高压放电灯及其制造方法

文档序号:2964081阅读:185来源:国知局
专利名称:高压放电灯及其制造方法
技术领域
本发明涉及一种高压放电灯,该放电灯具有一个放电陶瓷容器,其内部空间含有可电离的填充料,两端则由各形成为插塞的陶瓷构件所封闭,该插塞具有一轴线地通过的孔,且孔中配置有一个圆截面的金属馈电引线。
这类高压放电灯可以是高压钠放电灯,更具体地说,是色重现性有所改进的金属卤化物灯。这种灯采用陶瓷放电容器,因而可以利用这种容器所要求的更高温度。这种灯的额定功率一般在100瓦至250瓦之间。管形放电容器两端为筒形陶瓷端部插塞所封闭,插塞的轴向孔中有一个金属馈电引线穿过。
通常,这些馈电引线由铌制成(见德国专利说明书1471379)。然而,这些引线仅部分适用于长寿命的灯。这是因为,这种灯充以金属卤化物填充料时,铌管和将铌管密封入插塞所使用的陶瓷材料都受到强烈腐蚀所致。欧洲专利说明书EP-PS136505介绍了一种改进的方案。该专利是在最后烧结的过程中通过“生”陶瓷的收缩工序将铌管紧密密封入插塞中而无需任何陶瓷密封材料。这是不难做到的,因为这两种材料的膨胀系数几乎相等(8×10-6K-1)。这里特意提到了该说明书的内容。
也有人对其它金属制成的馈电引线进行了试验。德国专利说明书DE-PS2548732和2641880介绍了一些放电灯,其中的管形馈电引线由钨、钼或铼构成。引线管由一个陶瓷柱体支撑着,陶瓷柱体配置在管形馈电引线内部,且具有笔直的轴向排列的侧壁。柱体可以是实心的或空心的,在空心的情况下,所形成的孔口就作为抽气管,以后加以封闭。各陶瓷部件以其内侧和外侧与馈电引线接合,馈电引线与各陶瓷部件之间的密封件仍然是用密封材料制成,这些陶瓷部件在密封件修整之前先在1850℃的温度进行最后烧结。虽然这样做会改善这些灯的耐腐蚀性能,但仍然满足不了金属卤化物填充料的要求。尽管人们尽了很大的努力,可是迄今仍然还未研制出一种能耐腐蚀的陶瓷密封材料。
本发明的目的是要提供一种馈电引线,它能耐腐蚀并能承受温度的变化,而且特别可供填充料含金属卤化物的灯使用。下面将介绍各种方法,说明如何来制造有上述性能的馈电引线的灯。
为达到上述灯的这些目的,根据本发明的一种高压放电灯,其放电陶瓷容器8的内部空间含有可电离的充填料,放电陶瓷容器的两端则由各形成为一个插塞11的陶瓷构件所封闭,该插塞具有一轴线地通过的孔,且孔中配置有一个圆截面的金属馈电引线,其特征在于,至少馈电引线的主构件或第一构件的热膨胀系数小于陶瓷的热膨胀系数,馈引线气密地直接烧结入插塞11中,该馈电引线形成管形的整体构体,并在作为排气和填充料进口的封闭端15附近有一小的镗孔23作为排气和填充的进口。
其制造方法如下a)提供一个与电极装置相连接的管状钼馈电引线;b)提供制造陶瓷放电容器用的分散体,该分散体主要由氧化铝组成,该氧化铝的比表面积约为10平方米/克,将该分散体制成容器形的生坯,该生坯在烧结过程中的线性收缩率约为21-24%;c)提供制造陶瓷插塞体用的分散体,该分散体的比表面积约为3至5平方米/克,将该分散体制成插塞形的生坯,该生坯在烧结过程中的线性收缩率约为17-20%;d)将所述容器形和插塞形生坯在大气中在大约1000℃至大约1400℃温度下的大气中预烧;e)将所述引线放入所述预烧结插塞体的轴向孔中就位;f)将所述已就位的插塞体插入所述预烧容器本体各端的连接部分中;
g)最后将馈电引线、插塞体和容器本体组成的组合件在大约1750℃至大约1900℃温度下的氢气氛或真空中烧结3至5小时,使所述容器本体具有供高压放电灯用的所需半透明度,且使所述组合件具气密性。
本发明的一些特别有利的措施是馈电引线或其主构件或第一构件由钼、钨或铼或它们的合金构成。
馈电引线是个管形的整体构件。
馈电引线的外径约为1.0至2.0毫米,壁厚0.1至0.25毫米。
馈电引线以Ra表示的表面粗糙度约为10-50微米。
馈电引线是个复合构件该复合构件除包括主构件或第一构件外,在第一构件离向放电容器内部空间的一侧,在插塞的区域还有一个辅助或第二构件,第二构件的热膨胀系数大约相当于陶瓷的热膨胀系数。
第二构件由铌或钽构成。
第二构件气密焊接到第一构件上。
第二构件固定到第一构件上,使其与放电容器内部空间的距离至少为插塞高度的40%。
第二构件的高度至少为插塞高度的30%。
第二构件作为第一构件的延长部分固定到第一构件上,以确定两构件之间的焊缝。
两构件都是管件。
第二构件,且可能第一构件也在焊缝处封闭。
两构件的直径和壁厚都相同。
至少其中一个构件是个棒形构件。
第一构件的直径比第二构件的直径大,且插塞的孔在焊缝的高度处配备有凹口和边缘,供紧密密封用。
第二构件是棒形构件,稍微插入第一管形构件的敞开端。
馈电引线的外径最大约为2.5毫米。
第二构件的外径至少比第一构件的小0.4毫米。
第二构件是个管形构件,且作为一个套环严密地围绕第一构件的一部分。
第二构件在0.1至0.25毫壁厚处的内径约为1.2至2.0毫米。
第二构件深入配置在插塞的柱形凹口中,且由陶瓷环(22)对着远离放电区的一侧复盖住。
复合馈电引线以Ra表示的在整个插塞区的表面粗糙度约为10至100微米。
填充料包括含卤素的成分。
至少有一个插塞(11)由热膨胀系数在容器陶瓷与馈电流引线之间的复合材料构成。
复合材料的主要成分是氧化铝,第二成分为热膨胀系数小于氮化铝的一种或一种以上的材料。
第二成分包括W、Mo、Re、石墨、AlN、TiC、SiC、ZrC、TiB2、Si3N4和ZrB2。
氧化铝按重量计占60至90%。
插塞至少由两个同心的部分(33a,33b)组成,其热膨胀系数分级变化。
制造这种高压放电灯还可以将工序a、e、g修改如下a)提供与电极装置相连接的复合馈电引线;e)将所述馈电引线放入所述预烧插塞体的轴向孔中就位,再将所述组合件在按体积计混合70-95%氩或氮的氢气氛中和在大约1250℃至1500℃的温度下预先进行烧结,直到馈电引线与插塞体部分连接为止;g)与第3页的g)中的相同,只是采用真空作为烧结气氛。
各构件呈管状,且插塞对管形构件的压力相应于插塞的一种收缩,这种收缩可能等于其轴向孔直径的减小量,该轴向孔径的减小量可能比各构件的外径小5至10%。
各构件呈管形或棒形,且插塞对各构件的压力相应于插塞的一种收缩,这种收缩可能等于其轴向孔直径的减小量,该轴向孔直径的减小量比各构件的外径大约小0.5至3%。
或将工序c)和d)修改如下c1)提供制造复合插塞体的一种分散体,该分散体主要由氧化铝和第二成分组成,氧化铝按重量计占60-90%,第二成分按重量计占10-40%;c2)将所述插塞形本体预先在大气中在小于300℃的温度下预烧;d1)只将容器形本体在大气中在大约1000℃至1400℃的温度下预烧;d2)将所述柱塞形体在氢气氛中在大约1200℃至1400℃温度下真正预烧。
下面说明本发明是如何进行的。
热膨胀系数低的金属(钼、钨和铼)是对腐蚀性填充料有高度抗腐蚀性的金属。因此,非常希望用这种金属作为馈电引线。然而,采用这类引线时的气密密封问题过去仍然得不到解决。
象铌和钽之类的金属,其热膨胀系数与陶瓷的相配,但另一方面,大家知道,这类金属对腐蚀性填充物的耐腐蚀性能差,迄今仍然没有人用它们作为金属卤化物灯的馈电引线。
本发明结合了上述两种技术的优点,消除了它们的缺点。
至少是暴露在放电容器内部腐蚀性填充料的馈电引线部分要用热膨胀系数低(即至少比陶瓷容器材料的热膨胀系数低20%)的耐蚀性材料制成。
本发明极其简单的基本实施例采用连续的管形钼馈电引线直接紧密烧结入陶瓷插塞中,而无需任何陶瓷密封材料。
引线只通过共同焙烧直接焊入插塞中。在这一点上一向总认为,只有采用与陶瓷的热膨胀系数几乎相同的材料,才能持久进行直接烧结,例如,铌的情况就是如此。
显然,如果经过相应的修改,类似的方法只适用于钼、钨或铼(热膨胀系数≤6×10-6K-1)。这样可以使焊出来的焊接点能紧附在材料上,没有裂缝和缝隙,而且能与腐蚀性较小的填充料配用,热应变也较小。
这种管形馈电引线的好处是,厚度非常薄,直径小,表面粗糙。另一个好处是,面对馈电引线的插塞,其内径与引线外径之间的关系处在一定的最佳尺寸的范围内。不用任何陶瓷密封材料而形成的密封是这样制取的首先,不先对馈电引线所通过的端部插塞进行烧结。在插塞现在就进行的最后烧结的过程中,由于对端部插塞进行了收缩工序,在该工序中,端部插塞收缩着的生坯终于牢牢地被压入馈电引线中,从而达到了插塞与馈电引线在其界面上所要求的可靠接合。
本发明的一个重要参量是,馈电引线不是实心的柱体而是一根管,管的管壁薄得足以略为变形,以补偿端部插塞因收缩而作用到引线上的力。另一方面,馈电引线必须厚得足以保证机械稳定性,更具体地说,能牢靠地使电极的轴身保持不动。实践证明,0.1至0.25毫米的壁厚特别合适。
第二重要参量是馈电引线的直径,这确定着热膨胀的绝对值。实际直径越小,灯工作过程中的膨胀力就越小。该引线的外径最好小于2.0毫米。另一方面,从实用考虑,且为了使引线能承载充分的电流,建议引线的最小内径取0.5毫米,但对某些低功率的灯则可以采用较小的引线直径。
第三个参量是馈电引线表面的粗糙度。馈电引线与插塞之间的直接密封看来主要是由于机械连接,在较小的程度上是由于分布连接引起的。馈电引线与插塞之间界面处的接触愈大,直接密封部分就能更有效地达到其气密性。馈电引线以Ra表示的表面粗糙度最好大约在10-50微米,这是指中心线平均表面粗糙度。
粗糙度小于10微米起不了改善气密性的作用。粗糙度大于50微米虽然适宜制造出气密性良好的放电容器本体,但却降低了馈电引线的可靠性和机械稳定性,因而是不可取的。表面的这个粗糙化可用各种方法进行,例如,喷砂法,化学腐蚀法和机械加工。
第四个重要参量是端部插塞内径与馈电引线外径之间最佳关系的选择。在烧结之前,端部插塞处于未烧结的或所谓“生坯”状态。烧结时,端部插塞收缩,这时其外径和内径都减小。若插塞在收缩过程中内径减小得太多,则端部插塞因来自馈电引线引入插塞内孔的反抗应力而断裂。若插塞内径减小得太少,则端部插塞与馈电引线界面之间的结合力变弱,从而使放电容器没有气密性。若烧结时不引入馈电引线,则端部插塞的内径最好比馈电引线正常的外径小5%至10%。
这个工艺过程是这样进行密封的在插塞处于生坯下先将馈电引线放入插塞的轴向孔中。将由此得出的其中一个组件在生坯状态下插入管形容器各端,然后将该插入的组件在氢或真空中在大约1850℃的温度下烧结3小时。未烧结插塞生坯在烧结的过程中收缩,收缩后的端部插塞最后牢牢地接合到馈电引线上,从而在插塞/馈电引线界面上达到了所要求的可靠密封。
用只由钼制成的管材作馈电引线时,且放电容器在例如灯的色重现性能优异的情况下承受极大的应变、其最冷点的温度高于700℃时,在大约500次温度循环(或开灯和关灯之后的温度变化)之后,馈电引线与插塞之间可能形成裂缝。裂缝的宽度约3微米。产生这个裂缝的原因是由于钼的热膨胀系数低(6×10-6K-1)、陶瓷的热膨胀系数高(8×10-6K-1)两者相差很大所致,这个热膨胀系数差别之所以起作用是因温度变化产生的应变引起的,这可能会使灯失灵。
有许多技术诀窍可以修改这个基本技术,使其可优先用于色重现性有所提高、比现有技术优异得多的高压钠放电灯和金属卤化物灯。
第一种技术诀窍是采用一种修正的插塞,该插塞由一种热膨胀系数介于陶瓷容器材料与管形金属馈引线材料之间的复合材料组成。管状馈引线,例如钼质的,在气密条件下无需用任何陶瓷材料直接烧结入复合材料制成的插塞中,该复合材料含例如氧化铝和钨。这种共烧(co-firing)的物体在经过500次以上20℃与90℃之间的热循环之后能保持气密状态。共烧由金属引线、复合材料插塞和陶瓷放电容器组成的组合体时,可以采用氢气气氛。
这种技术的第一个重要参量是采用钼、钨、铼或它们的合金制成的管状引线。若引线是实心的,例如,棒材或金属丝,则直接接合部分可能会断裂。最好采用外径小的管子。外径最好小于2.0毫米。但为使焙烧过程中的收缩力防止起裂缝的作用,对管子的厚度并不特加限制,管子的内径则至少应大于0.3毫米。
第二个重要参量是柱塞的材料。柱塞材料的热膨胀系数应介于金属馈电引线与陶瓷放电容器之间,且对诸如金属卤化物和钠之类的任何腐蚀性充填料成分都具有良好的耐腐蚀性能。此外,最好是在氢气氛下选用一种能共烧成组合物的材料。该组合体由金属引线、陶瓷容器和由这种复合材料制成的插塞组成。
插塞材料由两个成分组成。氧化铝是不可缺少的第一个主要成分。第二个成分包含从金属钨、钼和铼选取的其中一个或一个以上的金属,或诸如AlN、TiC、Si3N4、SiC、ZrC、TiB2和ZrB2之类热膨胀系数低的石墨或陶瓷。两种成分的比例如下主要成分氧化铝的比例按重量计为60至90%,第二成分的比例按重量计为10至40%。这些复合材料各自的热膨胀系数约为5.5至6.5×10-6K-1。氧化铝之所以成为不可缺少的成分不仅仅是由于其优异的耐腐蚀性。此外,由于烧成时在大约1800℃温度下进行的固体扩散反应消除了原先位于插塞与放电容器端部之间的接触区处的接缝,因而形成了准一体化的结构。氧化铝的比例按重量计至少应为60%。若此比例按重量计高于90%,则复合材料的热膨胀系数不理想,结果,插塞与金属馈电引线之间的直接连接部分在经过多次热循环之后不能保持气密性,最后导致灯的失灵。若第二成分的比例,特别是由于其中所含的金属成分过高,则要将插塞加以烧结,并使复合材料高度稠化分布以保证插塞本身的气密性需要就非常困难。举例说,在复合材料仅由氧化铝和钨(或其中一个或多个上述金属)组成的情况下,氧化铝/钨的比例以重量计取70至83∶30至17,则在气密性方面的效果最佳。对其它第二成分来说,最理想的比例以重量计为10至25%。这特别适用于陶瓷材料或陶瓷与金属材料的混合料。较理想的例子是由20%的SiC、其余为Al2O3组成的插塞。
这些复合材料可以在几乎没有特殊条件的情况下制造。制造程序基本如下按所需要的比例称量氧化铝粉和第二成分;加入诸如水、酒精、有机粘合剂之类的一些模压成形辅助剂;用球磨机或捏合机将上述原料加以混合;用喷雾干燥器和/或任何其它方法制取适合制造工艺的颗粒粉料,最后形成带有供安置馈电引线的轴向孔的插塞。有一个特殊条件必须牢记除了氧化铝和SiC之外,第二成分的材料较易氧化和分解。因此需要小心选择适当的成形辅助剂和预烧过程中的最佳条件,例如气氛和温度。预烧过程的目的是除去所加入的用以使生坯形成插塞形的辅助剂,并防止第二成分材料氧化和/或分解。否则结果可能会使插塞体本身的热膨胀系数达不到要求,而且插塞体中出现裂纹。
第三个重要参量是金属馈电引线的表面粗糙度。这里采用表面粗糙的金属馈电引线有利,但这一点没有象其它参量那么重要,因为即使馈电引线不经过特殊制备,也能保持插塞与馈电引线之间直接连接区的气密性。
第四个重要参量,一方面是馈电引线与插塞之间的最佳关系,另一方面是插塞与陶瓷容器之间的最佳关系。只通过共烧陶瓷放电容器的一端或两端就可使其形成直接连接的封闭空间,其条件几乎与基本技术的一样。若插塞是在不带金属馈电引线的情况下共烧的,则金属馈电引线穿过轴向孔安置并通过共烧直接连接到轴向孔上的插塞,其轴向孔应调节得使其在收缩之后比金属馈电引线的原外径小10%。类似的情况也适用于陶瓷放电容器端部的内径,插塞即插入该端部部分,且通过在共烧情况下应用固体的扩散反应产生一体化的结构。如果只烧成容器,则在收缩之后这个内径必须调节得使其比插塞的外径小2至5%的范围。要求这些条件的原因与基本技术的一样。
修改基本技术的第二技术诀窍是用两个构件构成馈电引线。第一或主要构件至少安置在插塞面对放电空间的一侧。
在一个实施例中,该第一构个可延伸到插塞的另一侧。在另一个实施例中,第一构件大约在插塞的中间位置结束。第一构件由钼、钨或铼或这些金属的合金构成。与上述整体式的馈电引线相反,第一构件可以由管材或实心柱体(棒材)制成。
第二或辅助构件也可以是根管子或实心材料的柱体,因而管子可以是第一构件的套环,也可以是第一构件的延长部分。第二构件由热膨胀系数大致上与插塞的陶瓷材料不相上下的材料构成。第二构件最好采用铌,但同样也可以采用钽。若采用管材,其壁厚也可选取0.1至0.25毫米。
馈电引线的第一和第二构件用激光焊或电子束焊连接起来。为使密封密闭性能持久,第二构件应这样固定到第一构件,使其距放电容器的内部空间尽可能远。
第二构件最好这样固定到第一构件上,使其距放电容器内部空间的距离至少为陶瓷插塞高度的40%。这样确保腐蚀性填充料的成分只有在钼主构件区域中的密封降低其密闭性之后(即经过长时间的延迟之后)才能到达铌辅助构件处,这个辅助构件不耐腐蚀但能持久密封。
第二或辅助构件的高度最好至少为插塞高度的30%。这样可以形成长的通道,且密封可靠。
实现这个复合构思的第一可能性是将第二管形构件对缝焊接到第一管形构件远离放电区且直径和壁厚大致相同的端部上。第二管形构件面对放电区的一侧可以是敞开的,也可以象在一个特别值得推荐的实施例中那样,封闭着。管形构件是敞开着时,在对缝焊接以气密连接两个管件时要特别小心,因为不然的话可能沿第一管形构件的外壁、焊缝,最后沿第二管形构件的内区产生漏泄。第二管形构件外壁处密封的安全性就可能不会起作用。若第二管形构件是密闭的,则焊缝就失去了其关键作用。焊缝中出现漏泄再也不会使整个系统缺乏紧密性,而第二管形构件外壁区中的安全密封仍然是关键所在。
复合馈电引线的这个第一实施例制造起来既简单又安全,尤其是特别适合内径较大(1.5-1.8毫米)的馈电引线。
然而在制造带外供流引线(通常是钢-铌或镍制成的)的连接时,要特别注意,因为第二管形构件的材料(最好是铌)在烧结过程中变脆,特别是当其暴露在以氢气作为烧结气氛主要成分中时更是如此;因此,双构件技术主要采用真空作为烧结气氛,但与氢接触是值得大力推荐的(见下)。
在第二实施例中,第二管形构件紧紧只围绕第一管形构件远离放电区的部分以套环的形式配置,高度最好约为插塞长度的一半。该套环围绕与基本实施例类似的连续的第一管形构件。套环可与插塞的端部表面齐平,也可以完全处在插塞中。考虑上述距离的大小和管子的高度,用这个方法在灯的使用寿命方面也可以取得特别令人满意的效果。套环气密地焊接到其面对放电区的端部处的主构件上,再用本技术领域周知的陶瓷容器与插塞共烧的同一方法将两个构件都密封入陶瓷插塞中。
这个修改方案的好处在于,外部供流引线可轻易地与馈电引线突出套环所包围的部分之外的第一管形构件连接。这种方案特别适用于小内径(1.0-1.5毫米)的馈电引线,因而套环的内径约为1.2-2.0毫米。
密封件的制造较为复杂,因为陶瓷插塞必须要有供套环用的特殊凹口。馈电引线和套环借助于在套环端部面对放电区的部位中的环形焊缝气密地连接起来。
第三实施例采用固体材料制成的第二构件再加上固体材料或管状的主构件。这里,第二构件也是第一构件的延续部分。这种构型的诀窍在于,第一构件的直径选取得大于第二构件的直径。这样就提高了馈电引线的气密性。
显然,类似的方法如果经过相应的修改,即用钨、铼或它们的合金的混合料代替钼,用钽代替铌,也可用于这些综合实施例中。配备有这种馈电引线的放电容器有可能制造出能粘附到材料上、没有裂缝和缝隙、能与腐蚀性较小的填充料配用且热应变较大的接合。用这个方法在灯的使用寿命方面也能获得特别满意的效果。
在上述综合实施例的情况下,第一构件只能使气密性持续较短的时间。放电容器的气密性基本上是借助于插塞的收缩过程在第二构件与陶瓷插塞的轴向孔之间的界面部分实现的;在该收缩过程中,收缩着的插塞生坯在最后烧结过程中牢牢压在第二构件(棒材或管材)上。在第一构件是管状的情况下,最好也将这种力加到第一构件与插塞接触的部分,使其界面没有任何缝隙,从而防止金属卤化物成分渗入。
然而,必须牢记的是,灯经过多次反复接通断开之后,插塞与第一构件之间总会有小间隙形成。令人感到意外的是,若在烧结过程中,借助于生坯状态的插塞的收缩加到该第一构件的力,有意识地选取得使其低于加到铌部分的力,则可以利用这个特点。虽然缝隙是早先形成的,灯的使用寿命仍然显著延长。这是借助于这样的一个重要条件达到的,即第一构件的直径选得比第二构件的大。
因此,这种技术适用于用棒材或管材制成的第一构件。这就是说,在馈电引线结构的设计中能选择各种修改方案。举例说,放电容器的一端不用作抽气口或填充料入口时,可以采用实心馈电引线,该实心馈电引线由第一构件和第二构件焊接在一起构成,两构件都不用管材而用棒材制成。
实现上述综合实施例的重要参量如下。
第一参量,特别是在采用管状馈电引线部件的情况下,这些部件必须借助于套环面对放电部分的部位上的环状焊缝以气密的方式连接起来,因为,不然的话,沿钼馈电引线的外壁、焊缝、最后沿铌套环的内部区域会产生泄漏。铌套环外壁处密封的可靠性不起作用。
第二个参量,尤其是第一构件的直径,确定了热膨胀的绝对值。实际采用的直径越小,灯工作期间产生的膨胀力就越小。外径最好小于2.0毫米。这一点对棒材料和管材的结构都适用。
第三个参量是馈电引线与陶瓷插塞轴向孔接触的表面粗糙度。馈电引线与插塞之间的直接密封看来主要是由于机械连接引起的,在较小的程度上是由于散布连接引起的。该两部个界面处的接触面积越小,直接密封部分就越有效地达到其气密生。两馈电引线构件以Ra表示的表面粗糙度,在馈电引线为管状时最好在10至50微米的范围,在馈电引线为棒材或实心时最好在10至100微米的范围。粗糙度小于10微米时,不能有效地改进气密性。
管状馈电引线的表面粗糙度大于50微米是不可取的,因为它降低了蚀电引线的可靠性和机械稳定性。此外,实心馈电引线的表面粗糙度大于100微米对机械稳定性是没有问题的,但它可能会在馈电引线与插塞的界面上稍微形成非接触的区域,从而超过插塞相对于馈电引线的变形和收缩能力,同时缺乏气密性。
第四个参量是氧化铝的轴向孔径与馈电引线外径之间的最佳关系。在烧结之前,插塞处于未烧结的或所谓“生坯”状态。烧结时,生坯收缩,其外径和内径减小。若插塞的轴向孔径在收缩过程中减小得过多,则插塞由于来自馈电引线引入插塞轴向孔的约束应力而断裂。若减小得过少,则插塞与馈电引线之间的界面处的接合力变弱,从而使放电容器没有气密性。
在馈电引线的第一构件是由管材制成的情况下,如果烧结时不引入馈电引线,则氧化铝插塞轴向孔径的有关部分最好是(但并非如此不可)比第一构件的外径大约小5至10%。
然而,当馈电引线第一构件是由实心材料的棒材构成时,就需要将插塞的孔径减小,使其尺寸比钼部分的外径大约小1至3%(按上述意义理解)。这是因为固体钼本身在收缩过程中不能变形,从而若收缩作用过大会使氧化铝本体因强劲约束力的作用而断裂。相反,管状钼本身能略为变形以补偿因氧化铝本体与钼馈电引线之间在烧结后的冷却过程中所引起的在热收缩差别很大(如上所述)而产生的压缩力。但必要时,棒材也可应用于第一管形构件上。
在两者的情况下,插塞孔与引线的第二构件有关的部分在没有馈电引线下烧结时,该孔部分的直径应选择得比第二构件的外径大约小5-10%。这与第二构件的形状是管形或棒形无关,因为第二构件的热膨胀系数与插塞的类似。
第五个参量是烧结气氛的选择。铌金属是复合馈电引线值得推荐的材料,它在氢气氛中和高于1700℃的温度下变得特别硬特别脆,这是本技术领域在半透光氧化铝陶瓷制造业中所周知的,这会使氧化铝本体因铌在氢中烧结的过程中硬化所产生的约束应力而断裂。
然而,已经发现,在氧化铝与铝之间的界面形成了第二层,而具有这个薄薄第二层的部分如果能不断裂的话,其气密性会十分完美。
因此,要寻求给铌提供的氢量,使铌既不致变脆又能使连接完美,是个非常艰巨的任务。通过增设预烧结工序,可以解决这个问题。
根据这个事实,在最后烧结之前,将馈电引线放入插塞生坯体的轴向孔中,然后在按体积计含5-30%的氢、其余为氩和/或氮的气氛中在大约1250℃至1500℃的温度下进行预烧结,直到插塞和馈电引线都部分连接起来为止。氢的体积小于上述指标、温度高于1500℃时,铌部分硬化的程度会过头;氢的体积小于5%、温度低于1250℃时,不能有效地形成第二层。为防止铌部分在预烧结组件插入未烧结的放电容器本体各端后硬化,最后烧结应在真空气氛中进行。由于铌构件比较敏感,所以本方法与应用于纯钼馈电引线的方法有些不同。
本发明提供一种使用寿命长、气密性不因使用含卤化物的填充料而遭到破坏的高压放电灯。放电容器通常是管状的,呈圆柱形或桶形。插塞可以制成圆柱形或制成顶部封闭的圆筒,与放电容器直接连接。连接是按本技术领域周知的方法进行的。放电容器往往配置在有一端或两端的外玻壳中。
现在通过若干实际例子更详细地说明本发明的内容。


图1为有一个陶瓷放电容器的金属卤化物灯。
图2-9详细展示若干实例的放电容器的密封区的剖面。
图1是额定功率为150瓦的金属卤化物放电灯的示意图。该放电灯包括一个石英玻璃或硬玻璃制成的筒形外壳1,外壳1确定了灯的轴线。外壳两端2用灯座3压紧密封着。轴向配置的氧化铝陶瓷放电容器8有一个桶形的中间部分4和筒形的端部9。放电容器8用两个供流引线6支承在外壳1中,两引线6则经薄片5与灯座3连接。供流引线6焊接到管状馈电引线10上,馈电引线10则固定在放电容器端处氧化铝陶瓷各自的插塞11上。插塞11按周知的方法与端部9连接。
钼(必要时,钨或钨/铼合金)制的两个整体馈电引线10各在面向放电区的一侧支承着电极装置12。电极装置由电极柱13和线圈14构成,线圈14套入电极柱面向放电区的一端上。电极柱以气密的方式通过焊接与馈电引线的封闭端15连接。电极装置也可以不是一种装有线圈而是呈球形端部的型式。
放电容器的填充料除象氩气之类的惰性启动气体外还包括汞和金属卤化物添加剂。在另一个实例中,可以不用汞。
图2是一个基本实例的放电容器8一端的密封区的高度示意详图。放电容器在筒形端9的壁厚为1.2毫米。放电容器的端部9插有一个氧化铝陶瓷制成的筒形插塞11。插塞11的外径为3.3毫米,高5毫米。插塞11的轴向孔中直接烧结有一个整体式的馈电引线,该引线由钼管10制成,其面对放电区的一侧15封闭着。钼管10长12毫米、壁厚0.2毫米,内径1.0毫米。管10两端几乎以同等程度伸出插塞外。封口15可以在管10本身上形成,将电极柱焊接到其上,也可以通过将电极柱以周知的方式气密地插入管子端部制取。
整体式馈电引线按下述方式直接烧结入插塞中。
一种具有筒形端9、配备有插塞11和直接封入插塞轴向孔中的整体式馈电引线10的放电容器8,其制造工艺包括下列工序制备配备有电极装置12的馈电引线,该引线由内径为1.0毫米厚为0.2毫米的钼管制成。此外该工艺还包括这样的工序提供作为初始原料的两种无机粉料的混合料,即所谓分散体,该分散体由氧化铝和诸如Y2O3和/或MgO之类的涂料组成,其中一种所述分散体供涂敷到容器本体之用,这种分散体所使用的氧化铝其比表面积(specificsurface area)在大约为5平方米/克至大约10平方米/克的范围,所述另一种分散体供涂敷在插塞本体上之用,这种分散体所使用的氧化铝其比表面积在大约3平方米/克至大约5平方米/克的范围。将所述分散体制成两种生坯(呈容器和插塞的形状)。所述两种生坯之间的线性收缩差(ΔL/L0(%)),即生坯与烧结体之间的长度差ΔL除以生坯的长度L0,最好约为3至5%。举例说,所述容器形生坯的线性收缩率为21至24%,所述插塞形生坯的线性收缩率为17至20%。容器形生坯的连接部分9的内径为4.00毫米,插塞形生坯的外径为3.96毫米,高6.0毫米,轴向孔径1.56毫米。该工艺还包括下列工序在大约1000℃至大约1400℃的温度的大气中预烧或预烧结所述生坯,以除去包括成形剂和水在内的杂质;将馈电引线10放入所述预烧过的插塞体的轴向孔中就位;将就位后的插塞体插入所述预烧过的容器本体各端的连接部分中;然后将所述组合体在氢气氛中或真空中在大约1750℃至大约1900℃范围的温度下烧结3至5小时,形成直接密封在经烧结的放电容器本体中的馈电引线,容器本体的所述放电部分具有能让可见波长范围内的光或射线充分通过的半透光性,容器本体所述连接部分的内径比插塞体的外径收缩的程度大,且插塞体的所述轴向孔径也比馈电引线的外径收缩程度大,但如本技术领域所周知的那样,容器的所述连接部分和插塞的直接密封部分相对于插塞和馈电引线稍微变形,从而使所述烧结体在容器至插塞连接部分31的界面和插塞至馈电引线直接密封部分32的界面处都具有完美的气密性。
在一个最佳实施例中,对图2的实例作了这样的小修改采用了由复合材料制成的插塞11,复合材料按重量计由80%的氧化铝和20%的钨组成。尺寸与结合图2所论述的一样。除下面将谈到的以外,制造工艺大体上与上述的一样。用以涂敷插塞体的分散体由氧化铝和钨组成,氧化铝的比表面积约为3至5平方米/克,钨的平均粒度小于1微米,所述氧化铝/钨的重量比为80/20。应该指出的是,这样的复合体不应视为金属陶瓷,因为它不具有金属陶瓷一般具有的电阻小(例如20毫欧)的特点。相反,复合体的电阻非常高(一般为1010欧)。这一点有好处,这样,复合体不导电,所以避免了点燃之后的逆弧现象。再有,两个分散体制成两种生坯(容器形和插塞形)。在线性收缩和尺寸上的差别也可以如上述一样。与基本实例相比,只有容器形体是在大气中在大约1,000℃至1,400℃的温度下预焙烧,以清除包括成形助剂和水在内的一些杂质。另一方面,所述插塞形体则在1,200℃至1,400℃的温度下的氢气氛中真正预烧结之前先在大气中在低于300℃的温度下预烧,以防止钨成分氧化,并除去成形助剂和水分等。通过这个真正预烧结,插塞形体的轴向孔径收缩到大约1.45毫米。
如上面已经谈过的那样,本工艺还包括下列工序将馈电引线10放入所述预烧结体的轴向孔中就位;将所述已就位馈电引线插入预烧容器体各端的连接部分;然后将该组合体在大约1750℃至1900℃的温度下的氢气气氛或真空中烧结3至5小时。由此得出的连接部分31和密封部分32的气密性都特别好。
下面是有关复合馈电引线的一些实例。图3a说明第一实例。馈电引线16的第一构件16a由钼管制成,其高度仅为图2基本实例的一半,在大约插塞11高度的一半处终止。第一构件16a面对放电区,并在封闭端15处装有电极柱15。
在离向放电容器内部空间的一侧延伸有第二构件16b,该构件由铌管制成,在焊缝17处与第一构件16a对接焊接。两部分的尺寸几乎相同,即内径1.5毫米,壁厚0.1毫米。第二构件16在离向放电区的一侧伸出插塞11外。在一个特别值得推荐的实例中(图3b),第二构件16b在其与第一构件16a的焊缝处由杯件21封闭着。这里,在焊缝17的区域中采用了对接焊。其余部分相同的各编号表示相同的部件。此外,钼质的第一构件16a可以在此端封闭(如图3b中的编号21′和虚线所示)。
在另一个实例中(图4),馈电引线18由钼管制成的第一构件18a连续地配置在插塞11中,和基本实例一样,具有封闭端15。但在插塞11离向放电区的插塞11中途,铌管制成的第二构件作为套环18b围绕着第一构件的一部分,与插塞的前表面19齐平。插塞有一个与套环匹配的柱形凹口20。第一构件18a的内径为1.0毫米,壁厚为0.2毫米,套环18b的内径则为1.4毫米,壁厚为0.25毫米。套环高2.4毫米。插塞11的外径为4毫米,高5毫米。
在本实例中,两个馈电引线的头一个安置在放电容器两端,气密地封闭在面对放电区的一侧,而第二馈电引线在封闭端15附近有一个小镗孔23(图中以虚线示出),用作抽气管和填充料入口。镗孔23在填充金属卤化物成分之后按用知的方式加以封闭,例如借助于激光加热陶瓷或金属密封材料。
这两种不同的插塞,其轴向孔中安置有气密焊接的复合馈电引线,分别插入氧化铝放电容器的各端9中。插塞和容器都是未经烧结过的。它们经共烧或共烧结之后形成直接密封。
只有在所述烧结工序之后才将填充料引入放电容器中,并将镗孔23封闭上。
本实例可以修改(图5)成使套环18b′完全配置在插塞11中,这样就保证了插塞11良好就位,而且可靠地防止铌套环变脆,铌套环变脆可能会因高温(例如1850℃)烧结而影响气密性。经已证明,要达到上述目的最好是令柱形凹口20的深度大于配置在凹口中的套环18b′的高度,并将插塞远离放电区的一端的空心空间用适当的陶瓷环22盖住。环22最好以生坯的形式装在第一构件18a上,最后和插塞11的生坯一起烧结,从而使其与第一构件18a密封接合。更具体地说,环22的陶瓷材料可以选择得使其热膨胀系数比插塞11的略小上点,但比第一构件18a的大得多。这可以通过例如相对于环件材料给插塞材料掺入适当的杂质(例如SiO2)达到。
至于放电容器不参与金属卤化物成分的填充任务的一端,可以采用更简单的馈电引线结构。图6和7说明放电容器的这种端部结构,其中第二构件的直径至少比第一构件的直径小0.4毫米。
图6中,馈电引线24由外径为2毫米的钼棒24a和外径为1毫米的铌棒24b构成。该钼棒在插塞11高度的大约40-50%处终止,且在焊缝17处焊接到铌棒上。两根棒都插入插塞11中,插塞11的中心孔有一个凹口28,供不同直径的管形构件使用。本实例可以如图7中所示的那样修改,使得装上去的不是棒24a,而是内径为1毫米壁厚为0.2毫米的钼管25a。铌棒25b的尺寸大致上与上述的一样。铌棒25b稍微插入管25a远离放电区的敞开端27,且焊接在该端部区27。
这些端部结构特别适宜制造使用寿命长的金属卤化物灯。就是说,只有在反复多次接通和断开照明电路之后,沿插塞轴向孔与钼棒外表面两者之间的界面才可能形成有小缝隙,从而使在液态下特别具腐蚀性的腐蚀性填充料在经过长时间之后才渗入这个缝隙中,并与铌部分起反应。但在上述情况下,钼构件的连接部分为氧化铝陶瓷插塞紧密包围着。特别是在凹口28的边缘29处,钼构件的密封非常好。这种现象的原因目前尚未全部搞清,但该边缘看来是与这样一个钼构件配合的重要部分,该钼构件直径比铌构件的大,且只受到与上述1-3%收缩率有关的低压力的作用。这样就确实避免了腐蚀性填充料渗入铌部件中,因而可以制造出长寿命的灯。因此,这些馈电引线的制造既简单、安全,成本又特别低。
为形成良好的密封,建议将馈电引线的外表面,特别是插塞区,粗化。这一点适用于整体式和复合式馈电引线10。粗化表面可以呈不规则的形状(见图8a),可借助于例如喷砂法、化学腐蚀法或金刚石锉加粗。此外还可以采用机械加工形成的形状规则的表面。图8b和8c分别说明起伏形和螺纹形的表面。
所有实例中,复合馈引线都按下述方式直接封入插塞中。
本工艺用以制造一种半透明氧化铝的放电容器,该放电容器配备有一个插塞和一个馈电引线,馈电引线直接封入插塞在容器两端的轴向孔。本工艺包括下列工序制备图3至7所示的馈电引线,该引线配备有电极装置,且将钼构件焊接到铌构件上制成的。该引线还配备有两种分散体,该分散体由本技术领域周知的氧化铝和MgO和/或Y2O3组成的掺杂材料组成。其中一种所述分散体用以涂敷放电容器本体,该分散体所用的氧化铝其比表面积为5至10平方米/克。另一种分散体供涂敷插塞体之用;该分散体所使用的氧化铝其比表面积约为3至5平方米/克将上述分散体制成两种分别呈容器形和插塞形的生坯。该两生坯之间在线性收缩率方面之差(ΔL/L0(%)),即生坯与烧结体的长度差ΔL除以生坯的长度L0,最好约为3至5%,举例说,所述容器形生坯的线性收缩率约为21至24%,所述插塞形生坯的线性收缩率约为17至20%。制造放电容器的工艺还包括下列工序将所述成形体在大约1000℃至1300℃的温度下的大气中焙烧,以除去包括成形助剂和水在内的杂质;将馈电引线放入所述预烧过的插塞体的轴向孔中就位;在大约1250℃至1500℃的温度下的混有7%氢的氩气氛中预烧结所述插塞体/馈电引线的组合物,直到插塞与馈电引线部分接触为止;将所述预烧结体插入所述预烧过的容器本体各端的连接部分;最后将所述组合物在至少10-4乇,即1.33×10-2帕的真空中在大约1750℃至1900℃的温度下烧结3至5个小时,生产出带直接封入的馈电引线的烧结放电容器,容器本体的放电部分半透明。
产品是一个在容器与插塞连接部分的界面以及插塞与馈电引线直接密封部分的界面气密性都完美的烧结体。
在图9所示的另一个实例中,插塞也由结合图2所述的实例类似的复合材料组成。与图2类似的部件用图2相同的编号表示。但插塞分成两个同心的柱形部分33a和33b。各部分中,钨所占的比例(图9左侧)不同。外侧部分33a按重量计含20%的钨,其余为氧化铝;内侧部分33b按重量计含28%的钨,其余为氧化铝。这样,在放电容器端的纯氧化铝与钼管10的纯金属之间,热膨胀系数的分段变化更为显明。
在一个最佳实施例中(图9右侧),外侧部分有一个台阶34,内侧部分33b的突出部分35即坐落在其上,因而简化了制造工序。
不使用由两部件插塞时,可以使用由三个或更多的同心部件组成的插塞,与两部件插塞比较起来,后一插塞的各部件的热膨胀系数虽然也是分段的,但各相邻部件间的热膨胀系数之差值较小。
在另一实施例中,复合材料中钨或另一第二成分的比例分别在插塞体的各同心部件中至少有一个部件里起变化。这个比例沿外表面至内表面的径向方向上增加,从而使热膨胀系数的过渡较为平滑。但另一方面,插塞的制备就比较麻烦。
另一可能性是采用单一成分的插塞材料,它不是复合材料,虽然这种材料较用作放电容器的氧化铝有较低的热膨胀系数。优选使用的材料是AlN,它的热膨胀系数和钼或钨制的金属馈电引线的几乎相同。另一可采用的材料是铝的氮氧化合物,其热膨胀系数介于放电容器材料和馈电引线材料之间。例如,可以将图9的实施例改为使用两部件插塞,其中的外部部件33a由铝的氮氧化合物制得,两内部部件33b由AlN(氮化铝)制成。
当然,两部件插塞(或更多部件组成的插塞)可以这样做,即插塞的至少一个部件如上所述是由复合材料制得,而插塞的至少一部分则由AlN或铝的氮氧化合物制得。
权利要求
1.制造的高压放电灯的一种方法,其特征在于,它包括下列制造工序a)提供一个与电极系统相连接的管状钼馈电引线;b)提供制造陶瓷放电容器用的分散体,该分散体主要由氧化铝组成,该氧化铝的比表面积约为5-10平方米/克,将该分散体制成容器形的生坯,该生坯在烧结过程中的线性收缩率约为21-24%;c)提供制造陶瓷插塞体用的分散体,该分散体的比表面积约为3至5平方米/克,将该分散体制成插塞形的生坯,该生坯在烧结过程中的线性收缩率约为17-20%;d)将所述容器形和插塞形生坯在大约1000℃至大约1400℃温度下的大气中预烧;e)将所述引线放入所述预烧结插塞体的轴向孔中就位;f)将所述已就位的插塞体插入所述预烧容器本体各端的连接部分中;g)最后将馈电引线、插塞体和容器本体组成的组合件,在大约1750℃至大约1900℃温度下的氢气氛或真空中烧结3至5小时,使所述容器本体具有供高压放电灯用的所需半透明度,且使所述组合件具有气密性。
2.如权利要求1所述的方法,其特征在于,将工序a、e、g修改如下a)提供与电极系统相连接的复合馈电引线;e)将所述馈电引线放入所述预烧插塞体的轴向孔中就位,再将所述组合件在按体积计混合了70-95%氩或氮的氢气氛中和在大约1250℃至1500℃的温度下预先进行烧结,直到馈电引线与插塞体部分连接为止;g)与权利要求1中的相同,只是采用真空作为烧结气氛。
3.如权利要求2所述的方法,其特征在于,各构件呈管状,且插塞对管形构件的压力相应于插塞的一种收缩,这种收缩应等于其轴向孔直径的减小量,该轴向孔径的减小量应比各构件的外径小5-10%。
4.如权利要求2所述的方法,其特征在于,各构件呈管形或棒形,且插塞对各构件的压力相应于插塞的一种收缩,这种收缩应等于其轴向孔直径的减小量,该轴向孔直径的减小量应比各构件的外径大约小0.5-3%。
5.如权利要求1所述的方法,其特征在于,将工序c)和d)修改如下c1)提供制造复合插塞体的一种分散体,该分散体主要由氧化铝和第二成分组成,氧化铝按重量计占60-90%,第二成分按重量计占10-40%;c2)将所述插塞形本体预先在大气中在小于300℃的温度下预烧;d1)只将容器形本体在大气中在大约1000℃至1400℃的温度下预烧;d2)将所述柱塞形体在氢气氛中在大约1200℃至1400℃温度下真正预烧。
全文摘要
一种高压放电灯,有一个陶瓷放电容器(8),容器的两端用插塞(11)封闭着。金属馈电引线或其主要部分的热膨胀系数小于陶瓷的热膨胀系数。馈电引线直接气密烧结入插塞中。本发明还介绍了灯的制造过程。
文档编号H01J9/32GK1223453SQ9810522
公开日1999年7月21日 申请日期1998年2月20日 优先权日1991年8月20日
发明者A·邦克, S·云斯特, 前川耕一朗, J·沃纳 申请人:电灯专利信托有限公司, 日本碍子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1