照相机的外观的闪光发光装置的射出开口部的尺寸(照相机上下方向的尺寸),同时将来自闪光放电管的射出光束最聚光的装置。以下,使用图7~图11详细地说明闪光发光装置(光学棱镜)的最佳形状的设定方法。
图7~图10为闪光放电管的径向的闪光发光装置的纵剖面图。在这些图中,6为用于控制配光的光学棱镜、7为圆筒形状的闪光放电管、8为具有与闪光放电管7同心的半圆筒部8a的反射伞、9为构成照相机本体的外装部件的罩体。
在从图8到图10中,在图7所示的剖面图以外,同时示出了由闪光放电管7的内径部(光源中心)射出的代表光线的轨迹。在此,图9为从闪光放电管2射出的光束中接近射出光轴(以下称光轴)成分的光线轨迹图。图10为从闪光放电管7射出的光束中朝向从光轴离开方向(图中上下方向)的成分的光线轨迹图。再者,在图8~图10中,光线以外所有的照明光学系统的结构及形状是相同的。
在本实施例的闪光发光装置中,具有使闪光发光装置的射出开口部中的在装置上下方向的尺寸(开口高度)为最小,同时以将来自闪光发光装置的射出光最佳聚光的状态来决定照明光学系统的形状的特征。以下,对光学棱镜6的形状的特性和出从闪光放电管7发出的光线如何行动进行详细的说明。
首先,用实际的照明光学系统的光线轨迹图(图8至图10)对决定本实施方式的照明光学系统的想法进行详细的说明。
图8为示出从光源中心射出的光束入射到光学棱镜6后,如何动作的图。本实施例的特征为从光源中心射出多束光线以不在光学棱镜6的射出面6b上相互交叉·干涉的、连续性的并列状态到达规定位置的方式构成照明光学系。即、以从光源中心具有规定角度射出的多束光线在射出面6b上1对1地对应,同时具有连续的角度变化的、并列的方式来决定光学棱镜6的形状。
此外,在假定光学棱镜6在光轴方向上充分长的场合,如图8中的点划线所示,以将来自光源的射出光束大致向1点(聚光点)O聚光的方式来决定光学棱镜6的各部的形状。
通过如此决定光学棱镜6的各部(入射面6a、6c、6c′、全反射面6d、6d′、射出面6b)的形状,能够将照明光学系统的射出面(射出面6b)的区域高度的尺寸减小为最小限度。另外,通过以具有任意的负的折射力的透镜来构成光学棱镜6的射出面6b,可适宜调整照射角度的范围。由此,能够由与本发明的目的相吻合的小的射出开口部来构成高效率的聚光光学系统。
此外,本实施例的光学棱镜6的射出面6b的形状为以聚光性最好的照明光学系统为目标形状,使用图9及图10,以下述所述方式决定射出面6b的形状。
图9所示的光线轨迹图示出了从光源中心射出的光束中向光学棱镜6的入射面6a直接入射的成分。该光束为相对于光轴为比较小的角度的成分,在光学棱镜6中只受折射的影响。
光学棱镜6的入射面(凸透镜)6a由具有正的折射力的柱状透镜构成,由于具有极强的折射力,如图9所示,从光源中心射出、通过入射面6a的光束朝向光轴聚光地前进。该光束由光学棱镜6的射出面6b折射,并变换为与光轴平行的光束后,向被摄体方向射出。
在此,光学棱镜6的射出面(凹透镜部)6b由具有负的折射力的柱状透镜构成,由入射面6a向光轴侧聚光的光束通过由射出面6b的折射成为与光轴平行的光束。
从光源中心射出的光束中向入射面6a入射的光束从光学棱镜6的射出面6b中光轴附近的比入射面6a更窄的区域(中央区域)射出,变换为与从光源射出时的照射角度相比具有非常狭窄的角度分布的光束。
另一方面,从光源中心射出的光束中朝向装置后方的光束由设置于装置后方的反射伞8反射。在此,由于反射伞8具有与光源中心同心的半圆筒部8a,由反射伞8的半圆筒部8a反射的光束再次被导向光源中心附近。并且,此后与上述的光程相同地,从光学棱镜6的射出面6b的中央区域射出。
在此,应该注意的是,从光源中心射出的光束的在射出面6b上的通过区域与在入射面6a上的通过区域相比变窄,以及从射出面6b射出的光束的角度范围比光束入射到入射面6a的时刻的角度范围要窄。即,如果将光源作为点光源来考虑,通过在光学棱镜6的入射面侧形成具有强的正折射率的入射面6a的同时,在射出面侧形成具有负的折射力的射出面6b,将来自光源中心的射出光束在入射面6a上向光轴侧聚光后,从射出面6b中光轴附近的曲率比较缓的区域射出。因此,能够从射出面6b的窄小区域射出高效率地被聚光的光束。
另一方面,图10所示光线轨迹图示出了从光源中心射出的光束中向光学棱镜6的入射面6c、6c’入射的成分。即,图10所示的光束为具有与图9所示的光束比较相对于光轴比较大的角度的成分,为在光学棱镜6中被反射的成分。
在此,光学棱镜6的入射面6c、6c’由相对于光轴具有比较大的角度的面构成。因此,入射到入射面6c、6c’的光束由入射面6c、6c’折射,导向全反射面(反射部)6d、6d’。并且,由全反射面6d、6d’反射的光束朝向光轴聚光地前进。
如上所述,入射面6c、6c’由相对于光轴具有比较大的角度的面构成,这是为了防止在相对于入射面6c、6c’的光轴倾斜角度小的情况下,产生从光源中心射出的光束中由入射面6c、6c’全反射的成分,来自光源的射出光束朝向与图10所示的预先计划的光线轨迹方向不同的方向。因此在本实施例中,通过对入射面6c、6c′施加规定的倾斜来防止发生由入射面6c、6c′全反射的成分(不要成分)。
由全反射面6d、6d′反射的成分如图10的光线轨迹图所示,被导入射出面6b中比入射面6c、6c′的区域窄的区域中。与此同时,由全反射面6d、6d′反射的成分被连续并不交叉地导向射出面6b中上端及下端的周边区域中,在该区域通过折射变换为与光轴平行的光束。因此,从光学棱镜6(射出面6b)射出的光束的角度范围与入射到光学棱镜6(入射面6c、6c′)前的光束的角度范围相比变得相当窄。
另一方面,对于作为从光源中心射出的光束的朝向装置后方的光束中相对于光轴为比较大的角度的成分由设置于装置后方的反射伞8反射。在此,反射伞8由于具有与光源中心同心的半圆筒部8a,由反射伞8的半圆筒部8a反射的光束被导向光源中心附近。然后,通过上述的光程,从光学棱镜6的射出面6b的周边区域射出。
以上,由图9及图10所示的2个成分的光线轨迹图所示,在2个成分的任一个情况下,与入射面6a、6c(6c′)的区域相比较,射出面6b的光通过区域一方变窄。并且,从光源中心射出的光束全部变换为与光轴平行的光束。因此,该区域成为较狭窄的射出开口部(射出面6b),并且聚光效果良好。
此外,图9所示的折射光程及图10所示的全反射光程走向的光束都要通过射出面6b,由于该射出面6b由具有连续性的曲面构成,能够减少由于各部件的加工精度引起的误差及照明光学系统组装上的位置误差的影响。即,即使到达射出面6b的光束的位置有微小的误差,对光学特性的影响也较小,能够得到稳定的光学特性。
在上述的照明光学系统的构成中,即使在假定光源的尺寸具有某一定尺寸的情况下,也难以产生光学特性的大幅度的变化,相对于光源的尺寸的变化能够得到连续的光学特性的变化,因此,在作为具有均匀的配光分布的照明光学系统上为情况良好的结构。
在此,由于光学棱镜6的射出面6b与第1实施例的光学棱镜1的射出面1b相比为中央区域的陷入较深,但不是复杂的面构成,而是形成单一的凹面形状,所以具有作为闪光发光装置的外观部件也能直接使用的优点。此外,由于在本实施例的闪光发光装置中,能够以极少的构成部件将来自光源的射出光聚光,所以聚光效率良好,能够进行在光学特性上没有配光不匀的均匀照明。
在本实施例的闪光发光装置中,在使用光学棱镜6的照明光学系统中,在具有小型化及高聚光率的特征的同时,为能够尽可能使闪光装置的射出开口部(射出面6b)的尺寸在装置上下方向上小型化的结构。即,作为照明光学系统所必需的尺寸(装置高度)取决于由全反射面6d、6d′构成的尺寸,但用于向被摄体照射照明光的实际所必需的射出开口部的尺寸能够比由全反射面6d、6d′构成的尺寸减小很多。
使用图7对本实施例的照明光学系统的理想形状进行说明。图7为闪光放电管7的径向的闪光发光装置的剖面图,在同图中示出了构成照相机本体26的外装部件的罩体9与照明光学系统的配置关系。如上所述,由于作为照明光学系统的射出开口部起作用的是光学棱镜6的射出面6b,所以罩体9以在照相机外部仅露出射出面6b的方式形成。因此,能够减小由罩体9形成的开口部在装置上下方向上的尺寸,能够最大限度的实现本实施例的闪光发光装置的特征。
此外,如图7所示光学棱镜6中形成于光源侧的前端部6j以延伸到与光源中心相当的位置的状态构成。这是由于如果光学棱镜6的前端部6j位于比与光源中心相当的位置靠装置前方的位置时,不能拾取从光源射出的光束中向相对于光轴大致90°方向(图7中上下方向)射出的成分,不能将从光源射出的光束高效率地聚光。
相反,如果光学棱镜6的前端部6j以延伸到比与光源中心相当的位置靠近装置后方的位置的方式形成,将来自光源的所有射出光束高效率地聚光时,光学棱镜6的体积就会增大。并且来自光源的射出光束难以由全反射面6d、6d′全反射,由于脱出光学棱镜6的成分增加,来自光源的射出光束不能被高效率地利用。
因此,从照明光学系统的聚光效率及尺寸的关系上,最好光学棱镜6的前端部6j如图1所示,形成于与光源中心的位置大致一致的位置上。
此外,反射伞8在如上所述地具有与光源中心同心的半圆筒部8a的同时,在半圆筒8a的两端上具有与半圆筒8a一体成形的相对于光学棱镜6的前端部6j向装置后方绕入的侧边部8b。
对于从光源中心射出的光束如图9及图10所示的光线轨迹图所示,不会从光学棱镜6的全反射面6d、6d’脱出,但在从相对于光源中心错开位置射出的光束中,存在从全反射面6d、6d’脱出的光束。因此,通过在反射伞8上设置侧边部8b,从全反射面6d、6d’脱出的光束由侧边部8b反射,从光学棱镜6的全反射面6d、6d’再入射。
在此,由于反射伞8的侧边部8b如图7所示,为沿光学棱镜6的全反射面6d、6d’的形状,所以由侧边部8b反射、并向全反射面6d、6d’再入射的反射光也能够作为被摄体照明光被有效地利用。
以下,对光学棱镜6的理想形状进行说明。关于本实施例的光学棱镜6的形状最好与第1实施例中说明的光学棱镜1的理想形状相同。以下将实际的数据代入,研究在第1实施例中说明了的关系式(1)、(2)对于本实施例的光学棱镜6是否成立。
在本实施例中,光学棱镜6的射出面6b的开口高度D为3.0mm、光学棱镜6的全反射面6d、6d′的最大高度A为4.69mm。由这些数值求出式(1)的D/A的值为0.64、该值在上述式(1)所示的范围内。
此外,在本实施例中,从光学棱镜6的射出面6b的前端到光学棱镜6的全反射面6d、6d′的最大外形的距离L为1.4mm、从光学棱镜6的全反射面6d、6d′的最大外形到光源中心的距离B为3.34。由这些值示出的式(2)的L/B的值为0.42,该值也在式(2)所示的范围内。
以下,使用图11对闪光放电管7的轴向的闪光发光装置的构成进行说明。图11为闪光放电管7的轴向的闪光发光装置的剖面图,对于与图7到图10中说明了的部件相同的部件标以相同符号。
在光学棱镜6的侧面上形成全反射面6e、6e′。该反射面6e、6e′与第1实施例不同,形成为向光学棱镜6入射的光束以不与反射面6e、6e′接触的方式脱出的形状,不会对由位于光学棱镜6的射出面侧的菲涅耳透镜构成的折射光学系统造成影响。
此外,作为光学透镜6的射出面6b的形状的特征,位于射出面6b的纵长方向两端的端面为倾斜面6f、6f′。由此,在防止从光源射出的、朝向必要照射角度范围内的光束被射出面6b的两端反射掉的同时,在与构成照相机26的外装部件的罩体9的接缝处没有异常不谐调感。
另一方面,射出面6b的中央区域形状与第1实施例相比有很大不同。即,射出面6b的中央区域由具有负的折射力的柱状透镜构成,不会对装置上下方向的聚光作用施加不良影响。此外,在射出面6b的中央区域以外的周边区域中,形成多个小棱镜面6h、6h’及菲涅耳透镜面6i、6i’。
射出面6b的周边区域(小棱镜面6h、6h’及菲涅耳透镜面6i、6i’)以在能够在产生上述的闪光放电管7的径向的聚光性的同时,也能够提高闪光放电管7的轴向的聚光性的方式构成。这样,通过闪光放电管7的径向及轴向的聚光作用,作为整体能够实现聚光性极高的照明光学系统。
在本实施例中,示出了通过使用光学棱镜6将从作为光源的闪光放电管7射出的光束聚光在最窄范围中的照明光学系统的一例。但本发明并不限于上述第2实施例的光学棱镜6的形状。
例如,本实施例的光学棱镜6的射出面6b由顶角为一定角度的多个小棱镜面6h、6h’及菲涅耳透镜面6i、6i’构成,但不一定需要由两者构成,可仅由任一方构成。此外,在本实施例中,光学棱镜6的射出面6b由具有负的折射力的柱状透镜构成,但并不一定需要由这种柱状透镜构成,可由顶角一定的多个棱镜替代柱状透镜构成。再者,射出面6b的周边区域由菲涅耳透镜构成,但也可使该区域由具有正的折射力的透镜构成。
(第3实施例)以下,参照附图对作为本发明的第3实施例的闪光发光装置(照明装置)进行说明。图13~图19为用于说明本实施例的闪光发光装置的视图。本实施例的闪光发光装置为照射角可变类型的装置。
图13及图14为闪光放电管的径向的闪光发光装置的中央剖面图,图15及图16分别为在图13及图14所示的剖面图中,标出从光源中心射出的光线轨迹的图。此外,图17为用于说明光学棱镜的形状的图。图18为闪光放电管的轴向(纵长方向)的闪光发光装置的剖面图,图19为用于示出闪光发光装置的主要部件的构成的分解立体图。
图19为用于说明闪光发光装置的内部结构的分解立体图。此外,在同图中仅示出了闪光发光装置的主要部分,未示出保持部件及导线。
在图19中,101为设置于闪光发光装置的光源侧的第1光学棱镜,102为相对于第1光学棱镜101设置于装置前方侧的第2光学棱镜。这些光学棱镜101、102由丙烯树脂等透射率高的光学用树脂材料或玻璃材料构成。
103为接受输入触发信号的输入而发生闪光的圆筒状的闪光放电管(氙气管)。104为将从闪光放电管103射出的光束中向装置后方射出的成分向射出方向(装置前方)反射的反射伞,内面(反射面)由具有高反射率的辉光铝等金属材料形成。
上述构成的闪光发光装置设置于由第1实施例说明的照相机(图6)中。以下,对于与在图6中说明过的部件相同的部件标以相同符号来说明。
在具有本实施例的闪光发光装置的照相机中,对例如照相机设定为“闪光灯自动模式”的场合的照相机动作进行说明。
由操作者半压操作释放按扭21时,由测光装置对外光的亮度进行测定(测光),将该测光结果送至设置于照相机本体26内的中央计算装置中。中央计算装置通过外光的亮度和摄影介质(胶卷或CCD等的摄影元件)的感光度判断闪光发光装置是否发光。
在判断为“闪光发光装置发光”的场合,中央计算装置通过根据释放按扭21的全压操作向闪光发光装置发出发光信号,经过安装在反射伞104上的未图示的触发导线使闪光发光管103发光。在此,从闪光放电管103射出的光束中向与照射方向(装置前方)相反方向射出的光束由设置于装置后方的反射伞104反射并导向照射方向。此外,向照射方向射出的光束直接入射到设置于装置前面的第1光学棱镜101中,此后入射到第2光学棱镜102中,并变换为规定的配光特性后,向被摄体侧照射。
本实施例的闪光发光装置在如后所述地尽可能地减小设置于被摄体侧(装置前方)的第2光学棱镜102的射出开口部的在装置上下方向的长度的同时,使配光特性最优化。以下,使用图13~图17对闪光发光装置(光学棱镜101、102)的最佳形状的设定方法进行详细说明。
图13~图17为闪光放电管的径向的闪光发光装置的纵剖面图。在这些图中,101为第1光学棱镜,将从光源(闪光放电管103)射出的光束在包含闪光放电管103的直径方向的平面中聚光于光轴上的大致一点。102为具有负的折射力的第2光学棱镜,设置于比由第1光学棱镜101形成的光束的聚光点靠近光源侧。
在本实施例中,第1光学棱镜101及第2光学棱镜102的光轴方向的相对距离能够变化,由此能够变化从闪光发光装置照射的光束(照明光)的照射角度范围。第1光学棱镜101及第2光学棱镜102的驱动由未图示的照明驱动机构进行,该照明驱动机构与驱动摄影光学系统的变焦的变焦驱动机构相连动。通过这种结构,能够根据摄影光学系统的变焦来变化闪光发光装置的照射角度范围。
103为圆筒形状的闪光放电管,接受触发信号的输入来发出闪光。104为具有与闪光放电管103同心的半圆筒部104a的反射伞,105为构成照相机本体26的外装部件的罩体。
如图13、14所示,第2光学棱镜102相对于罩体105通过粘接等固定为一体。另一方面,第1光学棱镜101相对于闪光放电管103及反射伞104由未图示的保持部件以可保持与这些部件规定位置关系的状态被固定。并且,第1光学棱镜101、由闪光放电管103及反射伞104构成的单元能够通过未图示的驱动机构在光轴方向上移动。
图13及图15示出了在本实施例的闪光发光装置中来自光源的射出光束最聚光的状态、即照射角度范围最窄状态下的光学棱镜101、102的位置关系。另一方面,在图14及图16示出了在本实施例的闪光发光装置中,将来自光源的射出光束均匀地扩散的状态,即照射角度范围最宽的状态下的光学棱镜101、102的位置关系。
此外,在图15及图16中,分别在图13及图14所示的剖面图以外,同时也示出了从闪光放电管103的内径中心部射出的代表光线的轨迹,为表示来自光源中心的射出光束朝向被摄体时的光束的分布图。此外,图13~图16中,在光轴方向上的位置关系以外的全部照明光学系统的构成及形状相同。
在本实施例的闪光发光装置中,通过2个光学棱镜101、102的组合,能够使照明光学系统整体的尺寸减小,同时能够在保证配光特性均匀的同时逐渐变化照射角度范围。因此,本实施例的最大特征为能够减小向装置外照射光线的开口部中装置上下方向的开口高度。以下对照明光学系统的形状的特性及从闪光放电管103发出的光线的行动进行详细说明。
首先,使用图15及图16的光线轨迹图对实际的照明光学系统的光线的动作进行详细说明。在图15中,作为闪光放电管103示出了玻璃管的内外径。作为设置于闪光发光装置内的闪光放电管103的发光现象,为了提高发光效率,以内径全体发光的情况为多,可以闪光放电管103的内径整体大致均匀地发光来考虑。
另一方面,在设计阶段,为了高效率地控制从构成光源的闪光放电管103射出的光,最好比同时考虑闪光放电管103的内径全体的光束更为理想地假定在光源中心上为点光源来设计照明光学系统的形状。并且,在设计照明光学系统的形状后,考虑光源具有有限的尺寸来进行修正,能够得到高效率的设计。本实施例也根据这种思考方法,将光源的发光部中心作为决定照明光学系统的形状时的基准值来考虑,以下如所说明的方式设定光学棱镜101、102各部的形状。
首先,使用图17对被认为是本实施例的最大特征的第1光学棱镜101的形状进行详细说明。图17为示出从图15或图16所示的状态下除去第2光学棱镜102状态下的图,为从光源中心射出的光束的轨迹图。
第1光学棱镜101如图17所示,将基本地从光源中心射出的光束向光轴上1点O(聚光点)聚光。以下对该第1光学棱镜101各部的形状进行详细说明。
首先,从光源中心射出的光束中与光轴构成的角度小的成分向设置于第1光学棱镜101中光源侧的入射面101a入射。该入射面101a由凸面形状的柱状透镜构成。然后,通过入射面101a的光束通过射出面101b,并向光轴上的聚光点O聚光。
另一方面,从光源中心射出的光束中与光轴构成的角度大的成分向形成于第1光学棱镜101的光源侧的入射面101c、101c’入射,由该入射面101c、101c’折射后,导向全反射面(反射部)101d、101d’。然后,由全反射面101d、101d’反射的光束通过射出面101b,聚光在光轴上的聚光点O上。
作为从光源中心射出的光束的朝向装置后方的光束由反射伞104反射。反射伞104由于具有与圆筒形状的闪光放电管3同心状的半圆筒部104a,由反射伞104的半圆筒部104a反射的光束被导向光源中心附近。然后,通过与从上述的光源中心朝向射出方向的光束相同的光程,在光轴上的聚光点O上聚光。其结果,基本上从光源中心射出的光束都在聚光点O上聚光。
在此,第1光学棱镜101的射出面101b以入射该面的全部光束相对于射出面101b大致直角(法线方向)地入射的方式决定面形状。这是由于在如果射出面101b的面形状不被决定为上述的形状的情况下,从第1光学棱镜101射出光束时,在射出面101b上会发生由于表面反射而造成的光量损耗成分。
此外,如图17所示,从光源中心射出的光线相互不交叉地到达光学棱镜101的射出面101b,并且根据从光源中心射出的角度在射出面101b上顺序排成一列地到达。
光学棱镜101的入射面101c、101c’由相对光轴具有比较大的角度的面构成。这是为了防止在相对于入射面101c、101c’的光轴倾斜角度小的情况下,产生从光源中心射出的光束中由入射面101c、101c’全反射的成分,朝向与图17所示的预先计划的光线轨迹方向不同的方向。因此在本实施例中,通过对入射面101c、101c′施加规定的倾斜来防止发生由入射面101c、101c′全反射的成分。
通过如上所述地考虑光学棱镜101各部的形状,能够将来自光源的射出光束聚光在光轴上的聚光点O上,能够如后所述地成为适于构成照射角度可变的照明光学系统的结构。
以下,对在本实施的闪光发光装置中照射角度变化时的光学棱镜101、102的位置关系进行说明。
图13及图15所示的状态为从闪光发光装置射出的光束最聚光的状态。在该状态中,第1光学棱镜101的射出面101b与第2光学棱镜102的入射面102a为最接近的状态。在本实施例中,由于光学棱镜101的射出面101b与光学棱镜102的入射面102a形成相互无间隙地重合形状,所以光学棱镜101及光学棱镜102几乎为紧密接触的状态。
另一方面,第2光学棱镜102的射出面(凹透镜部)102b为了将通过该面的光束变换为朝向与光轴大致平行方向,由极端的凹面状的柱状透镜构成。并且,通过如图17所示地以射出面102位于比聚光点O靠近光源侧的方式设置第2光学棱镜102,能够使来自光源的光束以良好的聚光效率从射出面102b射出。
图15所示的状态为最极端的状态,通过将从光源中心射出的光束经过第1光学棱镜101及第2光学棱镜102变换为与光轴平行的光束,能够得到照射角度最窄的高聚光度状态。
另一方面,图14及图16为第1光学棱镜101与第2光学棱镜102仅离开一定距离L设置的图。如这些图所示,通过第1光学棱镜101及第2光学棱镜102之间的离开距离,从光源中心射出的光束能够从图15所示的最聚光的状态向扩展到图16所示的照射角度范围θ的状态变化。
图15及图16分别示出了照射角度范围最窄的状态与最宽的状态,但本实施例的闪光发光装置的照射角度范围并不限于上述2个状态。即,通过将第1光学棱镜101停止在任意位置,可以改变第1光学棱镜101及第1光学棱镜102之间的距离,这样能够使照射角度范围为图15所示的状态与图16所示的状态之间的任意的范围。此外,在第1光学棱镜101的移动行程中,能够使照射角度范围逐渐变化,在任意的照射角度范围的场合都能够使来自光源的射出光以具有均匀的配光分布的方式变换。
由此,通过在比由从第1光学棱镜101射出的光束形成的聚光点O接近光源侧位置上设置具有负的折射力的第2光学棱镜102,变化两者的光轴方向上的位置关系,就能够改变照射角度范围。
如图15及图16可知,该照射角度范围的变化决定第2光学棱镜102的射出面102b(凹透镜面)相对于聚光点O位于什么位置。即,如图15所示,在第2光学棱镜102的射出面102b的全部区域中通过来自光源的射出光束的情况下,能够具有高的聚光性。
此外,如图16所示,光束只通过射出面102b中光轴附近的曲率小的区域的场合,由于聚光力弱而照射角度范围变宽,能够在该宽的范围内具有均匀的配光特性。
另一方面,如图13至图16所示,相对于第1光学棱镜101的射出面101b的区域(从光源中心射出的光束通过射出面101b的区域),第2光学棱镜102的射出面102b的区域(从光源中心射出的光束通过射出面102b的区域)变窄,在马上入射到第1光学棱镜101之前与刚从第2光学棱镜102射出之后,照射角度范围变的极窄。因此,能够从照明光学系统狭窄的射出开口射出高聚光效果的光束。
此外,通过第1光学棱镜101的入射面(凸透镜部)101a的光束与通过入射面101c、101c’的光束均从共用的射出面101b射出,该射出面101b由具有连续性的曲面构成。因此,射出面101b的加工容易,不会产生由于加工精度引起的误差及照明光学系统组装上的位置误差。即,即使到达射出面101b的光线的位置有微小的误差,由于射出面101b上没有不连续的地方、并且面形状的变化少,对光学特性的影响也较小,所以能够得到没有配光不均等的稳定的光学特性。
上述情况在即使假定光源的尺寸具有某一定尺寸的情况下也同样,难以产生光学特性的大幅度的变化,相对于光源的尺寸的变化能够得到连续的光学特性的变化。因此在作为具有均匀的配光分布的照明光学系统上为情况良好的结构。
再者,由于第2光学棱镜102的射出面102b不是由复杂的面构成,而是以单一的凹面形状形成,在上述的射出面101b的效果以外,具有即使作为闪光发光装置的外观部件也能直接使用的优点。
另一方面,本实施例最大的特征是在使用光学棱镜101、102的照明光学系统中,在具有小型·高聚光率的特征的同时,仅射出面102b的尺寸小型化。即,作为照明光学系统所必需的全长·高度与以往的技术相比非常小型化的基础上,只要光源足够细就不存在明显的光量损失的光束。并且在照明光学系统整体小型化的同时,能够减小外观上(照相机外观上)的闪光发光装置的射出开口部(射出面102b)。
以下,使用图13及图14对本实施例的照明光学系统的理想形状进行说明。图13及图14为闪光放电管103的径向的闪光发光装置的剖面图,在该图中示出了构成照相机本体26的外装部件的罩体105及照明光学系统的位置关系。
正如使用图15及图16所说明的,由于作为照明光学系统的射出面起作用的是第2光学棱镜102的射出面102b,照相机的照明光学系统的射出开口部也是以只该部分露出于照相机外部的方式形成罩体105。因此,能够使照明光学系统的射出开口部中照相机上下方向的尺寸看上去最小,能够最大限度的实现本实施例的特征。
此外,第1光学棱镜101中形成于光源侧的前端部101e如图13及图14所示地以延伸到与光源中心相当的位置的状态构成。这是由于如果光学棱镜101的前端部101e位于比与光源中心相当的位置靠近装置前方的位置时,不能拾取从光源射出的光束中向相对于光轴大致90°方向(图1中上下方向)射出的成分,不将能从光源射出的光束高效率地聚光的缘故。
相反,如果光学棱镜101的前端部101e以延伸到比与光源中心相当的位置靠装置后方的位置的方式形成,并将来自光源的所有射出光束高效率地聚光时,光学棱镜整体(第1光学棱镜101)的体积增大。并且来自光源的射出光束难以由反射面101d、101d′全反射,由于脱出光学棱镜101的成分增加,所以来自光源的射出光束不能被高效率地利用。
因此,从照明光学系统的聚光效率及尺寸的关系上,最好光学棱镜101的前端部101e形成于与光源中心相当的位置大致一致的位置上。
此外,反射伞104在如上所述地具有与光源中心同心的半圆筒部104a的同时,在半圆筒部104a的上下两端上具有与半圆筒部104a一体成形的向光学棱镜101的前端部101e的后方绕入的侧边部104b。对于从光源中心射出的光束如图15及图16的光线轨迹图所示,不存在从光学棱镜101的全反射面101d、101d’脱出的光束,但在从相对于光源中心错开位置射出的光束中,存在从全反射面101d、101d’脱出的光束。因此,通过设置侧边部104b,从全反射面101d、101d’脱出的光束由光学棱镜101的全反射面101d、101d’再入射。
在此,如图13及图14所示,由于反射伞104的侧边部104b为沿光学棱镜101的全反射面101d、101d’的形状,所以由侧边部104b反射、并向全反射面101d、101d’再入射的反射光也能够作为被摄体照明光被有效地利用。
以下,对光学棱镜101、102的理想形状进行说明。首先,对于照明光学系统的在装置上下方向的尺寸的理想形状进行说明。
在图13中,第2光学棱镜102的射出面102b的开口高度D最好在下述关系式(3)的范围内。即,第2光学棱镜102的射出面102b的开口高度D与第1光学棱镜101的全反射面101d、101d’的最大高度A的比在以下的范围内。
0.4≤D/A≤0.8 ……(3)为了与照相机的新设计相对应,极力地抑制开口高度D是理想的,但是由于作为光源的闪光放电管103的尺寸,随着开口高度D的长度的减小,光量损失就会加大,不能构成有效的聚光光学系统。
即,在射出面102b的在装置上下方向的开口高度D的长度减小的场合,在光源的尺寸(闪光放电管103的直径)加大的情况下,直接朝向第2光学棱镜102的射出面102b的光束减少,在光学棱镜101、102的内部反复地进行全反射的成分增加。结果,本来必须从射出面102b射出的成分许多都从光学棱镜101、102的其他部分射出,减少了来自光源的射出光束中有效地使用于被摄体照明的成分。因此,在上述的构成中,虽然抑制了装置上下方向的开口高度D,但不一定在有效地利用来自光源的射出光束方面成为理想的照明光学系统。
由于上述的观点,上述式(3)的下限值为在作为光源的闪光放电管103的尺寸(直径)比较小的场合,作为照明光学系发挥有效功能的开口高度D的尺寸。此外,上述式(3)的上限值为在闪光放电管103的直径大的场合,作为照明光学系发挥有效功能的开口高度D的尺寸。
如上所述,上述式(3)的下限值为在闪光放电管103的直径小的场合,作为照明光学系发挥有效功能的开口高度D的尺寸,在算式上闪光放电管103越小开口高度D的尺寸就能够越小。但是,实际上由于闪光放电管103的耐久性能及制造方法等原因,不存在规定的直径以下的闪光放电管103。
因此,考虑可实质性制造的闪光放电管103的直径,以D/A的下限值为0.4为妥。
另一方面,在D/A的值超过上述式(3)的上限值0.8的场合,开口高度D的尺寸增大,从减小射出开口部的在装置上下方向的尺寸的本发明的目的来看并不好。
将实际的数值适当地代入上述式(3)来讨论本实施例的闪光发光装置。在本实施例中,闪光放电管103的直径(内径)为φ1.3mm、第1光学棱镜101的全反射面101d、101d′的最大高度A为6.8mm、第2光学棱镜102的射出面102b的开口高度D为4.5mm。由这些数值求出式(3)的开口比(D/A)的值为0.66、该值在上述关系式(3)的范围内。
以下,对光学棱镜101、102的光轴方向的位置关系进行说明。第1光学棱镜101与第2光学棱镜102的间隔为L(参照图14),从第1光学棱镜101的射出面101b到聚光点O的距离为B(参照图17)时,最好距离L与距离B满足下式(4)。
0≤L/B≤1.0 ……(4)
极力缩短距离L在使照明光学系统的小型化上是理想的。但是,为了减小第2光学棱镜102的射出面102b的在装置上下方向的尺寸,需要一定程度的长度L也是事实。此外,考虑构成照相机本体26的罩体105的厚度,为了使第2光学棱镜102的射出面102b在装置上下方向上看上去较窄,也需要有一定程度的长度。
在本实施例中,考虑上述2个因素,以使上述关系式(4)成立的方式决定距离L及距离B。
式(4)中的下限值为0,意味着第1光学棱镜101与第2光学棱镜102接触的状态,不能比该下限值小。另一方面,作为上限值为1.0,若取为比其大的值时照明光学系统整体在光轴方向上加大,偏离了作为本实施例的效果之一的照明光学系统的小型化的意图。此外,光学棱镜101、102之间的距离在L/B>1.0的场合,朝向射出面102b的中央区域的光束大量减少,不能形成良好的配光特性的情况较多。
将实际的数值适当地代入上述式(4)来讨论本实施例的闪光发光装置。在本实施例中,距离L(光学棱镜101、102之间的最大距离)为3mm、距离B为5mm。由这些数值求出的L/B的值为0.6、该值在上述关系式(4)的范围内。
在本实施例中,第1光学棱镜101的射出面101b为了减少光量损失而以光线相对于射出面101b大致垂直(法线方向)地入射的方式由曲面构成。但射出面101b的形状并不限定于上述的曲面形状。
例如可以减小射出面101b的曲率,在极端的场合也可为平面。在此场合,聚光点O位于第1光学棱镜101的射出面101b附近,通过稍微移动距离就能够变化照射角度。
但是,由于聚光点位于光源侧附近时,从射出面101b射出的射出角度相对于光轴较大的成分也增加,在向光轴上的1点聚光这件事本身就很难,同时,由第2光学棱镜102进行聚光控制的凹面(射出面101b)的设计也变得困难,在光学棱镜内由于全反射造成的光量损失会增加。并且,产生难以确定第2光学棱镜102的透镜壁厚的弊端。
但作为照射角度可变的照明光学系统,由于为可小型化的形式,从该观点上看是有效的。
在本实施例中,第1光学棱镜101的射出面101b与第2光学棱镜102的入射面102a由相互的面形状为无间隙地重合的凹面与凸面的柱状透镜构成,但两者的形状并不一定这样组合,不需要为相互重合的形状。
例如,也可为第1光学棱镜101的射出面101b为平面,第2光学棱镜102的入射面102a为凹面地构成不相同的面。不管怎样,第2光学棱镜102的入射面102a及射出面102b之中至少一方为凹面,作为整体以具有负的折射能力的方式构成是必要的。
由此,即使在改变第1光学棱镜101的射出面101b的形状的场合,也能够通过在光轴方向上移动第1光学棱镜101来变化照射角度范围。在此场合,也最好能在满足上述式(4)的范围内移动第1光学棱镜101。由此,构成照明光学系统的光学棱镜的形状不会被不必要地大型化,同时能够实现减小射出开口部的照明装置。此外,由于上述结构在变化照射角度范围上也不是不能实现的结构,所以能够比较高效率地变化照射角度范围。
以下使用图18所示的剖面图对闪光放电管103的轴向的闪光发光装置的形状进行说明。在同图中,对于与图13到图17中说明了的部件相同的部件标以相同符号。
作为第2光学棱镜102的形状特征,在纵长方向侧面上形成全反射面102e、102e′。由此,能够将从光源射出光束中朝向必要照射角度范围以外的光束导向必要照射角度范围内,能够有效地利用来自光源的射出光线。此外,作为第2光学透镜102的射出面侧的形状的特征,为用于防止由全反射面102e、102e′反射、并朝向规定方向的光束在此后的折射所致的不良影响而将射出面侧的对应面102f、102f′以平面构成。此外,通过对应面102f、102f′为平面,使得与照相机本体26的罩体105接缝处没有异常不谐调感。
另一方面,对第2光学棱镜102的其他部分的射出面的形状进行说明。中央部附近的区域(中央区域102j)的形状为仅由具有负的折射力的柱状透镜构成,为不会对装置上下方向的聚光作用施加不良影响的形状。此外,在射出面102b中,中央区域102j的左右两侧上形成多个小棱镜面102h、102h’。此外,在小棱镜面102h、102h’外侧的区域中形成菲涅耳透镜面102i、102i’。
上述的射出面102b的形状为能够在产生图13~图17所示的直管状闪光放电管103的径向的聚光性的同时、提高闪光放电管103的轴向的聚光性的形状,通过这2种聚光作用,作为整体能够实现聚光性极高的照明光学系统。
在本实施例中,示出了通过第1光学棱镜101与第2光学棱镜102的相互作用将从光源中心射出的光束聚光·扩散,而变化照射角度的照明光学系统的一例。
但本发明的照明光学系统并不仅限于本实施例的照明光学系统的形状。例如,在本实施例中,在第1光学棱镜101的射出面101b上使用了凹面的柱状透镜,但也可使该射出面101b由具有负的折射力的菲涅耳透镜构成。此外,对于光学棱镜的其他的面也可以置换为菲涅耳透镜。
另一方面,在本实施方式中,以第1光学棱镜101的反射面101d、101d’由全反射面构成的场合为前提进行了说明,但该面也可以为蒸镀金属面。在该场合下,由于照射在反射面的光线的角度的限定少,所以能以小型构成实现对来自光源的光束的高效地聚光。
再者,在反射伞104上形成相对于闪光放电管103的中心同心的半圆状筒部104a,但并不一定限于这种形状(半圆筒面),也可以具有椭圆面等2次曲面的方式形成。在反射伞上形成椭圆面的场合,能够实现反射伞在装置上下方向的小型化。
(第4实施例)以下,使用图20~26对作为本发明的第4实施例的闪光发光装置(照明装置)进行说明。本实施例的闪光发光装置为照射角可变类型的照明装置。
图20及图21为闪光放电管的径向的闪光发光装置的中央剖面图,图22为用于说明聚光光学系统的形状的图。图23及图24分别为在图20及图21所示的剖面图中,标出从光源中心射出的光线轨迹图。图25为闪光放电管的轴向(纵长方向)的闪光发光装置的剖面图。图26为用于示出闪光发光装置的主要部件的构成的分解立体图。
图26为用于说明闪光发光装置的内部结构的分解立体图。在同图中仅示出了照明光学系统的主要部分,未示出保持部件及导线。
在图26中,131为设置于闪光发光装置的光源侧的具有正折射力的柱状透镜。该柱状透镜131的两面131a、131b形成凸面状。132为设置于闪光发光装置的射出面侧的光学棱镜。柱状透镜131及光学棱镜132由丙烯树脂等透射率高的光学用树脂材料或玻璃材料构成。
133为接受触发信号的输入而发生闪光的直管状的闪光放电管(氙气管)。134为将从闪光放电管133射出的光束中向装置后方或装置侧方射出的成分向射出方向(装置前方)反射的反射伞,内面(反射面)由具有高反射率的辉光铝等金属材料形成。
相对于第3实施例,本实施例的闪光发光装置为由另一种光学系统构成将从光源射出的光束向大致1点聚光的聚光光学系统的闪光发光装置。即,在第3实施例中使用设置于光源侧的第1光学棱镜单一部件、并将来自光源的射出光束向大致1点(聚光点)聚光,而在本实施例中为使用柱状透镜131和反射伞134的2个部件向大致1点(聚光点)聚光的结构。
本实施例的闪光发光装置设置于由第1实施例说明的照相机(图6)中。以下,对与同图中说明过的部件相同的部件标以相同符号来说明。
以下使用图20~图24,对本实施方式的照明光学系统的最适合形状的设定方法进行详细说明。
图20~图24为本实施例的闪光发光放电管的径向的闪光发光装置的纵剖面图。在这些图中,131为用于将从光源中心射出的光束在该剖面上向光轴上的大致一点聚光的具有正折射力的柱状透镜(凸透镜部)。132为相对于柱状透镜131设置于射出面侧,具有负的折射力的光学棱镜。
133为圆筒形状的闪光放电管,接受触发信号的输入来发出闪光。134为反射伞,具有与闪光放电管133同心的半圆筒部134a和将从光源中心射出的光束聚光在大致1点上的椭圆部(反射部)134b、134b’。在此,由柱状透镜131及反射伞134构成聚光光学系统。135为作为照相机本体26的外装部件的罩体。
如图所示,光学棱镜132相对于罩体135通过粘接等固定为一体。另一方面,筒形棱镜131相对于闪光放电管133及反射伞134由未图示的保持部件固定在可保持与这些部件规定位置关系的状态下。并且,由筒形棱镜131、反射伞134及闪光放电管133构成的单元能够通过未图示的驱动机构在光轴方向上移动。
在本实施例中,通过上述单元在光轴方向上移动,变化单元及光学棱镜132之间的距离,这样能够变化从闪光发光装置照射的光束(照明光)的照射角度。
图20及图23示出了在本实施例的闪光发光装置中使来自光源的射出光束最聚光的状态、即照射角度范围最窄状态下的光学配置。另一方面,在图21及图24示出了在本实施例的闪光发光装置中,将来自光源的射出光束均匀地扩散的状态,即照射角度范围最宽的状态下的光学配置。
此外,在图23及图24中,分别在图20及图21所示的剖面图以外,同时也示出了从闪光放电管133的内径中心部射出的代表光线的轨迹,为表示来自光源中心的射出光束朝向被摄体时的光束的分布图。此外,图20~图24中,在光轴方向上的位置关系以外的照明光学系统的构成及形状都相同。
本实施例的闪光发光装置通过将由反射伞134及筒形棱镜131构成的聚光光学系统和具有负的折射力的光学棱镜132组合,成为能够在保证配光特性均匀的同时逐渐变化照射角度范围的照明光学系统。此外,作为本实施例的最大特征,与第3实施例同样地,是能够使装置上下方向的开口部的尺寸为最小。以下对照明光学系统的形状的特征及从闪光放电管133发出的光线的行动进行详细说明。
使用图23及图24的光线轨迹图对实际的照明光学系统的光线的动作进行详细说明。首先,使用图22对被认为是本实施例最大的特征的将来自光源的射出光束向大致1点(聚光点)聚光的聚光光学系统进行详细说明。图22示出了从图23及图24所示的照明光学系统去除光学棱镜132后的状态,为从光源中心射出的光束的轨迹图。
柱状透镜131如图所示,将基本上从光源中心部射出的光束向光轴上的大致1点(聚光点)O聚光。以下,对本实施例的聚光光学系统各部的形状进行详细说明。
首先,从光源中心射出的光束中与光轴形成的角度小的成分入射到设置于光源侧的两表面(131a、131b)为凸面状的柱状透镜131上。然后,通过柱状透镜131后的光束在聚光点O聚光。此外,与光轴形成的角度大的成分由反射伞134的反射面134b、134b’反射后,该成分也在聚光点O聚光。即,反射面134b、134b’由将光源中心与聚光点O作为2个焦点的椭圆面构成。
另一方面,作为从光源中心射出的光束的向装置后方射出的光束由反射伞134反射。反射伞134由于具有与圆筒形状的闪光放电管133同心形状的半圆筒部134a,所以由反射伞134的半圆筒部134a反射的光束再次被导向闪光放电管133的中心部附近。并且,此后通过与从上述的光源中心射出方向相同的光束相同的光程向聚光点O聚光。结果,基本上从光源中心射出的光束全聚光在聚光点O上。此外,如图22所示,可知从光源中心射出的光束相互不交叉地到达聚光点O。
柱状透镜131的尺寸以由反射伞134反射的光束不向柱状透镜131入射的尺寸形成。即,从光源中心射出的光束由反射面134b、134b’反射后,向聚光点O行进,以不与该光束干涉的方式决定柱状透镜131的尺寸。
通过如上所述地考虑聚光光学系统各面的形状,能够如后所述地成为适于构成照射角度可变的照明光学系统的结构。
以下,使用图23及图24对本实施方式的闪光发光装置中变化照射角度的结构进行说明。
图23所示的状态为从闪光发光装置射出的光束最聚光的状态。在该状态中,柱状透镜131与光学棱镜132为最接近的状态。
另一方面,光学棱镜132的射出面(凹透镜部)132b为了使由该面折射的光束朝向与光轴大致平行方向,由极端的凹面状的柱状透镜构成。通过图22所示的以射出面132 b位于比聚光点O靠近光源侧的方式设置光学棱镜132,能够使来自光源的光束以良好的聚光效率从射出面132b射出。
图23所示的状态为其最极端的状态,通过将从光源中心射出的所有光束变换为与光轴平行的光束,能够得到照射角度范围最窄的高聚光性状态。
另一方面,图24为柱状透镜131与光学棱镜132仅离开一定距离设置的图。如同图所示,通过柱状透镜131及光学棱镜132之间的离开距离,能使从光源中心射出的光束从图23所示的最聚光的状态向扩展到图24所示的照射角度范围θ的状态变化。
图23及图24分别示出了照射角度范围最窄的状态与最宽的状态,但本实施例的闪光发光装置的照射角度范围并不限于上述2个状态。即,通过将聚光光学系统停止在任意位置,改变柱状透镜131及光学棱镜132之间的距离,这样能够使照射角度范围为图23所示的状态与图24所示的状态之间的任意的范围。此外,在聚光光学系统(包含柱状透镜131)的移动行程中,聚光光学系统在任意位置的场合都能够使来自光源的射出光以具有均匀的配光分布的状态变换。
由此,通过在比由柱状透镜131射出的光束形成的聚光点O接近光源侧位置上设置具有负的折射力的光学棱镜132,变化两者在光轴方向上的位置关系,这样就能够改变照射角度范围。
如图23及图24可知,该配光特性的变化取决于光学棱镜132的射出面132b(凹透镜面)相对于聚光点O位于什么位置。即,如图23所示,在光学棱镜132的射出面132b的全部区域中通过来自光源的射出光束的情况下,能够具有高的聚光性。
此外,如图24所示,光束只通过射出面132b中光轴附近的曲率小的区域的场合,由于聚光力弱而使照射角度范围变宽,能够在该宽的范围内具有均匀的配光特性。
另一方面,如图20至图24所示,相对于构成反射伞 4的射出区域的开口部,构成光学棱镜132的射出区域的开口部较狭窄,在马上要入射到聚光光学系统之前与刚从光学棱镜132射出之后,照射角度范围变得极窄。因此,能够从照明光学系统的狭窄的射出开口部射出高聚光效果的光束。
此外,与第3实施例同样,光学棱镜132的射出面132b不是由复杂的面构成,而是由具有连续性的曲面构成。因此,射出面132b的加工容易,不会产生由于加工精度引起的误差及照明光学系统组装上的位置误差。即,即使到达射出面132b的光束的位置有微小的误差,由于射出面132b上没有不连续的地方、并且没有面形状的变化,所以对光学特性的影响也较小,能够得到没有配光不均等的稳定的光学特性。
上述情况在即使假定光源的尺寸具有某一定尺寸的情况下也同样,难以产生光学特性的大幅度的变化,相对于光源的尺寸的变化能够得到连续的光学特性的变化。并且在作为具有均匀的配光分布的照明光学系统上为情况良好的结构。
再者,由于光学棱镜132的射出面132b不是由复杂的面构成,而是由单一的凹面形状形成,所以在上述的效果以外,具有即使作为闪光发光装置的外观部件也能直接使用的优点。
以下,使用图20及图21对本实施例的照明光学系统的理想形状进行说明。图20及图21为闪光放电管133的径向的闪光发光装置的剖面图,在这些图中示出了构成照相机本体26的外装部件的罩体135及照明光学系统的位置关系。
正如使用图23及图24所说明的,由于作为照明光学系统的射出面起作用的是光学棱镜132的射出面132b,照相机的照明光学系统的射出开口部也是以只该部分露出于照相机外部的方式形成罩体135。因此,能够使照明光学系统的射出开口部中照相机上下方向的尺寸看上去最小,能够最大限度的实现本实施例的特征。
另一方面,反射伞134由半圆筒部134和半椭圆部134b构成,但该半圆筒部134a和半椭圆部134b的边界如图20、21所示,在光轴方向上正好在与光源中心相当的位置大致一致的位置上。这是由于如果反射伞134的形状变化的边界位置为比光源靠近装置前方的位置时,由半圆筒部134a反射的光束的一部向光源的装置后方返回,因此不能将从光源射出的光束高效率地聚光。
此外,如果边界的位置在比与光源中心相当的位置靠近装置后方,以由反射伞134反射的光束不与闪光放电管133及柱状透镜131干涉的方式构成时,反射伞134的光轴方向的尺寸变得极大,与本实施例的目的之一的照明光学系统的小型化相背。
由于以上理由,从照明光学系统的聚光效率及尺寸的关系上,最好反射伞134的边界的位置为与光源中心相当的位置大致一致的位置。
以下,对光学棱镜132的理想形状进行说明。首先,对照明光学系统的在上下方向的尺寸的理想形状进行说明。
在图20中,光学棱镜132的射出面132b的开口高度D最好在下述关系式(5)的范围内。即,光学棱镜132的射出面132b的开口高度D与反射伞134的反射面134b、134b’的最大开口高度A的比在以下的范围内。
0.4≤D/A≤0.8 ……(5)为了与照相机的新设计相对应,极力地抑制开口高度D是理想的,但是由于作为光源的闪光放电管133的尺寸(直径),随着开口高度D的减小,光量损失会加大,不能构成有效的聚光光学系统。
即,在射出面132b的在装置上下方向的开口高度D减小的场合,在光源的尺寸(闪光放电管133的直径)加大的情况下,直接朝向光学棱镜132的射出面132b的光束会减少。因此,本来必须从射出面132b射出的成分许多都从光学棱镜132的其他部分射出,减少了来自光源的射出光束中有效地使用于被摄体照明的成分。因此,在上述的构成中,虽然能够减小在装置上下方向的开口高度D的尺寸,但不一定在有效地利用来自光源的射出光束方面成为理想的照明光学系统。
由于上述的观点,上述式(5)的下限值为在作为光源的闪光放电管133的直径比较小的场合,为作为照明光学系发挥有效功能的开口高度D的值,在算式上闪光放电管133的直径越小开口高度D的尺寸就能够越小。但是,实际上由于闪光放电管133的耐久性能及制造方法等原因,不存在规定的直径以下的闪光放电管133。
因此,考虑可实质性制造的闪光放电管133的直径,以开口比(D/A)的下限值为0.4为妥。
另一方面,在开口比的值超过上述式(5)的上限值0.8的场合,开口高度D的尺寸增大,从减小闪光发光装置的射出开口部的在装置上下方向的尺寸的本发明的目的来看并不好。
将实际的数值适当地代入上述式(5)来讨论本实施例的闪光发光装置。在本实施例中,闪光放电管133的直径(内径)为φ1.0mm、反射伞134的全反射面134b、134b’的最大高度A为5.6mm、光学棱镜132的射出面132b的开口高度D为3.8mm。由这些数值求出式(5)的开口比为0.68、该值在上述关系式(5)的范围内。
以下,对照明光学系统的光轴方向的位置关系进行说明。反射伞134的射出面(反射伞134的前端)与光学棱镜132的入射面132a的距离为L,从图22所示的反射伞134的射出面到聚光点O的距离为B时,距离L与距离B的比最好满足下式(6)。
0≤L/B≤1.0 ……(6)极力缩短距离L在使照明光学系统小型化上是理想的。但是,为了使光学棱镜132的射出面132b的开口高度D较窄,需要有一定程度的长度(L)。
在本实施例中,考虑上述因素,以使上述关系式(6)成立的方式决定距离L及距离B的关系。
式(6)中的下限值为0,意味着反射伞134与光学棱镜132接触的状态,不能低于该下限值。另一方面,作为上限值为1.0,在为其以上值时照明光学系统整体在光轴方向上加大,偏离了作为本实施例的效果之一的照明光学系统的小型化的意图。此外,反射伞134与光学棱镜132之间的距离在L/B>1.0的场合,朝向射出面132b的中央区域的光束大量减少,不能形成良好的配光特性的情况较多。
将实际的数值适当地代入上述式(6)来讨论本实施例的闪光发光装置。在本实施例中,距离L(反射伞134与光学棱镜132之间的最大距离)为4.4mm、距离B为5mm。由这些数值求出的L/B的值为0.88、该值在上述关系式(6)的范围内。
在本实施例中,光学棱镜132的入射面132a为平面,射出面132b为凹面,而作为面的构成不一定限于这种形式,入射面132a也可为凸面或凹面。在此,通过使入射面132a为凹面,可以缓和射出面132b的凹面的折射力,具有能够回避使射出面132b成为凹入较大的凹透镜的优点,但相反也有加宽了射出面132b的缺点。无论如何,光学透镜132需要以射出面132b为凹面、作为整体具有负的折射力的方式构成。
通过上述结构,构成照明光学系统的反射伞134不会被不需要地大型化,并且能够实现在上下方向上减小射出开口部的照明装置。此外,由于上述结构在变化照射角度范围上也不是不能实现的结构,能够比较高效率地变化照射角度范围。
以下使用图25所示的剖面图对闪光放电管的轴向的闪光发光装置的形状进行说明。并且在同图中,对于与图20到图24中说明了的部件相同的部件标以相同符号。
作为光学棱镜132的形状特征,在纵长方向侧面上形成全反射面132e、132e′。由此,能够将从光源射出光束中朝向必要照射角度范围以外的光束导向必要照射角度范围内,能够有效地利用来自光源的射出光线。此外,作为光学透镜132的射出面侧的形状的特征,是在纵长方向两端形成倾斜面132f、132f′。由此,在防止了朝向必要照射角度范围的光束被该部分反射的同时,使得与照相机本体26的罩体135接缝处没有异常不谐调感。
另一方面,射出面132b的纵长方向中央部附近全面地形成具有负的折射力的柱状透镜。由此,不会对闪光放电管134的径向的聚光作用产生不良影响。这样,通过射出面132b由单一的凹面的柱状透镜构成,具有能够形成不会对照相机的外观上施加异常感的顺畅形状的优点。
在本实施例中,示出了通过反射伞134、柱状透镜131及光学棱镜132的相互作用将从光源中心射出的光束聚光·扩散,而变化照射角度的照明光学系统的一例。但本发明的闪光发光装置的构成并不限于本实施例中说明了的闪光发光装置的构成。例如,在本实施例中,光学棱镜132的射出面132b上使用了凹面的柱状透镜,但也可以使该面为在闪光放电管133的轴向也具有折射力的特里克透镜,或由具有负折射力的轮带状菲涅耳透镜构成。
(第5实施例)使用图27~图29对作为本发明的第5实施例的闪光发光装置(照明装置)进行说明。本实施例的闪光发光装置为照射角可变类型的装置。
图28及图29为闪光放电管的径向的闪光发光装置的中央剖面图,为标出从光源中心射出的光线轨迹图。此外,图27为用于说明聚光光学系统的形状的说明图。
在本实施例的闪光发光装置中,取消了在第3、4实施例中用于将从光源射出的光束向大致一点(聚光点)聚光而使用的由丙烯树脂等构成的光学棱镜(第3实施例中的第1光学棱镜101及第4实施例的柱状透镜131),使用具有与其大致同等功能的光学特性的反射伞来替代该光学棱镜。在本实施例中,由于仅用反射伞将来自光源的射出光束向聚光点聚光,在严格的意义上不能够将从光源中心射出的光束全部高效率地聚光·扩散。
但在本实施例中,由于如上所述地取消了光学棱镜,具有能够减少部件数量,能够廉价地构成的优点。此外,由于如后所述地将来自光源的射出光束向光轴侧聚光后向装置外射出,所以具有可在装置的上下方向上减小闪光发光装置的射出开口部的优点。
以下,使用图27~图29对本实施方式的照明光学系统的最佳形状的设定方法进行详细说明。
在图28及图29中,142为设置在照明光学系统的射出面侧的具有负的折射力的光学棱镜,由丙烯树脂等透射率高的光学用树脂材料或玻璃材料构成。143为接受触发信号的输入而发生闪光的直管状的闪光放电管(氙气管)。144为将从闪光放电管143射出的光束中向装置后方及装置上下方向射出的成分向射出方向(装置前方)反射的反射伞(反射部),内面(反射面)由具有高反射率的辉光铝等金属材料形成。
在此,反射伞144如图27所示,具有以光源中心为焦点位置的椭圆面,将从光源中心射出的光束反射,向作为椭圆的另一方的焦点位置的聚光点O聚光。闪光放电管143及反射伞144以闪光放电管143与反射伞144的椭圆面的焦点位置一致的方式被一体地保持。由闪光放电管143及反射伞144构成的单元(聚光光学系统)可在光轴方向上移动,能够变化与设置于照明光学系统的射出面侧的光学棱镜142之间的间隔。由此,通过改变单元及光学棱镜142之间的距离,能够连续地变化照明光学系统的照射角度。
在本实施例中,与第3、4实施例的不同点为,图中未示出的从闪光放电管143射出的光束中不经过反射伞144而直接朝向光学棱镜142的光束不向聚光点O聚光。此外,从闪光放电管143射出的光束中朝向装置后方的光束由反射伞144反射,并返回闪光放电管143中。在此,由于反射伞144的反射面如上所述地由椭圆面形成,所以由反射伞144反射的光束与上述的实施例不同,朝向与光源中心错开的方向。因此,严格地说会在闪光放电管143的玻璃面上产生折射,不向聚光点O聚光地以某种程度扩散。
在图27~图29中,为了容易说明,示出了作为没有闪光放电管143的折射影响情况下的光线轨迹。闪光放电管143的折射影响能够通过考虑闪光放电管143(玻璃管)引起的折射影响而通过适当地设定反射伞144的形状来修正。由此,从光源朝向装置后方射出的光束能够由反射伞144反射并向聚光点O聚光。
如图28及图29所示,在本实施例的闪光发光装置中,与上述的实施例同样地,光学棱镜142的射出面(凹透镜部)142b为凹面(具有负的折射力)。另外,光学棱镜142的入射面142a形成平面状。由此,在如图28所示的照明光学系统的配置关系中,来自聚光光学系统的光束由入射面142a折射,通过射出面142b的全面向装置外射出,能够使照明光的照射角度范围变窄。此外,在图29所示的照明光学系统的配置关系中,来自聚光光学系统的光束由入射面142a折射,通过射出面142b的光轴附近的中央区域向装置外射出,能够使照明光的照射角度范围变宽。
此外,光学棱镜142的射出面142b通过反射伞144的开口宽度能够在装置上下方向上变得极小,与第3、4实施例同样地,可在照相机上下方向上将在照相机的外观上呈现的闪光发光装置的射出开口部的尺寸减小。
通过如上所述的构成,能够在削减构成照明光学系统的光学要素的同时,实现在上下方向上减小射出开口部的闪光发光装置。此外,本实施例的构成在变化照射角度范围上也不是不能实现的结构,能够比较高效率地变化照射角度范围。
在本实施例中,示出了能够由反射伞144及光学棱镜142的2个部件将从光源中心射出的光束聚光·扩散的照明光学系统。但本发明并不限于本实施例的照明光学系统的形状。例如在本实施例中,光学棱镜142的射出面142b由凹面状的柱状透镜构成,但也可以使该射出面由菲涅耳透镜构成。此外也可使射出面142b由在闪光放电管143的轴向也具有折射力的特里克透镜构成。
以上对本发明的最佳实施例进行了说明,但也可在(专利)权利要求书中所记载的说明的范围内进行改进及变形。
权利要求
1.一种照明装置,具有光源和将来自该光源的射出光向光轴侧聚光的聚光单元,其特征为,所述聚光单元具有设置于装置前面的具有负的折射力的凹透镜部、设置在光轴附近的具有正的折射力的凸透镜部以及将向该凸透镜部外部射出的光向光轴侧反射的反射部。
2.按照权利要求1所述的照明装置,其特征为,所述聚光单元以将来自所述光源的射出光向规定的聚光点聚光的方式构成,所述凹透镜部相对于所述聚光点位于所述光源一侧。
3.按照权利要求1所述的照明装置,其特征为,所述凹透镜部以该装置上下方向的长度比所述聚光单元的在装置上下方向的最大尺寸小的方式形成。
4.按照权利要求3所述的照明装置,其特征为,所述凹透镜部及所述聚光单元以满足以下关系式的方式形成0.4≤D/A≤0.8其中,D为在装置上下方向的凹透镜部的最大尺寸,A为在装置上下方向的聚光单元的最大尺寸。
5.按照权利要求1所述的照明装置,其特征为,所述凹透镜部及所述聚光单元以满足以下关系式的方式形成0.1≤L/B≤0.5其中L为凹透镜部的最大开口位置与聚光单元的最大开口位置之间的在光轴方向的距离,B为聚光单元的最大开口位置与光源中心之间的在光轴方向的距离。
6.按照权利要求1所述的照明装置,其特征为,其具有具备所述凸透镜部、所述反射部及所述凹透镜部的光学部件。
7.按照权利要求1所述的照明装置,其特征为,其具有具备所述凸透镜部及所述反射部的第1光学部件和具备所述凹透镜部的第2光学部件。
8.按照权利要求7所述的照明装置,其特征为,所述第1光学部件及所述第2光学部件能够通过相对地改变两光学部件之间的距离来改变光照射角度。
9.按照权利要求1所述的照明装置,其特征为,所述反射部具有由镜面构成的全反射面。
10.按照权利要求1所述的照明装置,其特征为,所述凹透镜部由形成为凹状并具有连续的面的透镜或柱状透镜构成。
11.按照权利要求1所述的照明装置,其特征为,具有相对于所述光源配置于装置后方、并将来自所述光源的射出光向装置前方反射的反射伞,所述反射伞具有与所述光源的中心大致同心的曲面。
12.按照权利要求1所述的照明装置,其特征为,所述光源为在装置左右方向延伸的直管状的闪光放电管。
13.一种照相机,其特征为,具有权利要求1至12的任一项所述的照明装置。
全文摘要
提供一种能够在实现装置的小型化及高聚光效率的同时,尽可能减小开口部的尺寸的照明装置。该照明装置具有光源、将来自该光源的射出光向光轴侧聚光的聚光单元和设置于装置前面的具备负的折射力的透镜部的光学部件。
文档编号F21V7/00GK1506745SQ200310118529
公开日2004年6月23日 申请日期2003年12月12日 优先权日2002年12月13日
发明者天明良治 申请人:佳能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1