一种镍钛记忆合金海绵及其混盐压坯高温合成制备方法

文档序号:3351337阅读:294来源:国知局
专利名称:一种镍钛记忆合金海绵及其混盐压坯高温合成制备方法
技术领域
本发明属于金属材料领域。涉及粉末冶金技术、形状记忆合金、金属海绵 材料及其高温合成技术。
背景技术
现代世界极大地依赖各种运载工具,并且随着技术的进步,运载工具的数 量增加、速度增快,由此也带来一个安全问题。1999至2007年的统计显示,我 国每年因道路交通造成的死亡人数8 10万,受伤数十万,直接经济损失十余亿 元。能量吸收材料(EAM: Energy absorption materials)可以用于改进运载工具 的耐撞性、周边设施的安全防护、个人的安全防护以及运载物的安全防护等等, 近年来受到人们的关注,特别是在汽车和军事工业领域。
能量吸收材料必须承受强的碰撞载荷,因此大多数能量吸收结构采用韧性 金属制成,低碳钢和铝合金使用最广。质量轻,比能量吸收高是能量吸收材料 和结构所需要的,尤其在航天航空领域和个人防护用品方面。高孔隙率金属材 料,包括蜂窝结构、金属泡沬、金属海绵等,密度小,而且内部含有的大量空 间可以提供较大的变形量,显示出很高的能量吸收能力。高孔隙率金属材料可 以用作填充材料,如夹层板的芯层,也可以单独使用,是理想的能量吸收材料。 泡沫铝作为能量吸收材料已成功用于汽车构件。除重量轻外,铝的熔点低,易 于通过熔体发泡技术制备泡沫材料是其得到推广应'用的关键。
高孔隙率金属材料的典型的应力应变曲线大致分成三段线弹性相应,以 平台应力为特征的屈服,以及应力随应变快速增长的压实阶段。平台应力阶段 对于能量吸收具有决定性的意义。高孔隙率金属材料的平台应力的形成机制因 材料性质和结构形式而异,可能是金属骨架的弹性屈曲、塑性破损或者是断裂。普通金属(如铝、低碳钢等)的高孔隙材料和结构经一次碰撞后将发生永久性 变形,其能量吸收性能下降。这种材料失效后难以现场修复,必须更换。这不 仅造成材料的浪费,增加了维修时间,而且诸如航天、航空、航海等远距离运 载工具携带替换备用件是非常不便的。
形状记忆合金是上世纪60年代发展起来的一种功能结构材料。这类材料具 有特异的形状记忆效应(SME: Shape memory effects)。以镍钛合金为例,形状 记忆效应可以描述为镍钛合金在一定温度下(合金为马氏体相)变形后,只 需加热至某一温度(马氏体转变为奥氏体的温度,通常称为马氏体逆相变温度, 与合金的成分以及热加工状态有关)后形状便会恢复到原样,在随后的冷却过 程中形状不再发生变化,材料的形状和性能均恢复到变形前的水平。用记忆合 金制造的能量吸收材料与构件,受撞击时发生变形而吸收能量。变形后的材料 与构件在随后的加热过程中发生形状记忆效应,其形状和体积恢复,材料的性 能也恢复到变形前的水平。因此,记忆合金能量吸收材料可以现场便捷修复, 而无需更换。
尽管实体镍钛合金在拉伸条件下完全可恢复变形量可以达到8%,然而由于 合金的密度大(6.5g/cm3),平台应力高(50 200MPa),并且合金的价格较高, 实体镍钛合金可以用于建筑、桥梁等阻尼减振,但是不适合用作运载工具上的 能量吸收材料,。镍钛合金的强度远高于铝的强度,用作能量吸收材料时要求镍 钛合金的孔隙率可以高于泡沬铝,因此镍钛合金海绵有望成为新型的能量吸收 材料。
制备多孔NiTi合金的方法有很多,如预合金粉末烧结、元素粉末混合烧结 法、自蔓延燃烧合成法等等[赵兴科,王中,郑玉峰,赵连城.粉末冶金技术.18 (2000) 214]。由于此前人们对多孔镍钛合金的兴趣主要集中医用材料领域[A. Bansiddhi *, T.D. Sargeant, S丄Stupp, D.C Du薩d. Acta Biomaterialia 4 (2008) 773],即人体植入材料,以用于人体的硬组织修复或替换。植入材料对镍钛合金 的孔隙率要求不太高,主要要求表面开孔以促进细胞在孔内的生长,从而改善植入材料的结合。并且为了保证与人体硬组织匹配的强度,内部孔隙率不能太 高。因此高孔隙率镍钛合金,尤其是镍钛合金海绵的研究不多。在常规自蔓延燃烧合成的基础上,通过用TiH2部分或全部替换Ti粉[陶亦亦,戈晓岚,姜左.机 械设计与制造.ii (2006) 96]、加入高温分解物质(NH4)2C03[Y.R Zhang, D.S. Li, X.P. Zhang, Scripta Mater. 57 (2007) 1020]、高温熔化物质石蜡[Hu Guoxin, Zhang Lixiang, Fan Yunliang, Li Yanhong. journal of materials processing technology 206 (2008) 395]等手段可以在一定程度上提高镍钛合金的孔隙率,达到60%~70%,但是作为能量吸收材料这样的孔隙率还是略显偏低。另外上述方法存在其它方 面的不足(1) 杂质元素含量高。由于钛元素在高温下具有非常大的化学活性,造孔 剂的残留以及它们高温分解产物对镍钛合金造成较大的污染,孔隙率越高,污 染程度越大,合金中的杂质元素含量越高。(2) 孔隙结构不规则。造孔剂的分解与合成过程中的局部温度分布有关, 并且分解气体的逸出扩散时易发生聚集现象,在某些地方孔隙较小而另一些地 方孔隙较大,而合成过程复杂,难以通过工艺参数进行有效控制。(3) 孔隙率低,通常不超过80%。这是因为造孔剂分解时金属粉末还没有 实现冶金连接,坯体的强度低,若造气剂的数量过多,坯料就会变形甚至幵裂。提高孔隙率、控制孔隙结构以及增加韧性是镍钛记忆合金在能量吸收材料 与结构领域实用化所必须解决的问题。在借鉴泡沫铝的渗流复模制备工艺 [L.Polonsky, S丄ipson, H.Markus. Modern casting. 39 (1961) 57]的基础上,本发明 采用镍、钛原料粉末与一定颗粒度的无机盐混合后压坯,高温合成、最后去除 无机盐,从而得到高孔隙率(80%~90%)的连通孔型镍钛合金(镍钛合金海绵)。

发明内容
本发明的目的在于利用无机盐颗粒造孔,利用高温固相反应由原料粉末形 成合金,可以在较宽的范围内方便调整镍钛合金的孔隙结构。镍、钛两种元素 在一定温度条件下能够发生固相合成反应而形成镍钛合金,保留粉末冶金的优点。孔隙率、孔的形状和分布主要取决于无机盐的添加数量和添加形式。 本发明所述的混盐压坯高温合成镍钛合金海绵的方法,包括以下步骤 第一步,镍钛原料粉末混合将纯度》99%、粒度25微米 150微米的11粉和纯度>98%、粒度25微米 150微米Ni粉,按原子比=51:49-49:51混合均匀。 第二步,混盐粉-将第一步得到的原料混合粉与纯度》99%、粒度200微米~2000微米的无机 盐粉按质量比=2:1~1:1.5混合均匀。无机盐为NaCl、 KC1、 NaF或KF,或它们 的混合物。第三步,制坯将第二步混好的粉末装入模腔中压制成坯,所施压力大小的范围为 10MPa 100MPa。第四步,高温合成将第三步制得的坯料放入高温炉内粉末冶金合成,高温炉为真空或通入保 护性气氛。第五步,脱盐将合成后得到的镍钛合金海绵用水浸泡和冲洗,直至材料中的盐全部清除。 本发明的镍钛记忆合金海绵旨在用于能量吸收材料与结构。利用镍钛合金 在其马氏体状态下变形应力低和海绵体的体积压縮率高的特点吸收碰撞载荷; 利用镍钛合金特异的形状记忆特性修复海绵体碰撞后发生的变形。这种镍钛合 金海绵体用作防护功能结构件时,可以实现在线便捷修复,重复利用,而无需 更换。使用本发明所述的方法制备的镍钛合金海绵可以用于运载工具的撞击防 护、 一般工程的减震阻尼、过滤器件,以及生物医用的人造眼球、人造骨骼等。 本发明的优点在于(1)可以制备高孔隙率的镍钛合金;(2)镍钛合金海 绵的孔隙结构规则,控制方便;(3)制备工艺简单,流程短。


图1为混盐压坯高温合成前后的形貌无机盐与原料粉末的比例为l : 1(质量比),镍钛合金海绵的孔隙率约为82%(相对密度法确定)。图2为镍钛合金海绵的相组成合成的镍钛合金海绵微观组织由NiTi、少量的Ti2Ni和Ni3Ti等组成,无原 料粉末相残留,表明合成反应充分。
具体实施例方式以下为本发明所述的混盐压坯高温合成镍钛合金海绵的具体实施例。(1) 材料与设备(1-1)钛粉,纯度99.9%,粒度25微米 150微米; (1-2)镍粉,纯度99.6%,粒度25微米 150微米; (1-3)氯化钠,化学纯,粒度200微米 2000微米; (1-4)多功能高温真空炉。(2) 混粉(2-1)用电子天平分别称取镍粉55g,钛粉45g,氯化钠粉100g; (2-2)将称得的镍粉与钛粉装入500g的方形塑料瓶内,加盖密封; (2-3)将塑料瓶的端部与电机轴相连;(2-4)开启电机,带动塑料瓶做旋转运动,转速为100r/min; (2-5)连续混粉4小时后停止。(2-6)向瓶中加入称得的氯化钠粉,启动混粉0.5小时后停止(3) 压坯(3-1)将混合粉末装入内径为小25mm的筒形模具内; (3-2)将模具安装在液压机上;(3-3)以lmm/min的速率压制坯料,终压力为20MPa。(4) 合成(4-1)所用将压制好的坯料放入真空炉,关闭炉门;(4-2)按操作规程启动真空炉,加热温度为850°C,保温时间4小时,真 空度l(T3Pa。(4-3)随炉冷却到20(TC以下时打开炉门,取出试样。(5) 后处理(5-1)试样放入水槽内浸泡24小时,中间换水4次; (5-2)流水冲洗;(5-3)放入12(TC的烘箱内烘干2小时。(6) 测试(6-1)镍钛合金海绵合成前后的形貌见附图1;(6-2)相对密度法确定镍钛合金海绵的孔隙率为82%;(6-3) X射线衍射方法确定无原料粉末残留,合成完全,见附图2。
权利要求
1.一种高孔隙率镍钛合金海绵及其混盐压坯高温合成制备方法,其特征在于第一步,镍钛原料粉末混合将纯度≥99%、粒度25微米~150微米的Ti粉和纯度≥98%、粒度25微米~150微米Ni粉,按原子比=51∶49~49∶51混合均匀;第二步,混盐粉将第一步得到的原料混合粉与纯度≥99%、粒度200微米~2000微米的无机盐粉按质量比=2∶1~1∶1.5混合均匀,无机盐为NaCl、KCl、NaF或KF,或它们的混合物;第三步,制坯将第二步混好的粉末装入模腔中压制成坯,所施压力大小的范围为10MPa~100MPa;第四步,高温合成将第三步制得的坯料放入高温炉内粉末冶金合成,高温炉为真空或通入保护性气氛;第五步,脱盐将合成后得到的镍钛合金海绵用水浸泡和冲洗,直至材料中的盐全部清除;得到的镍钛合金海绵的孔隙率范围为75%~95%;镍钛合金海绵的孔隙表面开口,内部是连通型。
全文摘要
一种镍钛记忆合金海绵及其混盐压坯高温合成制备方法,属于金属材料领域。本发明综合利用了粉末冶金和浸透工艺,通过将一定颗粒大小的镍粉与钛粉混合均匀后,再将混合粉与一定颗粒大小的氯化钠粉末混合,然后压坯,按常规粉末冶金方法高温合成镍钛合金。将得到的样品在水中浸泡清洗,脱盐后即获得海绵状的镍钛合金。与目前的多孔镍钛合金相比,镍钛合金海绵的优点在于(1)孔隙率高;(2)孔隙结构可控性好,调整范围大;(3)孔隙表面开口率高,内部连通;(3)制备工艺简单,流程短。本发明的镍钛合金海绵可以用于各类运载工具的撞击防护、一般工程的减震防护,还可以用于制造过滤件、医疗器件等,应用领域广,发展前景好。
文档编号C22C1/04GK101307400SQ20081011615
公开日2008年11月19日 申请日期2008年7月4日 优先权日2008年7月4日
发明者华 张, 罗俞华, 赵兴科, 伟 顾, 黄继华 申请人:北京科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1