Cu芯球、焊膏、成形焊料、Cu芯柱和钎焊接头的制作方法

文档序号:10517199阅读:463来源:国知局
Cu芯球、焊膏、成形焊料、Cu芯柱和钎焊接头的制作方法
【专利摘要】本发明提供能得到落下强度和针对热循环的强度的Cu芯球、Cu芯柱。Cu芯球(1)具备:由Cu或Cu合金构成的Cu球(2);和由含有Sn和Cu的软钎料合金构成且覆盖Cu球(2)的焊料层(3),焊料层(3)含有0.1%以上且3.0%以下的Cu,余量由Sn和杂质构成。
【专利说明】
Cu芯球、焊膏、成形焊料、Cu芯柱和钎焊接头
技术领域
[0001]本发明涉及用软钎料合金覆盖Cu球而成的Cu芯球、使用Cu芯球的焊膏、使用Cu芯 球的成形焊料、使用Cu芯球的钎焊接头、Cu芯柱(co lumn)和使用Cu芯柱的钎焊接头。
【背景技术】
[0002 ]近年来,由于小型信息设备的发达,所搭载的电子部件正在迅速小型化。电子部件 根据小型化的要求,为了应对连接端子的窄小化、安装面积的缩小化,正在应用在背面设置 有电极的球栅阵列封装(以下称为"BGA")。
[0003] 利用BGA的电子部件中,例如有半导体封装体。半导体封装体中,具有电极的半导 体芯片被树脂密封。半导体芯片的电极上形成有焊料凸块。该焊料凸块通过使将软钎料制 成球状所得的焊料球、将软钎料制成柱状所得的焊料柱接合于半导体芯片的电极而形成。 利用BGA的半导体封装体以各焊料凸块与印刷基板的导电性焊盘接触的方式放置在印刷基 板上,利用加热而熔融了的焊料凸块与焊盘接合,从而搭载于印刷基板。另外,为了应对进 一步的高密度安装的要求,正在研究将半导体封装体沿高度方向堆叠而成的三维高密度安 装。
[0004] 但是,在进行了三维高密度安装的半导体封装体中应用BGA时,由于半导体封装体 的自重,焊料球被压碎,电极间会发生连接短路。这在进行高密度安装上成为障碍。
[0005] 因此,研究了利用例如Cu芯球、Cu芯柱的焊料凸块,所述Cu芯球、Cu芯柱将由Cu等 比软钎料的熔点高的金属形成的微小直径的球、柱状的柱体作为芯且在其表面覆盖有软钎 料。关于具有 Cu球等的焊料凸块,在将电子部件安装于印刷基板时,即使半导体封装体的重 量施加于焊料凸块,也能够利用在焊料的熔点下不熔融的Cu球支撑半导体封装体。因此,不 会因半导体封装体的自重而使焊料凸块被压碎。作为Cu芯球的相关技术,例如可列举出专 利文献1。
[0006] 现有技术文献
[0007] 专利文献
[0008] 专利文献1:日本特开2010-99736号公报

【发明内容】

[0009] 发明要解决的问题
[0010] 此外,对于使用焊料球、焊料柱、Cu芯球或Cu芯柱制作的焊料凸块,要求有针对落 下等冲击的强度、以及针对由被称为热循环的温度变化引起的伸缩的强度。
[0011] 在用含有Ag的软钎料合金制作的焊料球中,落下强度、针对热循环的强度均能得 到规定的强度。为了降低软钎料合金的成本,即使是使Ag的添加量为1.0%左右的被称为低 Ag的软钎料合金,落下强度、针对热循环的强度也均能得到规定的强度。
[0012] 另一方面,在用不含有Ag的软钎料合金制作的焊料球中,虽然落下强度能得到规 定的强度,但观察到针对热循环的强度的降低。
[0013] 本发明的课题在于,使Cu芯球也能得到与焊料球或焊料柱同等以上的落下强度和 针对热循环的强度,提供这样的Cu芯球、使用Cu芯球的焊膏、成形焊料、钎焊接头、Cu芯柱、 使用Cu芯柱的钎焊接头。
[0014] 用于解决问题的方案
[0015] 本发明人等发现:用不含有Ag的软钎料合金覆盖Cu球的Cu芯球、用不含有Ag的软 钎料合金覆盖Cu柱的Cu芯柱与用不含有Ag的软钎料合金制作的焊料球或焊料柱相比,落下 强度为相同水平,而针对热循环的强度提高。
[0016] 因此,本发明如下。
[0017] (1)-种Cu芯球,其具备:由Cu或含有50%以上Cu的Cu合金构成的芯层;由包含Sn 和Cu的软钎料合金构成且覆盖芯层的焊料层。
[0018] (2)根据上述(1)所述的Cu芯球,其中,焊料层含有0.1 %以上且3.0 %的Cu,余量由 Sn和杂质构成。
[0019] (3)根据上述(2)所述的Cu芯球,其中,用包含选自Ni和Co中的1种以上元素的层覆 盖了的上述芯层被上述焊料层覆盖。
[0020] (4)根据上述(3)所述的Cu芯球,其中,α射线量为0.0200cph/cm2以下。
[0021] (5) -种焊膏,其使用上述(1)~上述(4)中任一项所述的Cu芯球。
[0022] (6)-种成形焊料,其使用上述(1)~上述(4)中任一项所述的Cu芯球。
[0023] (7)-种钎焊接头,其使用上述(1)~上述(4)中任一项所述的Cu芯球。
[0024] (8)-种Cu芯柱,其具备:由Cu或含有50%以上Cu的Cu合金构成的芯层:由包含Sn 和Cu的软钎料合金构成且覆盖芯层的焊料层。
[0025] (9)根据上述(8)所述的Cu芯柱,其中,焊料层含有0.1%以上且3.0%以下的Cu,余 Μ由Sn和杂质构成。
[0026] (10)根据上述(9)所述的Cu芯柱,其中,用包含选自Ni和Co中的1种以上元素的层 覆盖了的芯层被焊料层覆盖。
[0027] (11)根据上述(10)所述的Cu芯柱,其中,α射线量为〇 · 0200cph/cm2以下。
[0028] (12)-种钎焊接头,其使用上述(8)~上述(11)中任一项所述的Cu芯柱。
[0029] 发明的效果
[0030]本发明中,落下强度、针对热循环的强度均能得到所需要的规定强度。用不含有Ag 的软钎料合金制作的焊料球与用含有Ag的软钎料合金制作的焊料球相比,针对热循环的强 度降低,但本发明中,与用含有Ag的软钎料合金制作的Cu芯球相比,不仅能得到所需要的落 下强度,而且针对热循环的强度也会提高。Cu芯柱也同样,与用含有Ag的软钎料合金制作的 Cu芯柱相比,不仅能得到所需要的落下强度,而且针对热循环的强度也会提高。
【附图说明】
[0031 ]图1为示出本实施方式的Cu芯球的示意性结构的截面图。
[0032] 图2为示出本实施方式的Cu芯柱的示意性结构的侧视截面图。
[0033] 图3为示出本实施方式的Cu芯柱的示意性结构的俯视截面图。
【具体实施方式】
[0034] 以下更详细地说明将本发明应用于Cu芯球的情况。在本说明书中,关于Cu芯球的 组成的单位(ppm、ppb、以及% )在没有特别指定的情况下表示相对于质量的比例(质量ppm、 质量ppb、以及质量%)。
[0035] 图1为示出本实施方式的Cu芯球的示意性结构的截面图。本实施方式的Cu芯球1由 Cu球2和覆盖Cu球的焊料层3构成。
[0036] 焊料层3由使Cu的添加量为0.1 %以上且3.0%以下、使余量为Sn的不含有Ag的软 钎料合金构成,通过在Cu球2的表面进行软钎料镀覆而形成焊料层3<Xu球2由Cu或含有50% 以上Cu的Cu合金构成。
[0037] Cu芯球1在Cu球2与焊料层3之间形成有防扩散层4。防扩散层4由选自Ni或Co等中 的1种以上元素构成,防止构成Cu球2的Cu扩散至焊料层3。
[0038] 对于在Cu球2的表面上利用使Cu的添加量为0.1 %以上且3.0%以下、使余量为Sn 的不含有Ag的组成的软钎料合金形成有焊料层3的Cu芯球1而言,即使接合对象物为在Cu层 的表面实施了预焊剂处理的Cu-OSP基板、为在Cu层的表面实施了电镀Ni/Au的电镀Ni/Au基 板,针对落下等冲击的强度、和针对由被称为热循环的温度变化引起的伸缩的强度也均能 得到所需要的规定强度。
[0039] 用不含有Ag的软钎料合金制作的焊料球与用含有Ag的软钎料合金制作的焊料球 相比,针对热循环的强度降低。对于本实施方式的Cu芯球1,虽然焊料层3是由不含有Ag的软 钎料合金形成的,但是与用含有Ag的软钎料合金制作的Cu芯球相比,不仅能得到所需要的 落下强度,而且针对热循环的强度也会提高。
[0040] 对于利用Cu芯球1的焊料凸块,即使半导体封装体的重量施加于焊料凸块,也能够 利用在软钎料合金的熔点下不熔融的Cu球支撑半导体封装体。因此,不会因半导体封装体 的自重而使焊料凸块被压碎。
[0041] 此外,电子部件的小型化使高密度安装成为可能,但高密度安装会引起软错误的 问题。软错误是指存在α射线进入到半导体集成电路(以下称为"1C")的存储单元中从而改 写存储内容的可能性。
[0042] α射线被认为是通过软钎料合金中作为杂质而含有的U、Th、21()P〇等放射性同位素 发生α衰变而放射的。因此,进行了能实现低α射线的组成的软钎料合金的开发。
[0043] Cu芯球1中,Cu球2被焊料层3覆盖,从而若构成焊料层3的软钎料合金能实现低α射 线,则认为能够遮蔽从Cu球2放射出的α射线,但对于Cu球2,也要求有能实现低α射线的组 成。
[0044] 进而,Cu芯球1中,若表示以何种程度接近圆球的球形度较低,则在形成焊料凸块 时,安装时的流动性、以及软钎料量的均匀性降低。因此,期望球形度高的Cu芯球1。
[0045] 焊料层3的组成为以Sn作为主要成分的无铅软钎料合金,从针对落下等冲击的强 度、以及针对热循环的强度的观点出发,为Sn-Cu合金。Cu芯球1中,对焊料层3的厚度没有特 别限制,优选为100M1 (单侧)以下即足够。通常为1~50μηι即可。
[0046]焊料层3是使Cu球2、镀液流动而形成的。利用镀液的流动,在镀液中Pb、Bi、Po元素 形成盐并沉淀。一旦形成作为盐的析出物,就会在镀液中稳定存在。因此,关于本发明的Cu 芯球1,析出物不会被引入到焊料层3中,能够降低焊料层3中所含的放射性元素的含量,减 少Cu芯球1自身的α射线量成为可能。
[0047] 以下,对能实现低α射线的焊料层3的组成进行详细说明。
[0048] · U:5ppb以下,Th:5ppb以下
[0049] U和Th为放射性元素,为了抑制软错误,需要抑制它们的含量。为了将焊料层3的α 射线量设为〇. 0200cph/cm2以下,需要使U和Th的含量分别为5ppb以下。此外,从抑制现在或 将来的高密度安装中的软错误的观点出发,U和Th的含量优选分别为2ppb以下。
[0050] · α射线量:0.0200cph/cm2以下
[00511本发明的Cu芯球1的α射线量为0.0200Cph/cm2以下。这是在电子部件的高密度安 装中软错误不会成为问题的水平的α射线量。本发明的Cu芯球1的α射线量可通过构成Cu芯 球1的焊料层3的α射线量为0.0200 Cph/cm2以下来实现。此外,Cu芯球1的α射线量如后述,也 可通过Cu球2的α射线量为0. 0200cph/cm2以下来实现。
[0052] 本发明的Cu芯球1在不高于100°C下形成,因此很难想象利用1]、111、21乍〇、8丨和?13等 的放射性元素的气化而使放射性元素的含量减少。但是,边使镀液、Cu球2流动边进行镀覆 时,U、Th、Pb、Bi和21()P 〇会在镀液中形成盐并沉淀。沉淀的盐为电中性,即使镀液流动,也不 会混入到软钎料镀覆膜中。
[0053]因此,软钎料镀覆膜中的它们的含量明显减少。因此,本发明的Cu芯球1由于被这 种焊料层3覆盖而表现出低α射线量。α射线量从抑制进一步的高密度安装中的软错误的观 点出发,优选为〇. 0020cph/cm2以下、更优选为0.0010cph/cm2以下。
[0054]构成本发明的Cu芯球1的焊料层3的纯度越高,即焊料层3中杂质的含量越少,则放 射性元素的含量越降低,α射线量越减少,因此对杂质量的下限值没有特别限制。另一方面, 从减少α射线量的观点出发,上限值优选为l〇〇〇ppm以下、更优选为lOOppm以下、进一步优选 为50ppm以下、特别优选为10ppm以下。
[0055]需要说明的是,焊料层3的总杂质量为焊料层3中的除了 Sn和Cu之外的杂质的含量 的总和。
[0056]焊料层3中所含的杂质中,特别优选Bi和Pb的含量少。Bi和Pb中分别包含微量的放 射性同位体21()Bi和21()Pb。因此可以认为,通过减少Bi和Pb的含量,能够明显减少焊料层3的α 射线量。焊料层3中的Bi和Pb的含量优选分别为15ppm以下、更优选分别为10ppm以下、特别 优选分别为Oppm。
[0057]接着,对构成本发明的Cu芯球1的Cu球2的组成、α射线量、球形度进行详细说明。 [0058]对于构成本发明的Cu芯球1的Cu球2,在Cu芯球1用于焊料凸块时,在软钎焊的温度 下不会熔融,因此,可以抑制钎焊接头的高度不均匀。因此,优选的是,Cu球2的球形度高、直 径的不均匀少。此外,如前所述,优选Cu球2的α射线量也与焊料层3同样地低。以下,记载Cu 球2的优选方案。
[0059] · U:5ppb以下,Th:5ppb以下
[0060] 如前所述,U和Th为放射性同位素,为了抑制软错误,需要抑制它们的含量。为了将 Cu球2的α射线量设为〇. 0200cph/cm2以下,需要使U和Th的含量分别为5ppb以下。此外,从抑 制现在或将来的高密度安装中的软错误的观点出发,U和Th的含量优选分别为2ppb以下。 [0061 ] · Cu球的纯度:99.9%以上且99.995%以下
[0062] Cu球2的纯度为3N以上且4N5以下。也就是说,Cu球2的杂质元素的含量为50ppm以 上。此处,关于Cu等金属材料的纯度,将99 %记作2N,将99.9 %记作3N,将99.99 %记作4N,将 99.999%记作5N3N5表示金属材料的纯度为99.995%。
[0063] 构成Cu球2的Cu的纯度为该范围时,能够在熔融Cu中确保用于使Cu球2的球形度提 高的充分量的晶核。球形度提高的理由如下详细说明。
[0064] 制造 Cu球时,形成为规定形状的小片的Cu材料利用加热而熔融,熔融Cu因表面张 力而成为球形,其发生凝固而形成Cu球2。熔融Cu自液体状态凝固的过程中,晶粒在球形的 熔融Cu中生长。此时,若杂质元素多,则该杂质元素成为晶核,抑制晶粒的生长。因此,球形 的熔融Cu利用生长受到抑制的微细晶粒而形成球形度高的Cu球2。
[0065] 另一方面,若杂质元素少,则相应地成为晶核的杂质元素少,晶粒生长不会受到抑 制,而是具有某种方向性地生长。其结果,球形的熔融 Cu的表面的一部分会突出并凝固。这 种Cu球的球形度低。作为杂质元素,可以考虑Sn、Sb、Bi、Zn、Fe、Al、As、Ag、In、Cd、Cu、Pb、Au、 P、S、U、Th 等。
[0066] 对纯度的下限值没有特别限制,从抑制α射线量,抑制由纯度的降低导致的Cu球2 的电导率、热导率劣化的观点出发,优选为3N以上。也就是说,优选为除了 Cu之外的Cu球2的 杂质元素的含量低于lOOOppm。
[0067] · α射线量:0.0200cph/cm2以下
[0068] Cu球2的α射线量为〇.〇20〇Cph/cm2以下。这是在电子部件的高密度安装中软错误 不会成为问题的水平的α射线量。本发明中,除了为了制造 Cu球2而通常进行的工序之外,还 再次实施加热处理。因此,在Cu材料中微量残留的21V〇挥发,与Cu材料相比,Cu球2表现出更 低的α射线量。从抑制进一步的高密度安装中的软错误的观点出发,α射线量优选为 0 · 0020cph/cm2 以下、更优选为 0 · 0010cph/cm2 以下。
[0069] · Pb或Bi中任一者的含量、或者Pb和Bi的总含量为lppm以上
[0070] 作为Cu球2中所含的杂质元素,可以考虑Sn、Sb、Bi、Zn、Fe、Al、As、Ag、In、Cd、Cu、 Pb、Au、P、S、U、Th等,但是,对于构成本发明的Cu芯球1的Cu球2,杂质元素当中,特别优选以 Pb或Bi中任一者的含量、或者Pb和Bi的总含量为lppm以上的方式作为杂质元素含有。本发 明中,从减少α射线量的方面出发,没有必要将Pb或Bi中任一者的含量、或者Pb和Bi的含量 减少至极限。
[0071] 这是因为以下的理由。
[0072] 21()Pb通过β衰变而转变为21()Bi,21()Bi通过β衰变而转变为 21Vo,21()Po通过α衰变而转 变为2()6Pb。因此,为了减少α射线量,也可以认为作为杂质元素的Pb或Bi中任一者的含量、或 者Pb和Bi的含量也尽量低是优选的。
[0073]但是,Pb中所含的21()Pb和Bi中所含的21()Bi的含有比率低。因此,若Pb、Bi的含量降 低到某种水平,则可以认为21Vb、21()Bi被充分地去除至能够将α射线量减少到前述范围的水 平。另一方面,为了提高Cu球2的球形度,如前所述,杂质元素的含量较高为佳。Pb和Bi均作 为杂质兀素被含有在Cu材料中,从而在Cu球2的制造工序中的恪融时会成为晶核,能够提尚 Cu球2的球形度。因此,优选的是,以能将21()Pb和21()Bi去除至能够将α射线量减少到前述范围 的水平的量,含有Pb或Bi中任一者、或者Pb和Bi。从这种观点出发,优选的是,Cu球2中,Pb或 Bi中任一者的含量、或者Pb和Bi的总含量为lppm以上。
[0074] Pb或Bi中任一者的含量、或者Pb和Bi的总含量更优选为lOppm以上。上限值在可减 少α射线量的范围内没有限定,但从抑制Cu球2的电导率劣化的观点出发,更优选的是,Pb或 Bi中任一者的含量、或者Pb和Bi的总含量低于lOOOppnuPb的含量更优选为lOppm~50ppm, Bi的含量更优选为lOppm~50ppm。
[0075] · Cu球的球形度:0.95以上
[0076] Cu球2的形状从控制焊点高度的观点出发,优选球形度为0.95以上。Cu球2的球形 度低于0.95时,Cu球成为不规则形状,因此在形成凸块时形成高度不均匀的凸块,发生接合 不良的可能性升高。球形度更优选为0.990以上。本发明中,球形度表示与圆球的差距。球形 度例如通过最小二乘中心法(LSC法)、最小区域中心法(MZC法)、最大内切中心法(MIC法)、 最小外切中心法(MCC法)等各种方法求出。详细而言,球形度是指:将500个Cu球2的直径分 别除以长径时算出的算术平均值,值越接近作为上限的1.00表示越接近圆球。本发明中的 长径的长度和直径的长度是指通过Mitutoyo Corporation制造的ULTRA Quick Vision、 ULTRA QV350-PR0测定装置测定的长度。
[0077] · Cu球的直径:1 ~ΙΟΟΟμηι
[0078] Cu球2的直径优选为1~ΙΟΟΟμηι。处在该范围时,能够稳定地制造球状的Cu球2,此 外,能够抑制端子间为窄间距时的连接短路。
[0079]对本发明的Cu芯球1的应用例进行说明时,Cu芯球1可用于将软钎料粉末、Cu芯球1 和助焊剂混炼而成的焊膏。在此,本发明的Cu芯球1用于焊膏时,"Cu芯球"也可以称为"Cu芯 粉末"。
[0080] "Cu芯粉末"为各个Cu芯球1具备上述特性的、多个Cu芯球1的聚集体。例如,与以焊 膏中的粉末的形态配混等的单一的Cu芯球在使用方式上有区别。同样地,用于焊料凸块的 形成时,通常也以聚集体的形态来处理,因此以这种方式被使用的"Cu芯粉末"与单一的Cu 芯球有区别。"Cu芯球"以被称为"Cu芯粉末"的形态使用时,通常,Cu芯球的直径为1~300μ m〇
[0081] 此外,本发明的Cu芯球1可用于在软钎料中分散有Cu芯球1的成形焊料。焊膏和成 形焊料中,例如使用组成为Sn-3Ag-0.5Cu(各数值为质量%)的软钎料合金。需要说明的是, 本发明并不限定于该软钎料合金。进而,本发明的Cu芯球1可用于电子部件的钎焊接头。此 外,本发明也可以用于以Cu作为芯的柱(column)、墩(piliar)、颗粒的形态。
[0082] 对本发明的Cu芯球1的制造方法的一例进行说明。
[0083]将作为材料的Cu材料放置于陶瓷这样的耐热性的板即耐热板,与耐热板一起在炉 中加热。在耐热板上设有底部为半球状的多个圆形的槽。槽的直径、深度根据Cu球的粒径适 当设定,例如直径为〇· 8mm,深度为0· 88mm。此外,将切断Cu细线而得到的碎片形状的Cu材料 (以下称为"碎片材料"。)逐个投入到耐热板的槽内。
[0084] 对于在槽内投入了碎片材料的耐热板,在填充有氨分解气体的炉内升温至1100~ 1300°C,进行30~60分钟的加热处理。此时的炉内温度达到Cu的熔点以上时,碎片材料熔融 而成为球状。然后,使炉内冷却,Cu球2在耐热板的槽内成形。冷却后,成形的Cu球2在低于Cu 熔点的温度即800~1000°C下再次进行加热处理。
[0085] 此外,作为其他方法,有以下的方法:将熔融Cu的液滴自设置于坩埚底部的孔口滴 下,使该液滴冷却,对Cu球2进行造粒的雾化法;利用热等离子体,将Cu切割金属加热至1000 °C以上进行造粒的方法。可以对如此造粒而成的Cu球2分别在800~1000 °C的温度下实施30 ~60分钟的再加热处理。
[0086] 本发明的Cu芯球1的制造方法中,也可以在对Cu球2造粒前将作为Cu球2的原料的 Cu材料在800~1000°C下进行加热处理。
[0087] 作为Cu球2的原料的Cu材料,可以使用例如颗粒、线、墩等。从不会过度降低Cu球的 纯度的观点出发,Cu材料的纯度可以为99.9~99.99%。
[0088] 进而,使用高纯度的Cu材料时,可以将熔融Cu的保持温度与以往同样地降低至 1000°C左右,而不进行前述加热处理。如此,前述加热处理可以根据Cu材料的纯度、α射线量 而适当省略、变更。此外,制造出α射线量高的Cu球、异形的Cu球时,也可以将这些Cu球作为 原料而再利用,可以进一步减少α射线量。
[0089] 此外,作为使上述那样制作的Cu球2、镀液流动来在Cu球2上形成焊料层3的方法, 有以下的方法等:公知的转筒滚镀等电镀法;连接于镀覆槽的栗在镀覆槽中使镀液产生高 速紊流,利用镀液的紊流而在Cu球2上形成镀覆膜的方法;在镀覆槽上设置振动板,以规定 的频率使其振动,从而对镀液进行高速紊流搅拌,利用镀液的紊流而在Cu球2上形成镀覆膜 的方法。
[0090] 将在直径100μπι的Cu球上覆盖膜厚(单侧)2μπι的镀Ni层、进而在镀Ni层上形成18μπι 的Sn-Cu软钎料镀覆膜而制成直径约140μηι的Cu芯球作为一例进行说明。
[0091 ]本发明的一个实施方式的含Sn-Cu镀液在以水为主体的介质中含有磺酸类以及属 于金属成分的Sn和Cu作为必须成分。
[0092]金属成分在镀液中以Sn离子(Sn2+和/或Sn4+)和Cu离子(Cu+/Cu 2+)的形式存在。镀 液通过将主要由水和磺酸类组成的镀覆母液和金属化合物混合而得到,为了金属离子的稳 定性,优选含有有机络合剂。
[0093]作为镀液中的金属化合物,例如可以例示出以下的物质。
[0094]作为Sn化合物的具体例,可举出:甲磺酸、乙磺酸、2-丙磺酸、对苯酚磺酸等有机磺 酸的锡盐、硫酸锡、氧化锡、硝酸锡、氯化锡、溴化锡、碘化锡、磷酸锡、焦磷酸锡、乙酸锡、甲 酸锡、柠檬酸锡、葡萄糖酸锡、酒石酸锡、乳酸锡、琥珀酸锡、氨基磺酸锡、硼氟化锡、硅氟化 锡等亚Sn化合物。这些Sn化合物可以单独使用一种或混合两种以上使用。
[0095]作为Cu化合物,可举出:上述有机磺酸的铜盐、硫酸铜、氧化铜、硝酸铜、氯化铜、溴 化铜、碘化铜、磷酸铜、焦磷酸铜、乙酸铜、甲酸铜、柠檬酸铜、葡萄糖酸铜、酒石酸铜、乳酸 铜、琥珀酸铜、氨基磺酸铜、硼氟化铜、硅氟化铜等。这些Cu化合物可以单独使用一种或混合 两种以上使用。
[0096]此外,在直径104μπι的覆盖有镀Ni层的Cu球上形成膜厚(单侧)18μπι的Sn-Cu软钎料 镀覆膜时,需要约0.0101库仑的电量。
[0097] 关于镀液中的各金属的配混量,以Sn2+计为0.05~2mol/L、优选为0.25~lmol/L、 以Cu计为0.002~0.02mol/L、优选为0.003~0.01mol/L。在此,参与镀覆的是Sn 2+,因此本发 明中调整Sn2+的量即可。
[0098] 需要说明的是,根据法拉第电解定律,利用下述式(1)估计期望的软钎料镀层的析 出量,算出电量,以达到算出的电量的方式使电流对镀液进行通电,边使 Cu球和镀液流动边 进行镀覆处理。镀覆槽的容量可以根据Cu球和镀液的总投入量决定。
[0099] w(g) = (IXtXM)/(ZXF) · · ·式(1)
[0100] 式(1)中,W为电解析出量(g),I为电流(A),t为通电时间(秒),M为析出的元素的原 子量(Sn的情况下为118.71),Z为化合价(Sn的情况下为2价),F为法拉第常数(96500库仑), 电量Q(A ·秒)用(I Xt)表示。
[0101 ]本发明中,边使Cu球和镀液流动边进行镀覆,对流动的方法没有特别限制。例如, 可以像筒式电镀法那样利用转筒的旋转使Cu球和镀液流动。
[0102]镀覆处理后,在大气中、他气氛中进行干燥,得到本发明的Cu芯球。
[0103] 实施例
[0104] 以下,对本发明的Cu芯球1的实施例进行说明,但本发明并不限定于这些。
[0105] 〈落下强度和热循环试验〉
[0106] 制作:由不含有Ag的软钎料合金形成焊料层的Cu芯球、由含有Ag的软钎料合金形 成焊料层的Cu芯球、由不含有Ag的软钎料合金形成的焊料球和由含有Ag的软钎料合金形成 的焊料球,进行如下试验:测定针对落下等冲击的强度的落下强度试验、和测定针对由热循 环引起的伸缩的强度的热循环试验。
[0107] 作为如图1所示的Cu芯球1,实施例1中,制作直径为300μπι的Cu芯球1。实施例1的Cu 芯球1在直径为250μπι的Cu球2上用Ni形成膜厚以单侧计为2μπι的防扩散层4,并用Sn-Cu合金 形成焊料层3。将Sn-Cu合金的组成设为Sn-0.7Cu,将焊料层3中的Cu的添加量设为0.7%。
[0? 08]作为比较例,比较例1中,制作用Sn-Ag-Cu合金形成焊料层的Cu芯球。将Sn-Ag-Cu 合金的组成设为Sn-l.0Ag-0.7Cu。比较例2中,用与实施例1相同组成的Sn-Cu合金制作焊料 球。比较例3中,用与比较例1相同组成的Sn-Ag-Cu合金制作焊料球。
[0109] 对于热循环试验,使用前述实施例与各比较例的Cu芯球和焊料球,将15个半导体 封装体基板(PKG)接合在一张印刷电路板(PCB)上,制作评价基板。印刷电路板使用在Cu层 的表面实施了预焊剂处理的尺寸为174mm X 120mm、厚度为0.8mm的Cu-〇SP基板。半导体封装 体基板使用尺寸为12 X 12mm的Cu-〇SP基板。
[0110] 对于落下强度试验,使用前述实施例与各比较例的Cu芯球和焊料球,将3个半导体 封装体基板接合在一张印刷电路板上,制作评价基板。印刷电路板使用在Cu层的表面实施 了预焊剂处理的尺寸为30 X 120mm、厚度为0.8mm的Cu-OSP基板。半导体封装体基板使用Cu-0SP基板。
[0111] 热循环试验和落下强度试验中使用的半导体封装体基板上,形成膜厚为15μπι的保 护膜,在保护膜上形成开口直径为240μπι的开口部,用回流焊炉将实施例或者比较例的Cu芯 球或焊料球接合。作为回流焊条件,热循环试验与落下强度试验均在N 2气氛下将峰值温度 设为245°C,在140~160°C下进行20秒预加热,在220°C以上进行40秒最终加热。
[0112] 如此,将接合有Cu芯球或焊料球的半导体封装体基板分别安装于热循环试验用的 印刷电路板和落下强度试验用的印刷电路板。用于热循环试验和用于落下强度试验时,均 将软钎料合金的组成为Sn-3 · OAg-O · 5Cu的焊膏以厚度为100μπι、直径为240μπι的方式进行印 刷在印刷电路板上,利用回流焊炉将接合有实施例或者比较例的Cu芯球或焊料球的半导体 封装体基板连接于印刷电路板。作为回流焊条件,在大气下将峰值温度设为245°C,在140~ 160 °C下进行70秒预加热,在220 °C以上进行40秒最终加热。
[0113] 落下强度试验中,对于所制作的评价基板,使用专用夹具将基板两端固定在悬浮 于底座上方l〇mm的位置。依据JEDEC标准,反复施加加速度1500G的冲击,将由初始电阻值上 升1.5倍的时刻视为断裂,记录落下次数。
[0114] 热循环试验利用串联电路对于所制作的评价基板连续测定电阻。使用ESPEC C0RP.制造的冷热冲击装置TSA101LA,将在-40°C和+125°C下依次分别保持10分钟的处理作 为1个循环,将电阻值超过15 Ω的时刻视为断裂,记录印刷电路板上的15个半导体封装体基 板的所有软钎料接合部被破坏时的热疲劳循环次数。对于每1个组成,制作10组评价基板, 进行10次试验,将其平均值作为结果。
[0115] 将半导体封装体基板为在Cu层的表面实施了预焊剂处理的Cu-〇SP基板的情况的 试验结果示于表1。
[0116] [表 1]
[0117]
[0118]半导体封装体基板为在Cu层的表面实施了预焊剂处理的Cu-OSP基板时,如表1所 示,对于用Sn-Cu合金形成焊料层的实施例1的Cu芯球,落下强度提高,并且针对热循环的强 度也得到超过所需的1500次的值。
[0119]半导体封装体基板为Cu-OSP基板时,对于用Sn-Ag-Cu合金形成焊料层的比较例1 的Cu芯球,落下强度得到规定的强度,但观察到针对热循环的强度的降低。
[0120] 半导体封装体基板为Cu-OSP基板时,由Sn-Cu合金形成的比较例2的焊料球中,落 下强度提高,但观察到针对热循环的强度的降低。由Sn-Ag-Cu合金形成的比较例3的焊料球 中,落下强度、针对热循环的强度均得到所需的值。
[0121] 如此,对于实施例1的Cu芯球,接合对象物为Cu-OSP基板时,可得到充分的落下强 度和针对热循环的强度。
[0122] 在此,对于实施例1的Cu芯球,在使焊料层中的Cu的添加量为0.1 %以上且3.0 %以 下的范围内进行落下强度试验、热循环试验,结果落下强度、针对热循环的强度均得到所需 以上的值。但是,使Cu的添加量为3.0%左右时,软钎料合金的熔点变高。因此,由Sn-Cu合金 形成的焊料层中的Cu的添加量优选设为0.1 %以上且2.0%以下。
[0123] <α射线量的测定〉
[0124] 接着,制作球形度高的Cu球,测定在该Cu球的表面形成有焊料层的Cu芯球的α射线 量。
[0125] .Cu球的制备
[0126] 调查球形度高的Cu球的制备条件。准备纯度为99.9 %的Cu颗粒、纯度为99.995% 以下的Cu线、和纯度超过99.995%的Cu板。分别投入到坩埚中,然后将坩埚的温度升温至 1200 °C,进行45分钟加热处理,自设置于坩埚底部的孔口滴加熔融Cu的液滴,冷却液滴,从 而对Cu球进行造粒。由此制备了平均粒径为250μπι的Cu球。将所制备的Cu球的元素分析结果 和球形度不于表3。
[0127] ?球形度
[0128] 以下,对球形度的测定方法进行详细说明。球形度利用CNC图像测定系统来测定。 装置为Mitutoyo Corporation制造的ULTRA Quick Vision、ULTRA QV350-PR0。
[0129] ·α射线量
[0130] α射线量的测定方法如下。α射线量的测定使用了气流正比计数器的α射线测定装 置。测定样品是将Cu球铺满于300mmX300mm的平面浅底容器而成的。将该测定样品放入α射 线测定装置内,在PR-10气流下放置24小时,然后测定α射线量。
[0131]需要说明的是,测定中使用的PR-10气体(氩气90%-甲烷10%)是将PR-10气体填 充于储气瓶中后经过3周以上的气体。使用经过了 3周以上的储气瓶是为了遵从JEDEC(电子 设备工程联合委员会(Joint Electron Device Engineering Council))中规定的α射线测 定方法的指南使得进入到储气瓶的大气中的氡不会产生α射线。
[0132] 将所制备的Cu球的元素分析结果、α射线量示于表2。
[0133] [表 2]
[0134]
[0135] ※合金组成的元素分析结果的单位中,仅U、Th为质量ppb
[0136] 其他元素和总杂质量的单位为质量ppm
[0137] 如表2所示,对于使用了纯度为99.9%的Cu颗粒和99.995 %以下的Cu线的Cu球,球 形度均显示为〇. 990以上。另一方面,如表3所示,对于使用了纯度超过99.995 %的Cu板的Cu 球,球形度低于〇. 95。因此,以下所示的实施例和比较例中,均使用由99.995%以下的Cu线 制造的Cu球来制备Cu芯球。
[0138] 对于由纯度99.995 %以下的Cu线制造的Cu球,以以下条件形成Sn软钎料镀覆膜, 制备实施例2的Cu芯球。
[0139] 对于实施例2的Cu芯球,以在直径250μπι的Cu球上覆盖膜厚(单侧)为50μπι的焊料层 的方式,将电量设为约0.17库仑,使用以下的镀液进行镀覆处理。通过SEM照片观察用软钎 料镀覆膜覆盖的Cu芯球的截面,结果膜厚约为50μπι。处理后,在大气中进行干燥,得到Cu芯 球。
[0140]软钎料镀液如下制成:在搅拌容器中,在调制镀液所需的水的1/3中加入全部的54 重量%的甲磺酸水溶液,制成基液。接着,加入作为络合剂的硫醇化合物的一例即乙酰半胱 氨酸,确认其溶解后,加入作为其他络合剂的芳香族氨基化合物的一例即2,2二硫代二苯 胺。形成较淡的浅蓝色的凝胶状的液体后迅速加入甲磺酸亚锡。接着,加入镀液所需的水的 2/3,最后加入表面活性剂的一例即α-萘酚聚氧乙烯醚(E010摩尔)3g/L,镀液的调制结束。 制成了镀液中的甲磺酸的浓度为2.64mol/L、锡离子浓度为0.337mol/L的镀液。
[0141]本例中使用的甲磺酸亚锡是以下述Sn片材作为原料制备而成的。
[0142]关于作为软钎料镀液的原料的Sn片材的元素分析、以及形成于Cu芯球的表面的软 钎料镀覆膜的元素分析,对于U和Th,通过高频电感耦合等离子体质谱法(ICP-MS分析)来进 行,对于其他元素,通过高频电感親合等离子体发射光谱法(ICP-AES分析)来进行。对于Sn 片材的α射线量,除了将Sn片材铺满于300mm X 300mm的平面浅底容器之外,与Cu球同样地测 定。Cu芯球的α射线量与前述Cu球同样地测定。此外,对于Cu芯球的球形度,也在与Cu球相同 的条件下进行测定。将这些测定结果示于表3。需要说明的是,作为比较例,测定了 Sn片材的 α射线量。
[0143] [表 3]
[0144]
[0145] ※合金组成的元素分析结果的单位中,仅U、Th为质量ppb
[0146] 其他元素和总杂质量的单位为质量ppm
[0147] 根据表3,在Sn片材的阶段,α射线量超过了〇. 2000Cph/cm2,但在使用该Sn片材在 Cu球上用Sn-Cu合金形成有焊料层的实施例2中,α射线量显示为低于〇.〇〇l〇cph/cm2。证实 了实施例2的Cu芯球通过利用镀覆法形成软钎料镀覆膜而使α射线量减少。
[0148] 此外,实施例2的Cu芯球即使在制作2年后也未观察到α射线量的上升。
[0149] 需要说明的是,以上,对本发明的Cu芯球进行了说明,但本发明的形状只要能实现 防止由于半导体封装体的自重而使焊料凸块被压碎这样的目的,就可以不限定于球状,也 可以应用于上述Cu芯柱。具体而言,也可以应用圆柱、三角柱、四角柱等直接接触基板的上 下表面由3边以上构成的柱体。成为芯的Cu柱可以通过公知的方法形成,覆盖Cu柱的表面的 镀覆也可以通过上述Cu芯球中使用的方法形成镀覆层。
[0150] 图2为示出本实施方式的Cu芯柱的示意性结构的侧视截面图,图3为本实施方式的 Cu芯柱的示意性结构的俯视截面图。本实施方式的Cu芯柱5由Cu柱6和覆盖Cu柱6的焊料层7 构成。
[0151] 构成本发明的Cu芯柱5的Cu柱6的上表面和底面的直径优选为1~ΙΟΟΟμπι、特别是 用于细间距时更优选为1~300μ、进一步优选为1~200μηι、最优选为1~100μπι。而且,Cu柱6 的高度L优选为1~3000μηι、特别是用于细间距时更优选为1~300μ、进一步优选为1~200μ m、最优选为1~IOOwiuCu柱6的直径和高度L为上述范围时,使端子间为窄间距的安装成为 可能,因此能够抑制连接短路,而且能够实现半导体封装体的小型化和高集成化。
[0152] 除了上述Cu柱6的尺寸之外的构成本发明的Cu芯柱5的Cu柱6的纯度、α射线量、含 有的杂质等的优选条件与本发明的Cu球2的条件相同。需要说明的是,对于Cu柱6,由于不要 求球形度,故无需纯度为4N5以下、即无需杂质元素的含量为50ppm以上。但是,只要在能减 少α射线量的范围内,就无需将杂质的含量降低至极限,若为了减少α射线量而使U和Th的含 量为规定值以下,则无需使Pb或Bi中任一者的含量、或者Pb和Bi的含量降低至极限。即使不 将杂质的含量降低至极限,也不会对落下强度和热循环强度产生影响。
[0153]此外,构成本发明的Cu芯柱5的焊料层7的软钎料组成、α射线量、含有杂质等的优 选条件与本发明的焊料层3的条件相同。
[0154] 进而,本发明的Cu芯柱5的α射线量等的优选条件与本发明的Cu芯球1的条件相同。
[0155] 对于本发明的Cu芯柱5,可以在Cu柱6与焊料层7之间形成防扩散层8。防扩散层8由 选自Ni或Co等的1种以上元素构成,防止构成Cu柱6的Cu扩散至焊料层7。
[0156] 本发明的Cu芯柱5也可以在用于连接层叠的半导体芯片之间的电极的硅穿孔电极 (through-si 1 i con via: TSV)中使用。TSV如下制造:通过蚀刻在娃中开孔,在孔中依次形成 绝缘层、位于其上的贯通导体,研磨硅的上下表面,使贯通导体在上下表面露出,从而制造。 该工序中,以往采用通过镀覆法在孔中填充Cu等而形成贯通导体的方法,但在该方法中,由 于将硅整面浸渍于镀液,故会有杂质的吸附、吸湿的担心。因此,可以将本发明的Cu芯柱5直 接沿高度方向插入到形成在硅中的孔而用作贯通导体。将Cu芯柱5插入到硅中时,可以通过 焊膏等软钎焊材料接合,此外,将Cu芯柱5插入到硅中时,也可以仅用助焊剂接合。由此,可 以防止杂质的吸附、吸湿等的不良,也可以通过省略镀覆工序来减少制造成本、制造时间。
[0157] 上述本发明的Cu芯柱5可以得到与焊料柱同等以上的落下强度和针对热循环的强 度。
【主权项】
1. 一种Cu芯球,其特征在于,具备:由Cu或含有50 %以上Cu的Cu合金构成的芯层; 由包含Sn和Cu的软钎料合金构成且覆盖所述芯层的焊料层。2. 根据权利要求1所述的Cu芯球,其特征在于,所述焊料层含有0.1%以上且3.0%以下 的Cu,余量由Sn和杂质构成。3. 根据权利要求2所述的Cu芯球,其特征在于,用包含选自Ni和Co中的1种以上元素的 层覆盖了的所述芯层被所述焊料层覆盖。4. 根据权利要求3所述的Cu芯球,其特征在于,α射线量为〇. 0200cph/cm2以下。5. -种焊膏,其特征在于,使用权利要求1~4中任一项所述的Cu芯球。6. -种成形焊料,其特征在于,使用权利要求1~4中任一项所述的Cu芯球。7. -种钎焊接头,其特征在于,使用权利要求1~4中任一项所述的Cu芯球。8. -种Cu芯柱,其特征在于,具备:由Cu或含有50 %以上Cu的Cu合金构成的芯层; 由包含Sn和Cu的软钎料合金构成且覆盖所述芯层的焊料层。9. 根据权利要求8所述的Cu芯柱,其特征在于,所述焊料层含有0.1 %以上且3.0 %以下 的Cu,余量由Sn和杂质构成。10. 根据权利要求9所述的Cu芯柱,其特征在于,用包含选自Ni和Co中的1种以上元素的 层覆盖了的所述芯层被所述焊料层覆盖。11. 根据权利要求10所述的Cu芯柱,其特征在于,α射线量为〇. 0200cph/cm2以下。12. -种钎焊接头,其特征在于,使用权利要求8~11中任一项所述的Cu芯柱。
【文档编号】B22F1/02GK105873716SQ201480072248
【公开日】2016年8月17日
【申请日】2014年11月4日
【发明人】服部贵洋, 相马大辅, 六本木贵弘, 佐藤勇
【申请人】千住金属工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1